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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R
• The version of R used to make this document is 4.2.1.

• The version of the rmarkdown package used to make this document is 2.15.

• The version of the knitr package used to make this document is 1.40.

• The version of the numDeriv package used to make this document is 2016.8.1.1.

• The version of the alabama package used to make this document is 2022.4.1.

3 Statistical Model
As an example, we are going to use the ABO blood group system.

As you all know, you can have blood type A, B, AB, or O. And this governs what blood types you can be
safely transfused with.

What this is about is red blood cell surface antigens, which are proteins that stick out from the surface of
red blood cells and can be recognized by antibodies (antigens are things recognized by antibodies) causing
an immune response if antigens different from one’s own are introduced by blood transfusion.

Genetically, these proteins are coded for by DNA and each person has two copies of these genes, one from
Mom and one from Dad. And each such gene can be in one of three states (alleles): code for the A protein,
code for the B protein, or code for no functional protein (that’s the type O). Let the probability of the A,
B, and O alleles be 𝛼, 𝛽, and 𝛾, respectively.

We are now going to assume that the genes inherited from the parents are independent. This is called Hardy-
Weinberg equilibrium in genetics. It is exactly true for random mating populations, and approximately true
in populations that have had large populations sizes for many generations. Anyway, whether it holds for any
particular population, we are going to assume it.

The Hardy-Weinberg assumption (statistical independence) says probabilities multiply. This gives us the
following table.

A B O

A 𝛼2 𝛼𝛽 𝛼𝛾
B 𝛽𝛼 𝛽2 𝛽𝛾
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O 𝛾𝛼 𝛾𝛽 𝛾2

The row labels are genes inherited from Mom, the column labels from Dad.

What can be observed in the lab are just the presence or absence of A or B or both. Thus the observable
data has the following table

type A type B type O type AB

𝛼2 + 2𝛼𝛾 𝛽2 + 2𝛽𝛾 𝛾2 2𝛼𝛽

If 𝑛𝐴, 𝑛𝐵, 𝑛𝑂, and 𝑛𝐴𝐵 are the observed counts of individuals of each blood type, then the log likelihood is

𝑙(𝛼, 𝛽, 𝛾) = 𝑛𝐴 log(𝛼2 + 2𝛼𝛾) + 𝑛𝐵 log(𝛽2 + 2𝛽𝛾) + 𝑛𝑂 log(𝛾2) + 𝑛𝐴𝐵 log(2𝛼𝛽) (1)

Since probabilities must add to one, we have 𝛼 + 𝛽 + 𝛾 = 1, so there are only two freely variable parameters.
We can choose which one to define in terms of the others.

4 Data
Some data found on web attributed to Clarke et al. (1959, British Medical Journal, 1, 603–607)
nA <- 186
nB <- 38
nAB <- 36
nO <- 284

5 Coding the Log Likelihood, Try I
We are going to write a function that evaluates minus the log likelihood because some R optimizers only
minimize (not maximize). Minimizing minus the log likelihood is the same as maximizing the log likelihood.

We are going to start with the simplest possible R function that evaluates the log likelihood. This is not
actually recommended, but is OK for one-time projects producing throw-away code (no one will ever use it
again, even your future self). For the Right Thing (TRT), see the Section 9 below.

R optimizers expect the argument of the function to optimize to be a vector. So the argument of our function
will be 𝜃 = (𝛼, 𝛽). Recall that 𝛾 = 1 − 𝛼 − 𝛽.
mlogl <- function(theta) {

alpha <- theta[1]
beta <- theta[2]
gamma <- 1 - alpha - beta
- (nA * log(alpha^2 + 2 * alpha * gamma) +

nB * log(beta^2 + 2 * beta * gamma) +
nO * log(gamma^2) +
nAB * log(2 * alpha * beta))

}

6 Starting Values for Likelihood Maximization
Likelihood theory say we find the efficient likelihood estimator (ELE) if we start at a good starting place
(so-called root-𝑛-consistent estimates) and go uphill from there.
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Method of moment estimators (that set expectations or probabilities equal to their observed values in the
data) are always root-𝑛-consistent.

The obvious expectations are those of the cell counts. These give four possible equations to solve for two
unknowns.

