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Introduction
These notes back up what is said about sampling schemes in our notes to accompany Agresti Chapter 1. For
once, they are not titled “lecture notes”. We will not lecture on them, because the details are not important
for most applied work. They are just here for reference.

Three Lemmas About Conditional Probability
Lemma 1. Repeated marginalization gives consistent results. If 𝑋, 𝑌 , and 𝑍 are random vectors, then
calculating the marginal of 𝑋 and 𝑌 and then calculating the marginal of 𝑋 from that (in two steps) gives
the same result as calculating the marginal of 𝑋 directly (in one step).

Proof. If 𝑋, 𝑌 , and 𝑍 are discrete having joint PMF 𝑓 , then what must be shown is

∑
(𝑦,𝑧)∈𝑆(𝑥)

𝑓(𝑥, 𝑦, 𝑧) = ∑
𝑦∈𝑇 (𝑥)

∑
𝑧∈𝑆(𝑥,𝑦)

𝑓(𝑥, 𝑦, 𝑧) (1)
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where 𝑆 is the domain of 𝑓 and

𝑆(𝑥) = { (𝑦, 𝑧) ∶ (𝑥, 𝑦, 𝑧) ∈ 𝑆 }
𝑆(𝑥, 𝑦) = { 𝑧 ∶ (𝑥, 𝑦, 𝑧) ∈ 𝑆 }

𝑇 (𝑥) = { 𝑦 ∶ (𝑥, 𝑦, 𝑧) ∈ 𝑆 }

and the sums on the two sides of (1) are the same because the sets {𝑦} × 𝑆(𝑥, 𝑦) for 𝑦 ∈ 𝑇 (𝑥) partition 𝑆(𝑥).
If any of these variables are continuous, some of the sums are replaced by integrals, but otherwise the proof
is the same.

Lemma 2. Marginalization and conditionalization can be interchanged. If 𝑋, 𝑌 , and 𝑍 are random vectors,
then calculating the marginal of 𝑋 and 𝑌 and then calculating the conditional of 𝑋 given 𝑌 from that (in
two steps) gives the same result as calculating the conditional of 𝑋 and 𝑍 given 𝑌 and then calculating the
marginal of that conditional that is the conditional of 𝑋 given 𝑌 (the same two steps, but in reverse order).

Proof. Using the notation of the preceding proof, what must be shown is

𝑓𝑋,𝑌 (𝑥, 𝑦)
𝑓𝑌 (𝑦) = ∑

𝑧∈𝑆(𝑥,𝑦)

𝑓(𝑥, 𝑦, 𝑧)
𝑓𝑌 (𝑦)

where 𝑓𝑌 is the marginal of 𝑌 and 𝑓𝑋,𝑌 is the marginal of 𝑋 and 𝑌 . But this is obvious because 𝑓𝑌 (𝑦) does
not depend on 𝑧 and hence can be moved outside the sum on the right-hand side.

If 𝑧 is continuous, the sum is replaced an integral, but otherwise the proof is the same.

Lemma 3. Repeated conditionalization gives consistent results. If 𝑋, 𝑌 , and 𝑍 are random vectors, then
calculating the conditional of 𝑋 and 𝑌 given 𝑍 and then calculating the conditional of 𝑋 given 𝑌 and 𝑍
from that (in two steps) gives the same result as calculating the conditional of 𝑋 given 𝑌 and 𝑍 directly (in
one step).

Proof. Using the notation of the preceding two proofs, what must be shown is

𝑓(𝑥,𝑦,𝑧)
𝑓𝑍(𝑧)

𝑓𝑌 ∣𝑍(𝑦 ∣ 𝑧) = 𝑓(𝑥, 𝑦, 𝑧)
𝑓𝑌 ,𝑍(𝑦, 𝑧)

but this is obvious because
𝑓𝑌 ∣𝑍(𝑦 ∣ 𝑧) = 𝑓𝑌 ,𝑍(𝑦, 𝑧)

𝑓𝑍(𝑧)

Subvectors
In order to describe the product multinomial sampling scheme, we need the notion of subvectors. If 𝑦 is a
vector having index set 𝐼 and thus components 𝑦𝑖 for 𝑖 ∈ 𝐼 , and 𝐴 is a subset of 𝐼 , when we say 𝑦𝐴 is a
subvector of 𝑦 having index set 𝐴 and components 𝑦𝑖 for 𝑖 ∈ 𝐴.

