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Abstract

This article introduces the use of fuzzy P -values and confidence intervals (Geyer and
Meeden 2005) with classical nonparametric tests, specifically with the sign test and the
one-sample and two-sample Wilcoxon tests. The method presented can be applied to any
test and provides simple exact fuzzy tests at any level in the presence of ties. It also
provides the corresponding fuzzy confidence intervals.

Keywords: sign test, Wilcoxon rank sum test, Mann-Whitney-Wilcoxon signed rank test.

1. Introduction

1.1. Fuzzy P-values

Geyer and Meeden (2005) introduce the notion of a fuzzy P -value, which for our purposes
can be described as follows. If P is a random variable that has a Uniform(0, 1) distribution
unconditionally under the null hypothesis H0, then a random variable having the conditional
distribution of P given observed data Y is an exact fuzzy P -value. The test that rejects H0

when P ≤ α rejects with probability α under H0 because

E{Pr[P ≤ α|Y ]} = Pr(P ≤ α) = α (1)

[compare with equation (1.7) in Geyer and Meeden (2005)].

Geyer and Meeden (2005) recommend that this distribution of P given Y and not a number
deemed to be a random realization of it is what a statistician or scientist should report in a
situation where classical randomized tests are appropriate. The reason is that, as has long
been recognized, it is absurd that two statisticians use exactly the same procedure on exactly
the same data but report different results, and this has been (we think) the main reason why
randomized tests are not used in practice, despite some of them being uniformly most powerful
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and recommended by the widely accepted theory theory of hypothesis testing (Lehmann
1959). The solution proposed by Geyer and Meeden (2005) is to not report a realization of
the random variable (because every realization is different) but to report the abstract random
variable (a description of its probability distribution, which is always the same). We follow
the same principle here. A fuzzy P -value is not a single number but a random variable having
a probability distribution and described by a picture of its probability density function (PDF)
or its cumulative distribution function (CDF) or by some other mathematical characterization
of the distribution.

1.2. Interpretation

We know how to interpret conventional P -values. Low P -values are good (if you are on the
side that wants to reject the null hypothesis), the lower the better. High P -values are bad
(for your side). Somewhere in the middle, traditionally around 0.05, P -values are equivocal.

Fuzzy P -values are somewhat harder to interpret because they are fuzzy, smeared out over
a range of values. But it is still the case that extremes are easy to interpret. If the whole
distribution of a fuzzy P -value is concentrated below 0.01, then this is strong evidence against
the null hypothesis. If the whole distribution of a fuzzy P -value is concentrated above 0.2,
then this is evidence against the null hypothesis so weak as to be practically nonexistent.
The strength of evidence goes from one extreme to the other as the distribution of the fuzzy
P -value shifts. In the middle it is equivocal.

For concreteness, suppose we are doing a lower-tailed sign test with sample size 10 and observe
T = 2 for the test statistic. The conventional P -value is P = 0.055, which is borderline
statistically significant but not actually below 0.05. The possible significance levels for the
conventional test are (using R)

> round(pbinom(0:4, 10, 1 / 2), 5)

[1] 0.00098 0.01074 0.05469 0.17188 0.37695

We see that the next smallest possible P -value is P = 0.011 (for T = 1). So this is not
analogous to a t-test or any other hypothesis test with a continuous reference distribution.
Intuitions that that come from experience with t-tests are not transferable.

We can state this point more pedantically by saying the test is exact only if one is using
a significance level (α level) that is a value the cumulative distribution function of the test
statistic (0.00098, 0.01074, etc. in our example). Otherwise the test is conservative (the
power under the null hypothesis is greater than the significance level), and the conventional
nonrandomized test is only conservative-exact rather than exact.

For the fuzzy test for T = 2, the fuzzy P -value is uniformly distributed on the interval
(0.011, 0.055). It is mostly below 0.05, hence this result is more analogous to a t-test with
P < 0.05 than one with P > 0.05.

Although this procedure was only proposed in 2005, it has always been implicit in the classical
theory of randomized hypothesis tests (Lehmann 1959). If one generates a realization of this
fuzzy P -value and says“reject H0” if P < α and“accept H0” if P > α, then this is the classical
randomized test.