𝑛𝐴
𝑛𝐴 + 𝑛𝐵 + 𝑛𝑂 + 𝑛𝐴𝐵

= 𝛼2 + 2𝛼𝛾
𝑛𝐵

𝑛𝐴 + 𝑛𝐵 + 𝑛𝑂 + 𝑛𝐴𝐵
= 𝛽2 + 2𝛽𝛾

𝑛𝑂
𝑛𝐴 + 𝑛𝐵 + 𝑛𝑂 + 𝑛𝐴𝐵

= 𝛾2

𝑛𝐴𝐵
𝑛𝐴 + 𝑛𝐵 + 𝑛𝑂 + 𝑛𝐴𝐵

= 2𝛼𝛽

We start by using the third of these to estimate 𝛾.
gamma.twiddle <- sqrt(nO / (nA + nB + nO + nAB))
gamma.twiddle

## [1] 0.7225364

Now with 𝛾 estimated, we can use the first two equations to estimate 𝛼 and 𝛽. Let the left-hand side of
those equations be denoted 𝑝𝐴 and 𝑝𝐵. Then we have the quadratic equation

𝛼2 + 2𝛼𝛾 − 𝑝𝐴 = 0

which has solution

𝛼 = −2𝛾 ± √4𝛾2 + 4𝑝𝐴
2

= −𝛾 ± √𝛾2 + 𝑝𝐴

Because √𝛾2 + 𝑝𝐴 is greater than 𝛾, choosing the − in the ± gives a negative estimate of the probability,
which makes no sense. Hence our estimates are
pA <- nA / (nA + nB + nO + nAB)
pB <- nB / (nA + nB + nO + nAB)
alpha.twiddle <- (- gamma.twiddle + sqrt(gamma.twiddle^2 + pA))
beta.twiddle <- (- gamma.twiddle + sqrt(gamma.twiddle^2 + pB))
alpha.twiddle

## [1] 0.2069638
beta.twiddle

## [1] 0.04682164

We check whether these sum to one
alpha.twiddle + beta.twiddle + gamma.twiddle

## [1] 0.9763218

They don’t. There is nothing in the method of moments that forces estimators to be reasonable in this way.
Of course, since these are consistent estimators, this sum would get closer and closer to one as sample size
goes to infinity. But it does not have to be exactly one for any finite sample size.

Anyway, these are just starting values for optimization. They are good enough (so says the “usual” theory
of maximum likelihood estimation).
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theta.start <- c(alpha.twiddle, beta.twiddle)

We will later learn that in a regular full exponential family statistical model we do not need good starting
points, any starting point will do. And we will also learn that the multinomial family of distributions is a
regular full exponential family. But this model is not the full multinomial model, which has no restrictions
on the cell probabilities. It is called a curved exponential family because it is not a regular full exponential
family. And as such, it does not satisfy the conditions for the theorem that says any starting point will do.
Here we need good starting points (like we did with the Cauchy examples in the other likelihood notes).

7 Maximum Likelihood Estimation
We will use R function nlm for the optimization.
nout <- nlm(mlogl, theta.start)

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in nlm(mlogl, theta.start): NA/Inf replaced by maximum positive value

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in nlm(mlogl, theta.start): NA/Inf replaced by maximum positive value

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in nlm(mlogl, theta.start): NA/Inf replaced by maximum positive value
nout$code <= 2 # should be TRUE for solution

## [1] TRUE
nout$estimate

## [1] 0.22790634 0.06966436

R function nlm claims it has found a solution even though there were warnings. The issue is that nlm does
not know that the parameters have to have nonnegative values that sum to less than or equal to one. So it
steps outside the parameter space and NaN values of our R function mlogl result. Eventually, it gets back
into the parameter space and finds the solution. But we don’t like the warnings, so we redo, starting at the
putative solution.
nout <- nlm(mlogl, nout$estimate)
nout$code <= 2 # should be TRUE for solution

## [1] TRUE
nout$estimate

## [1] 0.22790634 0.06966436
theta.start

## [1] 0.20696380 0.04682164

Now no warnings, and no change in the estimates. It appears the code worked the first time and we didn’t
need the redo.
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We repeat showing the value of theta.start to show that the optimization did something. The maximum
likelihood estimator (MLE, nout$estimate) is different from the method of moments estimator (MOME,
theta.start). And we know from theory that the MLE are better estimators than any other (asymptotically,
for large sample size). Hence, in particular, are better than MOME.