This is rather odd, because convention requires that the index set of a vector be {1, 2, … , 𝑑} for some positive
integer 𝑑. But here we are allowing arbitrary index sets. For example, we could have

𝐼 = { cabbage, dog food, kumquats }

and then the components of a vector 𝑦 having index set 𝐼 are 𝑦cabbage, 𝑦dog food, and 𝑦kumquats.

R caters to this idea in allowing character string indexing.
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foo <- rnorm(3)
names(foo) <- c("cabbage", "dog food", "kumquats")
foo["dog food"]

## dog food
## -0.5719169

This is useful in categorical data analysis because we can have the index sets consist of actual category names
rather than arbitrary numbers.

But it is even more important in subvector theory because it allows us to match up components of a vector
𝑦 and its subvector 𝑦𝐴. If 𝑖 ∈ 𝐴, then 𝑦𝑖 means the same thing as a component of 𝑦 and as a component of
𝑦𝐴.

This trick of using arbitrary index sets is not widely used but leads to much more elegant mathematics in
books such as Rockafellar (1984) and Lauritzen (1996).

But what are subvectors if they aren’t the usual notion? In advanced math vectors are functions. More
precisely if 𝑉 is a vector space and 𝑆 is an arbitrary set, then 𝑉 𝑆 denotes the set of all functions 𝑆 → 𝑉 ,
and these functions can be considered vectors with vector addition ℎ = 𝑓 + 𝑔 meaning

ℎ(𝑥) = 𝑓(𝑥) + 𝑔(𝑥), 𝑥 ∈ 𝑆,

and scalar multiplication ℎ = 𝑎𝑓 meaning

ℎ(𝑥) = 𝑎𝑓(𝑥), 𝑥 ∈ 𝑆,

where 𝑓 , 𝑔, and ℎ are elements of the vector space 𝑉 𝑆 and 𝑎 is a scalar (an element of the field of scalars of
𝑉 , a real number in vector spaces used in statistics). This is the reason that the study of infinite-dimensional
topological vector spaces is usually called functional analysis.

In this vectors-are-functions view, a vector 𝑦 having index set 𝐼 is a function that is an element of the vector
space ℝ𝐼 . And this is a finite-dimensional vector space if and only if 𝐼 is a finite set.

We continue to write 𝑦𝑖 for components of 𝑖 just to look like conventional notation. But this is really function
evaluation: 𝑦𝑖 means the same thing as 𝑦(𝑖), the value of the function 𝑦 at the point 𝑖 in its domain (the
index set is the domain of the vector considered as a function).

In this vectors-are-functions view, a vector 𝑦 is a function and a subvector 𝑦𝐴 is the restriction of this function
to the subset 𝐴 of its domain. Both 𝑦 and 𝑦𝐴 have the same rule 𝑖 ↦ 𝑦𝑖. But they have different domains
(index sets); 𝑦 has domain (index set) 𝐼 , and 𝑦𝐴 has domain (index set) 𝐴, and 𝐴 ⊂ 𝐼 .

So that takes care of the mathematical formalities, but if you don’t bother to think of vectors and subvectors
as functions but rather just as vectors with arbitrary sets as index sets, that is OK too.

One oddity. The empty set is a possible index set. This gives us the subvector 𝑦∅, which is the one and only
element of the vector space ℝ∅. In the vectors-are-functions view, 𝑦∅ is the empty function ∅ → 𝑉 , which has
no allowed values of its argument and hence no values. Considered as a vector, it has no components. But it
is a mathematical object. From linear algebra we know there is only one vector space with a finite number
of elements, and that is the zero vector space whose only element is the zero vector. Every vector space
must contain a zero vector, and the vector space having only the zero vector does satisfy all the axioms for
a vector space. Thus ℝ∅ must be another notation for the zero vector space (also called trivial vector space).
And 𝑦∅ must be another notation for the zero vector (regardless of what 𝑦 is). Hence if 𝑌 is a random vector
𝑌∅ is a constant random vector always equal to the zero vector of the trivial vector space ℝ∅. We usually
think a zero vector is one all of whose components are zero. This is also true of 𝑦∅ because it does not have
any components.
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Sampling Schemes
This repeats what what is said about sampling schemes in our notes to accompany Agresti Chapter 1.

