Statistics 5101, Fall 2000, Geyer Homework Solutions \#2

Note: Original done by Laura Pontiggia, Fall 1999. Additions by Yumin Huang, Fall 2000.

Problem 2-12

Since $\left(A \cup B^{c}\right)^{c}=A^{c} B$, and since $\operatorname{pr}(B)=\operatorname{pr}\left(A^{c} B\right)+\operatorname{pr}(A B)$ [using prop. (7)] then $\operatorname{pr}\left(A^{c} B\right)=\operatorname{pr}(B)-\operatorname{pr}(A B)=.30-.21=.09$. Using prop. (1): $\operatorname{pr}\left(A \cup B^{c}\right)=$ $1-\operatorname{pr}\left[\left(A \cup B^{c}\right)^{c}\right]=1-.09=.91$.

Problem 2-20

The inequality on the right (the only one we were asked to do) $\operatorname{pr}(E \cup F) \leq$ $\operatorname{pr}(E)+\operatorname{pr}(F)$ follows from Property (3) and Axiom 1.

Problem 2-22

(b) By Theorem 2, $\operatorname{pr}\left(E_{1} \cup E_{2}\right)=\operatorname{pr}\left(E_{1}\right)+\operatorname{pr}\left(E_{2}\right)-\operatorname{pr}\left(E_{1} E_{2}\right)$. Since $\operatorname{pr}\left(E_{1} E_{2}\right)$ is nonnegative. The inequality holds for $n=2$.

Now, assume the inequality holds when $n=k-1$. Let $F=E_{1} \cup E_{2} \cup$ $\cdots \cup E_{k-1}$. Applying Theorem 2(3) again, it follows that $\operatorname{pr}\left(F \cup E_{k}\right) \leq \operatorname{pr}(F)+$ $\operatorname{pr}\left(E_{k}\right)$. Therefore the inequality holds by mathematical induction.

Problem 2-26

Since each characteristic two possible values, the number of outcomes in this experiment is $4^{2}=16$.

The probability distribution that reflects the proportions 9:3:3:1 is $\left(\frac{9}{16}, \frac{3}{16}, \frac{3}{16}, \frac{1}{16}\right)$. Hence the probability that a plant has yellow peas is given by

$$
\operatorname{pr}(\text { a plant has yellow peas })=\operatorname{pr}(\mathrm{WY})+\operatorname{pr}(\mathrm{RY})=\frac{3}{16}+\frac{9}{16}=\frac{3}{4}
$$

Problem 2-27

(a)

$$
\sum_{i=1}^{\infty} \sum_{j=1}^{\infty}\left(\frac{1}{2}\right)^{i+j}=\sum_{i=1}^{\infty}\left(\frac{1}{2}\right)^{i} \sum_{j=1}^{\infty}\left(\frac{1}{2}\right)^{j}=1 \times 1=1
$$

(b) Call the event in question A, so

$$
A=\{(1,1),(1,2),(2,1),(1,3),(3,1),(2,2)\}
$$

Then

$$
\operatorname{pr}(A)=\frac{1}{2^{1+1}}+\frac{2}{2^{1+2}}+\frac{2}{2^{3+1}}+\frac{1}{2^{2+2}}=\frac{1}{4}+\frac{2}{8}+\frac{3}{16}=\frac{11}{16} .
$$

Problem 3-3

(a)

	Y	1	2	3	4
X					
1	0	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{4}$
2		$\frac{1}{12}$	0	$\frac{1}{12}$	$\frac{1}{12}$
3	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{12}$	$\frac{1}{4}$
4	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	0	$\frac{1}{4}$
$f(y)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	1

The distribution is uniform (equally likely outcomes) except for the outcomes on the diagonal (with $X=Y$), which are impossible because of the sampling "without replacement."
(b)

X	1	2	3	4
$f_{X}(x)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

Y	1	2	3	4
$f_{Y}(y)$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

(c)

Z	3	4	5	6	7
$f(z)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{3}$	$\frac{1}{6}$	$\frac{1}{6}$

$$
\begin{aligned}
& \operatorname{pr}(Z=X+Y=3)=\operatorname{pr}(X=1, Y=2)+\operatorname{pr}(X=2, Y=1)=\frac{1}{12}+\frac{1}{12}=\frac{1}{6} . \\
& \operatorname{pr}(Z=X+Y=4)=\operatorname{pr}(X=1, Y=3)+\operatorname{pr}(X=3, Y=1)=\frac{1}{12}+\frac{1}{12}=\frac{1}{6} .
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{pr}(Z=X+Y=5)= & \operatorname{pr}(X=1, Y=4)+\operatorname{pr}(X=4, Y=1) \\
& \quad+\operatorname{pr}(X=2, Y=3)+\operatorname{pr}(X=3, Y=2) \\
= & \frac{1}{12}+\frac{1}{12}+\frac{1}{12}+\frac{1}{12}=\frac{1}{3}
\end{aligned}
$$

and so forth for $\operatorname{pr}(Z=6)$ and $\operatorname{pr}(Z=7)$.

Problem 3-4

There are six points in the sample space

guess	number correct
A B C	3
B C A	0
C A B	0
C B A	1
B A C	1
A C B	1

Thus

X	0	1	2	3
$f(x)$	$\frac{1}{3}$	$\frac{1}{6}$	0	$\frac{1}{2}$

(or the point 2 can be deleted from the sample space if you prefer).

Problem 3-6

There are $\binom{12}{3}$ points in the sample space (ways to choose 3 eggs from 12 eggs).
Similarly, there are are $\binom{2}{k}$ to choose k rotten eggs from the 2 rotten eggs in the carton and $\binom{10}{k}$ to choose k non-rotten eggs from the 10 non-rotten eggs in the carton. If there are k rotten eggs drawn, there are $3-k$ non-rotten eggs drawn. Thus

$$
f(y)=\frac{\binom{2}{y}\binom{10}{3-y}}{\binom{12}{3}}, \quad y=0,1,2
$$