So here are the MLE and MOME
theta.hat <- c(nout$estimate, 1 - sum(nout$estimate))
names(theta.hat) <- c("alpha", "beta", "gamma")
theta.hat

## alpha beta gamma
## 0.22790634 0.06966436 0.70242930
theta.twiddle <- c(alpha.twiddle, beta.twiddle, gamma.twiddle)
names(theta.twiddle) <- c("alpha", "beta", "gamma")
theta.twiddle

## alpha beta gamma
## 0.20696380 0.04682164 0.72253638

Again, theory says the MLE is better than the MOME. We show both only to show that the are different.

8 Likelihood Inference
8.1 Wald Intervals
We need Fisher information. Here we will use observed Fisher information and let the computer do it for us.
We will need to redo the optimization because we forgot to ask the computer to calculate second derivatives.
nout <- nlm(mlogl, nout$estimate, hessian = TRUE)
nout$code <= 2 # should be TRUE for solution

## [1] TRUE
nout$estimate

## [1] 0.22790634 0.06966436
nout$hessian

## [,1] [,2]
## [1,] 5561.522 1326.034
## [2,] 1326.034 16652.382

nout$hessian is the observed Fisher information matrix. It is minus the second derivative matrix of the log
likelihood because our function evaluates minus the log likelihood.

As an alternative, we could use R package numDeriv, which calculates second derivative (Hessian) matrices
using a more accurate algorithm.
library(numDeriv)
hessian(mlogl, nout$estimate)

## [,1] [,2]
## [1,] 5564.915 1325.674
## [2,] 1325.674 16695.649

We’ll use this one, but the other is OK too.
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fisher <- hessian(mlogl, nout$estimate)

The asymptotic (large sample approximation) variance of the parameter vector estimate is inverse Fisher
information. R function solve inverts matrices.
fisher.inverse <- solve(fisher)
fisher.inverse

## [,1] [,2]
## [1,] 1.831618e-04 -1.454348e-05
## [2,] -1.454348e-05 6.105063e-05

Thus 95% Wald confidence intervals for 𝛼 and 𝛽 are given by
conf.level <- 0.95
crit <- qnorm((1 + conf.level) / 2)
crit

## [1] 1.959964
theta.hat[1] + c(-1, 1) * crit * sqrt(fisher.inverse[1, 1])

## [1] 0.2013807 0.2544320
theta.hat[2] + c(-1, 1) * crit * sqrt(fisher.inverse[2, 2])

## [1] 0.05435020 0.08497852

To calculate a confidence interval for 𝛾 we use the fact, proved in theory classes and discussed in the notes
that accompanied chapter 1 in Agresti, that if 𝑎 is a nonrandom vector, 𝐵 is a nonrandom matrix, and 𝑋 is
a random vector having dimensions such that 𝑎 + 𝐵𝑋 makes sense, then

var(𝑎 + 𝐵𝑋) = 𝐵var(𝑋)𝐵𝑇

What we want here is the 𝑎 and 𝐵 that turn the estimate of (𝛼, 𝛽) into the estimate of (𝛼, 𝛽, 𝛾). That is

𝑎 = ⎛⎜
⎝

0
0
1
⎞⎟
⎠

𝐵 = ⎛⎜
⎝

1 0
0 1

−1 −1
⎞⎟
⎠

Let’s check.
a <- c(0, 0, 1)
b <- matrix(c(1, 0, -1, 0, 1, -1), nrow = 3)
a

## [1] 0 0 1
b

## [,1] [,2]
## [1,] 1 0
## [2,] 0 1
## [3,] -1 -1
as.numeric(a + b %*% nout$estimate)

## [1] 0.22790634 0.06966436 0.70242930
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theta.hat

## alpha beta gamma
## 0.22790634 0.06966436 0.70242930

So
asymp.var.theta.three.dimensional <- b %*% fisher.inverse %*% t(b)
asymp.var.theta.three.dimensional

## [,1] [,2] [,3]
## [1,] 1.831618e-04 -1.454348e-05 -1.686183e-04
## [2,] -1.454348e-05 6.105063e-05 -4.650715e-05
## [3,] -1.686183e-04 -4.650715e-05 2.151255e-04

So our 95% confidence interval for 𝛾 is
theta.hat[3] + c(-1, 1) * crit * sqrt(asymp.var.theta.three.dimensional[3, 3])