• In Poisson sampling the cell counts in a contingency table are assumed to be independent Poisson
random variables.

• In multinomial sampling the cell counts in a contingency table are are assumed to be components of a
multinomial random vector.

• In product multinomial sampling the cell counts in a contingency table are components of a random
vector 𝑌 whose index set has a partition 𝒜, and the subvectors 𝑌𝐴, 𝐴 ∈ 𝒜 are assumed to be
independent multinomial random vectors.

We now comment on these definitions.

In Poisson sampling the cell counts are assumed independent but not identically distributed. The vector of
mean values 𝜇 = 𝐸(𝑌 ) is the mean value parameter vector of the exponential family statistical model which
is this sampling scheme. That the means for different cells of the contingency table can all be different is
the whole point of the model.

In multinomial sampling, the cell counts are not independent because the total number of individuals in
all cells (called the sample size) is not random but rather specified in the design of the experiment (survey,
whatever). Again, this is the whole point of the model. The vector of mean values 𝜇 = 𝐸(𝑌 ) is the mean
value parameter vector of the exponential family statistical model which is this sampling scheme. But now
we know that these mean values have the multinomial form 𝜇𝑖 = 𝑛𝜋𝑖, where 𝑛 is the multinomial sample
size and 𝜋𝑖 is the probability of individuals being classified into cell 𝑖 of the contingency table.

In product multinomial sampling the elements of the partition 𝒜 can be called strata, a term taken from the
term stratified sampling in sampling theory (this is a Latin word, singular stratum, plural strata). In many
applications the strata are all the same size (same number of cells of the contingency table) but they do not
have to be. Our notation applies to arbitrary strata.

In product multinomial sampling, the subvectors 𝑌𝐴 are independent, as the definition says. Because of
the multiplication rule for independence the joint distribution of all the cell counts factors as a product of
multinomial distributions

𝑓(𝑦) = ∏
𝐴∈𝒜

𝑓𝐴(𝑦𝐴)

= ∏
𝐴∈𝒜

(𝑛𝐴
𝑦𝐴

) ∏
𝑖∈𝐴

𝜋𝑦𝑖
𝑖

(2)

where 𝜋 is the vector of cell probabilities for the contingency table (𝜋𝑖 is the probability that an individual
in stratum 𝐴 is classified in cell 𝑖, assuming 𝑖 ∈ 𝐴), and

𝑛𝐴 = ∑
𝑖∈𝐴

𝑌𝑖 (3)

is the sample size for the multinomial random vector 𝑌𝐴, and

(𝑛𝐴
𝑦𝐴

) = 𝑛𝐴!
∏𝑖∈𝐴 𝑦𝑖!

is a multinomial coefficient.

In this sampling scheme what is not random are the sample sizes 𝑛𝐴, 𝐴 ∈ 𝒜, which are specified in the
design of the experiment (survey, whatever). Again, this is the whole point of the model.

The vector of mean values 𝜇 = 𝐸(𝑌 ) is the mean value parameter vector of the exponential family statistical
model which is this sampling scheme. But now we know that these mean values have the product multinomial
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form 𝜇𝑖 = 𝑛𝐴𝜋𝑖, where 𝑛𝐴 is the multinomial sample size and 𝜋𝑖 is the probability of individuals being
classified into cell 𝑖 of the contingency table, where 𝑖 ∈ 𝐴.

Note that the probabilities do not sum to one over the whole table but rather within strata

∑
𝑖∈𝐴

𝜋𝑖 = 1, 𝐴 ∈ 𝒜.

Our notation also elegantly applies to all contingency tables of any dimension. If we are working with a
three-dimensional contingency table with conventional indices 𝑗, 𝑘, 𝑙 (and this word is also Latin, singular
index, plural indices) we can define our index set 𝐼 to be a set of triples (𝑗, 𝑘, 𝑙) and then our notation works
for three-dimensional tables. Or any-dimensional tables in the same way. And it also works if we do not
bother to lay out our random vector of counts in tabular form (like we do not if we want to use R function
glm to fit the model). Is the power of the vectors-are-functions view becoming apparent?