The conventional P -value is the upper endpoint of the support of the fuzzy P -value. So the
fuzzy P -value provides more information than the conventional P -value. Given how easy it
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Table 1: Endpoints of Supports of Fuzzy P -values. T is a random variable having the null
distribution of the test statistic, t is the observed value of the test statistic, and τ is the center
of symmetry of the null distribution of the test statistic. The fuzzy P -value is uniformly
distributed on the interval with the endpoints indicated in the table.

lower upper
endpoint endpoint

upper-tailed Pr(T > t) Pr(T ≥ t)
lower-tailed Pr(T < t) Pr(T ≤ t)
two-tailed Pr(|T − τ | > |t− τ |) Pr(|T − τ | ≥ |t− τ |)

is to provide the fuzzy P -value, there seems no reason to prefer the conventional P -value.
Readers who don’t like fuzzy P -values can ignore all but their upper endpoints.

2. The sign test

The sign test (Hollander and Wolfe 1999, Section 3.4) concerns the value of the population
median µ of data X1, X2, . . ., Xn assumed to be independent and identically distributed
(IID) from some (completely unspecified) distribution. The test statistic of the sign test is
the number T of Xi that are greater than the value of µ assumed under the null hypothesis.

2.1. No ties

In this section we assume Pr(Xi = µ) is zero, as happens when the distribution of the Xi is
continuous. Under the null hypothesis the distribution of T is Binomial(n, 1/2).

Fuzzy P -values allow an exact test at any significance level. Geyer and Meeden (2005) dis-
cuss uniformly most powerful (UMP) and UMP unbiased (UMPU) tests for binomial data.
Although these tests are different from the sign test, they have the same null distribution
of their test statistic, and hence can use the same fuzzy P -values. If we follow the same
logic as Geyer and Meeden (2005) in the special case where the test statistic has a symmetric
binomial distribution, the fuzzy P -value is uniformly distributed on the intervals shown in
Table 1 (where for the sign test τ = n/2).

This fuzzy test is UMP (one-tailed) or UMPU (two-tailed) given the decision to use T as
the test statistic. It is, of course, not UMP or UMPU for the original data. For example, a
conventional z-test would be UMP or UMPU if the data were normal with known variance,
and no test is most powerful regardless of the distribution of the data.

2.2. Ties

Now we allow for the case where Pr(Xi = µ) is non-zero. Before we advance our proposal, we
say a few things about currently available methods.

Currently available methods

The simplest and most popular method of dealing with ties, which we call the standard
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method, simply ignores them (Hollander and Wolfe 1999, pp. 62 and 67). The resulting test
is a valid conditional test (conditioning on the observed number of ties), but that validity is
something that could please only a theoretician.

Consider the following data: we observe 1 data point below µ, 90 equal to µ, and 9 above
µ. The “standard method” simply ignores the 90 ties and proceeds as if we had seen 10 data
points, (1 below and 9 above). The conventional two-tailed P -value is then P = 0.021, which
implies fairly strong evidence against the null hypothesis that the true median is µ. But
the 90% of the data that are exactly at µ strongly supports the null hypothesis that µ is
the median. So here we have a case where the data are overwhelmingly in favor of the null
hypothesis and yet the “standard method” rejects it.

To be fair to Hollander and Wolfe (1999), they do say “this approach is satisfactory as long
as [ties] do not represent a sizable percentage of the total” (we would argue it is never “sat-
isfactory” to ignore data favoring the null hypothesis). Moreover, they outline two other
procedures. One we call the conservative method counts all ties as favoring the null hypoth-
esis. The other we call the randomized method counts ties as favoring the null or alternative
at random with equal probabilities.

Fuzzy methods

Here is a simple alternative method using fuzzy P -values. “Unrandomize” the randomized
method. Add conceptual infinitesimal jitter to the data to break ties. Suppose the observed
data have l, t, and u points below, tied with, and above (respectively) the hypothesized value
of µ. After jittering we have l + K points below, u + t − K above, and no ties, where K
is a Binomial(t, 1/2) random variable. If we actually observed K we would know how to
compute the fuzzy P -value. When we don’t observe K, we calculate the distribution of the
fuzzy P -value mixing over K.

Here is an example. Suppose we observe 2, 3, and 12 data points below, tied with, and above
the hypothesized value of µ (respectively), and wish to do an upper-tailed test. Figure 1
shows the PDF of the fuzzy P -value. The areas under the four steps are in ratios 1 : 3 : 3 : 1,
the ratios of probabilities for the Binomial(3, 1/2) distribution of K in this case. The step
boundaries are the relevant probabilities of the Binomial(17, 1/2) distribution of the sign test
statistic, which ranges from 12 to 15 as K ranges from 0 to 3, calculated by the expression

1 - pbinom(11:15, 17, 1/2)

in R (R Core Team 2013). Figure 1 was made by the R contributed package fuzzyRankTests
(Geyer 2013), available from CRAN, which does all calculations and plots discussed in this
article.