Our notation also has the consequence that we really only have two sampling schemes. The multinomial
sampling scheme is a special case of the product multinomial sampling scheme when we have the trivial
partition which contains only one element, which must be the original index set, that is, 𝒜 = {𝐼}.

But we have many product multinomial sampling schemes, one for each partition. And in talking about that
the following terminology is useful. Consider two partitions 𝒜 and ℬ. We say 𝒜 is finer than ℬ if every
𝐴 ∈ 𝒜 is contained in some 𝐵 ∈ ℬ. (And by the nature of partitions, each 𝐴 ∈ 𝒜 is then contained in a
unique 𝐵 ∈ ℬ.) This same relation can be indicated by saying that ℬ is coarser than 𝒜.

Theorems about Sampling Schemes and Conditioning
Theorem 1. Let 𝑌 be the random vector of a Poisson sampling model having mean vector 𝜇 and index set
𝐼. Let 𝒜 be a partition of 𝐼. Define product multinomial sample sizes 𝑛𝐴, 𝐴 ∈ 𝒜. Then the distribution of
the product multinomial sampling scheme arises by conditioning the (Poisson sampling scheme) distribution
of 𝑌 on the events ∑𝑖∈𝐴 𝑌𝑖 = 𝑛𝐴, 𝐴 ∈ 𝒜. And the relationship between the usual parameter vectors of these
sampling schemes is 𝜇𝑖 = 𝑛𝐴𝜋𝑖, 𝑖 ∈ 𝐴 ∈ 𝒜.

Proof. We know from the addition rule for independent Poisson random variables that ∑𝑖∈𝐴 𝑌𝑖 is again
Poisson with mean ∑𝑖∈𝐴 𝜇𝑖. Hence the conditional distribution is joint over marginal

𝑓 (𝑌 ∣ ∑
𝑖∈𝐴

𝑌𝑖 = 𝑛𝐴, 𝐴 ∈ 𝒜) =
∏𝑖∈𝐼 𝜇𝑦𝑖

𝑖 exp(−𝜇𝑖)/𝑦𝑖!

∏𝐴∈𝒜 (∑𝑗∈𝐴 𝜇𝑗)
∑𝑗∈𝐴 𝑦𝑗 exp (− ∑𝑗∈𝐴 𝜇𝑗)/(∑𝑗∈𝐴 𝑦𝑗)!

= ∏
𝐴∈𝒜

∏𝑖∈𝐴 𝜇𝑦𝑖
𝑖 exp(−𝜇𝑖)/𝑦𝑖!

(∑𝑖∈𝐴 𝜇𝑗)
∑𝑗∈𝐴 𝑦𝑗 exp (− ∑𝑗∈𝐴 𝜇𝑗)/(∑𝑗∈𝐴 𝑦𝑗)!

= ∏
𝐴∈𝒜

(𝑛𝐴
𝑦𝐴

) ∏
𝑖∈𝐴

( 𝜇𝑖
∑𝑖∈𝐴 𝜇𝑖

)
𝑦𝑖

and the last line is the PMF of the product multinomial distribution with success probabilities

𝜋𝑖 = 𝜇𝑖
∑𝑖∈𝐴 𝜇𝑖

, 𝑖 ∈ 𝐴 ∈ 𝒜.

But since ∑𝑖∈𝐴 𝑌𝑖 = 𝑛𝐴 implies

𝐸 (∑
𝑖∈𝐴

𝑌𝑖) = 𝑛𝐴 = ∑
𝑖∈𝐴

𝜇𝑖

we do have 𝑛𝐴𝜋𝑖 = 𝜇𝑖 as the theorem asserts.
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Corollary 1. Let 𝑌 be the random vector of a Poisson sampling model having mean vector 𝜇 and index set
𝐼. Then the distribution of the multinomial sampling scheme arises by conditioning the (Poisson sampling
scheme) distribution of 𝑌 on the event ∑𝑖∈𝐼 𝑌𝑖 = 𝑛, where 𝑛 is the multinomial sample size. And the
relationship between the usual parameter vectors of these sampling schemes is 𝜇𝑖 = 𝑛𝜋𝑖, 𝑖 ∈ 𝐼.

Proof. This is just the special case of the theorem where 𝒜 is the trivial partition {𝐼}.

Theorem 2. Let 𝑌 be a random vector having index set 𝐼. Let 𝒜 and ℬ be partitions of 𝐼 with 𝒜 finer
than ℬ. Define the product multinomial sample sizes 𝑛𝐴, 𝐴 ∈ 𝒜, and 𝑛𝐵, 𝐵 ∈ ℬ, satisfying

∑
𝐴∈𝒜
𝐴⊂𝐵

𝑛𝐴 = 𝑛𝐵, 𝐵 ∈ ℬ.

Let 𝑌 have the product multinomial distribution with partition ℬ and usual parameter vector 𝛽. Then the
conditional distribution of 𝑌 given the events ∑𝑖∈𝐴 𝑌𝑖 = 𝑛𝐴, 𝐴 ∈ 𝒜 is product multinomial with partition 𝒜
and usual parameter vector 𝛼, with 𝑛𝐴𝛼𝑖 = 𝑛𝐵𝛽𝑖, when 𝐴 ∈ 𝒜, 𝐵 ∈ ℬ, and 𝑖 ∈ 𝐴 ⊂ 𝐵.

Proof. Define the random variables 𝑁𝐴 = ∑𝑖∈𝐴 𝑌𝑖, so the conditioning in the theorem statement is 𝑁𝐴 = 𝑛𝐴
for 𝐴 ∈ 𝒜. It is obvious that collapsing some categories of a multinomial random vector gives another
multinomial random vector with fewer categories. Hence the marginal distribution of the 𝑁𝐴 is product
multinomial with PMF

∏
𝐵∈ℬ

𝑛𝐵!
∏𝐴∈𝒜

𝐴⊂𝐵
𝑁𝐴! ∏

𝐴∈𝒜
𝐴⊂𝐵

(∑
𝑖∈𝐴

𝛽𝑖)
𝑁𝐴

Hence the conditional distribution is joint over marginal

𝑓 (𝑌 | 𝑁𝐴 = 𝑛𝐴, 𝐴 ∈ 𝒜) =
∏𝐵∈ℬ (𝑛𝐵

𝑦𝐵
) ∏𝑖∈𝐵 𝜋𝑦𝑖

𝑖

∏𝐵∈ℬ
𝑛𝐵!

∏𝐴∈𝒜
𝐴⊂𝐵

𝑁𝐴! ∏𝐴∈𝒜
𝐴⊂𝐵

(∑𝑖∈𝐴 𝛽𝑖)
𝑁𝐴

= ∏
𝐴∈𝒜

(𝑛𝐴
𝑦𝐴

) ∏
𝑖∈𝐴

( 𝛽𝑖
∑𝑖∈𝐴 𝛽𝑖

)
𝑦𝑖

and the last line is the PMF of the product multinomial distribution with success probabilities

𝛼𝑖 = 𝛽𝑖
∑𝑖∈𝐴 𝛽𝑖

, 𝑖 ∈ 𝐴 ∈ 𝒜.

By the iterated expectation theorem we get the same unconditional expectation of 𝑌 whether we use its
unconditional or conditional distribution, hence

𝐸 (∑
𝑖∈𝐴

𝑌𝑖) = 𝑛𝐴 = ∑
𝑖∈𝐴

𝑛𝐵𝛽𝑖, 𝐴 ⊂ 𝐵 ∈ ℬ

we do have 𝑛𝐴𝛼𝑖 = 𝑛𝐵𝛽𝑖 as the theorem asserts.

Corollary 2. Let 𝑌 be the random vector of a multinomial sampling model having sample size 𝑛, parameter
vector 𝜋, and index set 𝐼. Let 𝒜 be a partition of 𝐼. Then the conditional distribution of 𝑌 given the events
∑𝑖∈𝐴 𝑌𝑖 = 𝑛𝐴, 𝐴 ∈ 𝒜 is product multinomial having PMF given by (2).