So much for computation, now for the interpretation. The evidence against the null hypothesis
is not overwhelming, since some of the distribution of the fuzzy P -value is above 0.05 (about
six percent). It is, however, fairly strong. The very liberal “standard method” ignores the
three ties, giving P = 0.006. The very conservative “conservative method” counts the ties as
evidence in favor of the null hypothesis giving P = 0.072 (the upper bound of the support of
the fuzzy P -value).

We hope the reader will agree liberal is too liberal and conservative too conservative and
fuzzy is a happy medium.
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Figure 1: Fuzzy P -value for upper-tailed sign test. Data are 2 below, 3 tied with, and 12
above the hypothesized value of the median under the null hypothesis.
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Disclaimer

No method is beyond criticism. The procedure outlined in the preceding section is hard to
justify scientifically if it is hard to imagine a hidden continuous variable that has been rounded
or grouped to form the observed data.

We agree with Hollander and Wolfe (1999, p. 67) where they say that nonparametrics (re-
gardless of what method one uses for dealing with ties) is a poor substitute for methods
specifically designed for ordered categorical data. If one thinks an ordered categorical model
is scientifically appropriate, then that is what one should use.

Our proposed fuzzy P -values are exact only when the null hypothesis is about the median
of the actual data, however rounded or grouped. The test cannot be exact when the null
hypothesis is about the median of the unobserved unrounded data, nor could it be without a
specific model for the joint distribution of the unrounded data and the rounded or grouped
data. If one did have such a specific model, then the method for obtaining fuzzy P -values in
latent variable situations proposed by Thompson and Geyer (2007) could be used.

3. Other rank tests

We give only a brief discussion of fuzzy P -values for the Wilcoxon rank tests. Implementation
details are extensively discussed in the design document found in the doc directory of the
fuzzyRankTests package (Geyer 2013).

3.1. Mann-Whitney-Wilcoxon rank sum test

The methodology for other classical rank tests is similar. So long as the null distribution
of the test statistic is symmetric, Table 1 is still valid. Suppose we are doing a two-tailed
Wilcoxon rank sum test with data

X 1.2 3.7 5.1 8.3 12.1 12.1
Y 8.3 12.1 14.3 15.2 18.7 19.7 21.2

The standard methodology uses tied ranks, but we do not. We use

X 1 2 3 4–5 6–8 6–8
Y 4–5 6–8 9 10 11 12 13

the notation 4–5 meaning tied for ranks 4 and 5 and similarly for 6–8. When we break the ties
by infinitesimal jittering, then the possibilities 4 and 5 for the smallest Y value are equally
likely as are the possibilities 6, 7, and 8 for the next Y value. These possible values lead to
possible values of the Mann-Whitney form of the test statistic, the number of (X,Y ) pairs for
which X > Y , between 2 and 5 and an elementary probability calculation gives corresponding
probabilities in the ratios 1 : 2 : 2 : 1. Figure 2 shows the PDF of the fuzzy P -value. The
areas under the four steps are in ratios 1 : 2 : 2 : 1 and the step boundaries are calculated by
the expression

2 * pwilcox(1:5, 6, 7)

in R (the 2 is for two tails).
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Figure 2: Fuzzy P -value for two-tailed rank sum test.
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In general, the contribution of each tied class to the latent test statistic also has the Mann-
Whitney distribution but with sample sizes that are the number of x and y values in the tied
class. Then one performs a convolution operation to find the distribution of the sum of the
contributions (or uses the R package fuzzyRankTests).

3.2. The Wilcoxon signed rank test

Other rank tests are similar to those already discussed. We mention only one particular
detail about the signed rank test. When there are ties, there are two kinds of tied classes.
The contribution to the latent test statistic of the class tied at the value µ hypothesized
under the null hypothesis has the Wilcoxon signed rank distribution but with sample size the
number of data values tied with µ. The contributions to the latent test statistic of all other
tied classes have the Mann-Whitney distribution but with sample sizes that are the number
of data values in the tied class above and below µ.

4. Discussion

The methods discussed in this article are not the only methods for obtaining what some call
exact tests in the presence of ties. The network and shift algorithms (Mehta and Patel 1983;
Streitberg and Röhmel 1987) as implemented in the proprietary software StatXact (http:
//www.cytel.com) and the free software R with the exactRankTests contributed package (R
Core Team 2013; Hothorn 2001; Hothorn and Hornik 2013) also perform exact rank tests,
but the P -values they produce are not exact in the sense used in this article. They are
“conservative-exact” being exact only for a few significance levels and conservative for others
because they do not randomize. Of course, fuzzy versions of those procedures could also be
derived. (The exactRankTests package still supported but no longer under development. The
coin package (Hothorn, Hornik, van de Wiel, and Zeileis 2006, 2008) is its successor.)