Proof. This is just the special case of the theorem where ℬ is the trivial partition {𝐼}.
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All of the theorems and corollaries in this section have obvious converses where we rearrange

conditional = joint
marginal

as
joint = conditional ⋅ marginal

and go from conditional to joint rather than the other way. The relevant marginals are found in the proofs
of the theorems stated here.

Maximum Likelihood Estimates
In the next theorem we need the following terminology. Consider a conditioning event of the form

∑
𝑖∈𝐴

𝑌𝑖 = 𝑛𝐴

Then we say the dummy variable associated with this conditioning event is the vector 𝑢𝐴 having zero-or-one-
valued components such that

∑
𝑖∈𝐴

𝑌𝑖 = 𝑢𝑇
𝐴𝑌

(clearly the 𝑖-th component of 𝑢𝐴 is equal to one when 𝑖 ∈ 𝐴 and zero otherwise).

Theorem 3. Suppose we have two sampling schemes, the one with less conditioning is Poisson, multinomial,
or product multinomial, and the one with more conditioning is multinomial or product multinomial with a
finer partition than the one with less conditioning if the one with less conditioning is product multinomial.
We use canonical affine submodels for both sampling schemes having the same offset vectors and model
matrices, and we assume every dummy variable associated with a conditioning event for the model with more
conditioning is a column of the model matrix. Then the MLE’s of the mean value parameter vector for the two
sampling schemes are equal, and any (possibly but not necessarily unique) MLE of the canonical parameter
vector for the one with less conditioning is also a (necessarily not unique) MLE of the canonical parameter
vector for the one with more conditioning.

Proof. Suppose the model with less conditioning is Poisson and the one with more conditioning is product
multinomial with partition 𝒜 and usual parameter vector 𝜋. (This includes the possibility that 𝒜 = {𝐼} so
product multinomial is actually multinomial.) Let 𝑎 denote the offset vector, 𝑀 the model matrix, and 𝑢𝐴,
𝐴 ∈ 𝒜 the dummy variables for conditioning events.

By the observed-equals-expected principle the likelihood equations determining the MLE Poisson model are

∑
𝑖∈𝐼

𝑥𝑖𝑦𝑖 = ∑
𝑖∈𝐼

𝑥𝑖𝑒𝜃𝑖 (4)

where 𝑥 is any column of 𝑀 and 𝜃 = 𝑎 + 𝑀𝛽.

Similarly, the likelihood equations determining the MLE for the product multinomial model are

∑
𝑖∈𝐼

𝑥𝑖𝑦𝑖 = ∑
𝐴∈𝒜

𝑛𝐴
∑𝑖∈𝐴 𝑥𝑖𝑒𝜃𝑖

∑𝑗∈𝐴 𝑒𝜃𝑗
(5)

where 𝑥 and 𝜃 are as in (4).

What is to be shown is that every 𝛽 that is a solution to (4) is also a solution to (5). The special case of (4)
where 𝑥 = 𝑢𝐴 gives

𝑛𝐴 = ∑
𝑖∈𝐴

𝑦𝑖 = ∑
𝑖∈𝐴

𝑒𝜃𝑖 (6)

and together (6) and (4) imply (5). Hence any 𝜃 that satisfies (4) also satisfies (5), in particular 𝜃 of the
form 𝜃 = 𝑎 + 𝑀𝛽. That proves the assertions about canonical parameters.
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Now for any 𝜃 = 𝑎 + 𝑀𝛽 that satisfies (4) the mean value parameter vector for the Poisson sampling model
has 𝑖-th component 𝑒𝜃𝑖 . And the mean value parameter vector for the product multinomial sampling model
has 𝑖-th component

𝑛𝐴𝑒𝜃𝑖

∑𝑗∈𝐴 𝑒𝜃𝑗

and (6) shows these are the same. That proves the assertion about mean value parameter vectors.

Now we have to redo the whole proof with the model with less conditioning being product multinomial with
a partition ℬ that is coarser than 𝒜. (This includes the possibility that ℬ = {𝐼} so product multinomial is
actually multinomial.) The proof is almost the same. Now instead of (4) we need (5) with 𝐴 and 𝒜 replaced
by 𝐵 and ℬ, respectively, that is

∑
𝑖∈𝐼

𝑥𝑖𝑦𝑖 = ∑
𝐵∈ℬ

𝑛𝐵
∑𝑖∈𝐵 𝑥𝑖𝑒𝜃𝑖

∑𝑗∈𝐵 𝑒𝜃𝑗
(7)

Now taking 𝑥 = 𝑢𝐴 in (7) gives

𝑛𝐴 = ∑
𝑖∈𝐴

𝑦𝑖 =
𝑛𝐵 ∑𝑖∈𝐴 𝑒𝜃𝑖

∑𝑗∈𝐵 𝑒𝜃𝑗
, 𝐴 ⊂ 𝐵 ∈ ℬ

which we can also write as 𝑛𝐵
∑𝑗∈𝐵 𝑒𝜃𝑗

= 𝑛𝐴
∑𝑖∈𝐴 𝑒𝜃𝑖

, 𝐴 ⊂ 𝐵 ∈ ℬ (8)

And (7) and (8) imply (5). And the rest of this case is the same as before.

Corollary 3. Suppose we have models as in the theorem. Then the MLE’s of the mean value parameter
vector for the two sampling schemes are equal, regardless of the canonical parameterizations used.

A statistical model is a family of probability distributions. By same model, we mean the same family of
probability distributions. Since the mean value parameterization is a parameterization, same model means
the same mean value parameter space.

So the assumption of the corollary is that we have two models as described in the theorem, regardless of
whether the canonical parameterizations are as described in the theorem. The mean value parameter space
of the model with more conditioning is derived from the mean value parameter space with less conditioning
by the conditioning. If 𝑀 is the mean value parameter space of the model with less conditioning and the
model with more conditioning is product multinomial with partition 𝒜 and sample sizes 𝑛𝐴, then the mean
value parameter space of the model with more conditioning is

{ 𝜇 ∈ 𝑀 ∶ ∑
𝑖∈𝐴

𝜇𝑖 = 𝑛𝐴, 𝐴 ∈ 𝒜 }

Proof. This is because mean value parameterizations are unique. 𝐸(𝑌 ) has the same meaning in both models,
even if the canonical parameterizations have nothing to do with each other.

Likelihood Ratio Tests
Theorem 4. Suppose we are comparing nested submodels for categorical data. The likelihood ratio test
statistic does not depend on either the parameterization of the submodels or the sampling scheme, so long as
all models satisfy the conditions of Corollary 3.

Proof. A version of the log likelihood for the mean value parameter for the Poisson sampling scheme is

𝑙pois(𝜇) = ∑
𝑖∈𝐼

(𝑦𝑖 log(𝜇𝑖) − 𝜇𝑖)
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(different versions of the log likelihood differ by additive terms that do not depend on the parameter). A
version of the log likelihood for the mean value parameter for the product multinomial sampling scheme is

𝑙multi(𝜇) = ∑
𝐴∈𝒜

∑
𝑖∈𝐴

𝑦𝑖 log ( 𝜇𝑖
𝑛𝐴

)

= (∑
𝑖∈𝐼

𝑦𝑖 log(𝜇𝑖)) − (∑
𝐴∈𝒜

log(𝑛𝐴) ∑
𝑖∈𝐴

𝑦𝑖)

and we may drop the term that does not contain parameters giving us a different version

𝑙multi(𝜇) = ∑
𝑖∈𝐼

𝑦𝑖 log(𝜇𝑖) (9)

Define the total sample size
𝑛 = ∑

𝐴∈𝒜
𝑛𝐴

Then the conditions of Corollary 3 guarantee that

∑
𝑖∈𝐼

̂𝜇𝑖 = 𝑛

for the Poisson sampling scheme. Hence if ̂𝜇 and ̃𝜇 are maximum likelihood estimators for different models
being compared

𝑙pois( ̂𝜇) − 𝑙pois( ̃𝜇) = ∑
𝑖∈𝐼

𝑦𝑖 log ( ̂𝜇𝑖
̃𝜇𝑖
)

= 𝑙multi( ̂𝜇) − 𝑙multi( ̃𝜇)

(maximum likelihood estimators for the same model but different sampling schemes are equal by Corollary 3,
moreover different versions of the log likelihood have the same log likelihood differences because the additive
terms not containing parameters by which the versions differ are the same for both terms in a log likelihood
difference).