Infinitesimal jittering has been used in Bayesian inference, apparently originated by Hill
(1968). Formal theory for that idea needs finitely additive probability (Lane and Sudderth
1978), but we do not see the need for that here, where the infinitesimal jittering story merely
motivates a randomization scheme.

As mentioned in Section 2.2.3, another approach to rounded or grouped data is to explicitly
model the distribution of the unobservable unrounded data and the rounding-grouping mech-
anism. We have a method for that approach (Thompson and Geyer 2007). In the case of the
rank sum test, with the standard null hypothesis that the unrounded data are independent
and identically distributed from a common continuous distribution and are rounded to obtain
the observed data, the method of Thompson and Geyer (2007) and the method of Section 3
give the same fuzzy P -values. Other situations or other assumptions lead to other fuzzy P -
values, but this more complicated procedure would have little impact on the fuzzy P -value
with most latent data models.

We claim that the fuzzy P -value procedures described here are by far the easiest to understand.
They are simple enough so that non-expert users can understand and implement them.

http://www.cytel.com
http://www.cytel.com
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A. Theory

This section proves the basic ideas without going through UMP theory. Readers who have
taken or taught a theoretical probability and statistics course should recognize a slight variant
of a standard exercise.

Let X be a random variable and F its CDF. Let F− be the left continuous version of F , that
is

F (x) = pr{X ≤ x}
F−(x) = pr{X < x}

Let U be a Uniform(0, 1) random variable independent of X. We claim the random variable

V = UF (X) + (1− U)F−(X)

is Uniform(0, 1).

Fix v such that 0 < v < 1 and x such that F−(x) ≤ v ≤ F (x). Write f(x) = F (x) − F−(x).
Then

pr{V ≤ v} = pr{X < x}+ pr{V ≤ v | X = x} · pr{X = x}
= F−(x) + v − F−(x)

= v

the second term on the right hand side of the first line being zero if f(x) = 0 and otherwise
the conditional probability in that term being

pr{F−(x) + Uf(x) ≤ v} =
v − F−(x)

f(x)

That finishes the proof of the claim and shows that our recommended procedure (based on
Table 1) does indeed obey equation (1) when there are no ties.

The main text of the article implicitly gives the argument for ties. We have three (correlated)
random objects, the original data, the“infinitesimally jittered”data, and the fuzzy P -value P .
By the theorem above P is unconditionally Uniform(0, 1) because it is based (theoretically)
on the infinitesimally jittered data, which has no ties. Thus we get a valid fuzzy P -value
when we condition on the original data.

B. Confidence intervals

Some readers may be wondering about fuzzy confidence intervals dual to our fuzzy tests.
They are simple mixtures of standard confidence intervals. We give one example.

Suppose we have sorted data

3.13 3.48 3.50 4.70 4.76 4.82 5.28 5.67 5.82 8.67

and one wants a confidence interval for the population median dual to the sign test, which
(Hollander and Wolfe 1999, Section 3.6) has end points that are symmetric pairs of order
statistics. The three intervals with largest confidence levels are
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interval level

(3.13, 8.67) 99.8
(3.48, 5.82) 97.9
(3.50, 5.67) 89.1

The 95% fuzzy confidence interval formed from these has membership function that is 1.0
on the interval (3.50, 5.67), is 0.676 on the part of (3.48, 5.82) not included in the narrower
interval, and 0.0 elsewhere. The corresponding randomized confidence interval is (3.48, 5.82)
with probability 0.676 and (3.50, 5.67) with probability 0.324.

Without giving details of the argument, we assure the reader that if one goes through the
argument of Geyer and Meeden (2005, Section 1.4) one does indeed find that the critical
function φ(x, α, µ) associated with the randomized sign test described in Section 2.1 above is a
constant function of µ on intervals between order statistics and does give the fuzzy confidence
intervals just described. Detailed proofs of this and many other theoretical points in this
article can be found in the design document found in the doc directory of the fuzzyRankTests
package (Geyer 2013).

When the data distribution is continuous so no ties are possible, the values at discontinuities
of (the membership function of) the fuzzy confidence interval do not matter. If ties can occur,
then values at discontinuities do matter. The correct values are found by inverting the fuzzy
test (and done by the R package fuzzyRankTests).

Another issue that arises when ties can occur is that some of the intervals on which the
fuzzy confidence interval is constant (which have order statistics as end points) can collapse
because their end points are tied. The R package fuzzyRankTests also deals with this situation
correctly. Implementation details are discussed in the aforementioned design document.
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