Log likelihoods are invariant under change of parameters, that is, if ̂𝜃 is a different parameter corresponding
to ̂𝜇 and ̃𝜃 is a different parameter corresponding to ̃𝜇, then

𝑙( ̂𝜇) − 𝑙( ̃𝜇) = 𝑙( ̂𝜃) − 𝑙( ̃𝜃)

and this is true for any log likelihood (any model, any sampling scheme). It is even clear (although we will
not fuss about details of the proof) that the same conclusion holds even when MLE do not exist: if Θnull
and Θalt are two parameter spaces of nested models being compared, then

( sup
𝜃∈Θalt

𝑙pois(𝜃)) − ( sup
𝜃∈Θnull

𝑙pois(𝜃)) = ( sup
𝜃∈Θalt

𝑙multi(𝜃)) − ( sup
𝜃∈Θnull

𝑙multi(𝜃))

It is also clear (although we will not fuss about details of the proof) that we get a similar conclusion when
the sampling schemes being compared are product multinomial with two partitions, one finer than the other
(obvious from the fact that the log likelihood (9) does not involve the product multinomial sample sizes).

Theorem 5. Suppose we are comparing nested submodels for categorical data. The degrees of freedom for
the asymptotic distribution of the likelihood ratio test statistic does not depend on either the parameterization
of the submodels or the sampling scheme, so long as all models satisfy the conditions of Corollary 3.

Proof. Corollary 3 refers back to Theorem 3 so we may assume the conditions of the latter. So first consider
the situation as in that theorem. We are using the same offset vector 𝑎 and model matrix 𝑀 for both
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sampling schemes and assuming that every 𝑢𝐴, 𝐴 ∈ 𝒜 be a column of 𝑀 , where 𝒜 is the partition for the
sampling scheme with more conditioning.

Now we also assume 𝑀 has full column rank. This can always be achieved by dropping some columns that
do not include the 𝑢𝐴 because the 𝑢𝐴 are linearly independent vectors.

Suppose the sampling scheme with less conditioning is Poisson and the sampling scheme with more condi-
tioning is product multinomial with partition 𝒜. Then the degrees of freedom (DF) for the former is the
number of columns of 𝑀 , call that 𝑑, because the Poisson sampling scheme has no directions of constancy.
And the DF for the latter is 𝑑 − card(𝒜), where card(𝑆) denotes the cardinality (number of elements in) a
set 𝑆, because every 𝑢𝐴 is a direction of constancy for this sampling scheme and must be dropped to obtain
an identifiable canonical parameterization. So the difference in DF of the two sampling schemes is card(𝒜).

Now suppose the sampling scheme with less conditioning is product multinomial with partition ℬ, the
sampling scheme with more conditioning is product multinomial with partition 𝒜, and ℬ is coarser than
𝒜. Then the DF for the former is 𝑑 − card(ℬ) and for the latter is 𝑑 − card(𝒜) and the difference is
card(𝒜) − card(ℬ).
Since this analysis applies to both the null and alternative models, the difference in DF is 𝑑alternative −𝑑null in
all cases, where 𝑑alternative and 𝑑null are what 𝑑 was in our preceding analysis now applied to the alternative
and null hypotheses (still assuming their model matrices have full column rank and the conditions of Theorem
3 hold).

Since this is the correct way to count DF regardless of whether or not the model matrices originally had full
column rank, we are done.

Pearson Chi-Squared Tests
Theorem 6. The Pearson chi-squared test statistic does not depend on either the parameterization of the
model or the sampling scheme, so long as all models satisfy the conditions of Corollary 3.

Proof. This is obvious from the fact that the form of the test statistic

∑
all cells

(observed − expected)2

expected

only depends on the mean value parameter “expected” and Corollary 3 says the MLE of the mean value
parameters are the same.

Wald and Rao Tests
This is as far as we can go. Wald and Rao tests do depend on the sampling scheme. Of course from the
asymptotic equivalence of Wald, Wilks, and Rao tests, the differences between these test statistics goes to
zero in probability as the sample size goes to infinity. Thus they will be close to the same for large sample
sizes but not exactly the same (unlike what we had for the likelihood ratio test).
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