## [1] 0.6736822 0.7311764

8.2 Likelihood Intervals
Now our critical value is based on the chi-square distribution on one degree of freedom (one because we are
doing confidence intervals for one parameter at a time).
crit <- qchisq(conf.level, df = 1)
crit

## [1] 3.841459
sqrt(crit)

## [1] 1.959964

To find the likelihood-based confidence interval we maximize and minimize the parameter of interest subject
to the constraint that the log likelihood is no less than crit down from the maximum value.
library(alabama)
# alpha lower
confun <- function(theta) crit - 2 * (mlogl(theta) - nout$minimum)
aout <- auglag(nout$estimate, fn = function(theta) theta[1], hin = confun)

## Min(hin): 3.841459
## Outer iteration: 1
## Min(hin): 3.841459
## par: 0.227906 0.0696644
## fval = 0.2279
##

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced
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## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced
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## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced
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## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced
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## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced
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## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced
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## Outer iteration: 2
## Min(hin): 0.009993892
## par: 0.202212 0.0708439
## fval = 0.2022
##

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced
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## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced
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## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(beta^2 + 2 * beta * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(2 * alpha * beta): NaNs produced

## Outer iteration: 3
## Min(hin): 1.722997e-06
## par: 0.202142 0.0716726
## fval = 0.2021
##
## Outer iteration: 4
## Min(hin): 5.701391e-07
## par: 0.202142 0.0716726
## fval = 0.2021
##

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Outer iteration: 5
## Min(hin): 3.181802e-07
## par: 0.202142 0.0716726
## fval = 0.2021
##

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced

## Warning in log(alpha^2 + 2 * alpha * gamma): NaNs produced
aout$convergence == 0

## [1] TRUE
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aout$value

## [1] 0.2021416

All of that blather was most annoying. Tell it to STFU.
# alpha lower
aout <- suppressWarnings(auglag(nout$estimate, fn = function(theta) theta[1],

hin = confun))

## Min(hin): 3.841459
## Outer iteration: 1
## Min(hin): 3.841459
## par: 0.227906 0.0696644
## fval = 0.2279
##
## Outer iteration: 2
## Min(hin): 0.009993892
## par: 0.202212 0.0708439
## fval = 0.2022
##
## Outer iteration: 3
## Min(hin): 1.722997e-06
## par: 0.202142 0.0716726
## fval = 0.2021
##
## Outer iteration: 4
## Min(hin): 5.701391e-07
## par: 0.202142 0.0716726
## fval = 0.2021
##
## Outer iteration: 5
## Min(hin): 3.181802e-07
## par: 0.202142 0.0716726
## fval = 0.2021
##
aout$convergence == 0

## [1] TRUE
aout$value

## [1] 0.2021416

Need to tell it STFU more forcefully.
# alpha lower
aout <- suppressWarnings(auglag(nout$estimate, fn = function(theta) theta[1],

hin = confun, control.outer = list(trace = FALSE)))
aout$convergence == 0

## [1] TRUE
aout$value

## [1] 0.2021416

Great! Now for the rest.
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# alpha lower
alpha.lower <- aout$value
# alpha upper
aout <- suppressWarnings(auglag(nout$estimate, fn = function(theta) theta[1],

hin = confun, control.outer = list(trace = FALSE),
control.optim = list(fnscale = -1)))

aout$convergence == 0

## [1] TRUE
aout$value

## [1] 0.2551525
alpha.upper <- aout$value

The control.optim = list(fnscale = -1) is what tells R function auglag to maximize rather than min-
imize. This was particularly hard to find in the documentation because it is on the help page for R function
optim, which is referred to from the help page for R function auglag.

And so forth.
# beta lower
aout <- suppressWarnings(auglag(nout$estimate, fn = function(theta) theta[2],

hin = confun, control.outer = list(trace = FALSE)))
aout$convergence == 0

## [1] TRUE
aout$value

## [1] 0.05538393
beta.lower <- aout$value
# beta upper
aout <- suppressWarnings(auglag(nout$estimate, fn = function(theta) theta[2],

hin = confun, control.outer = list(trace = FALSE),
control.optim = list(fnscale = -1)))

aout$convergence == 0

## [1] TRUE
aout$value

## [1] 0.08602016
beta.upper <- aout$value
# gamma lower
aout <- suppressWarnings(auglag(nout$estimate,

fn = function(theta) 1 - sum(theta),
hin = confun, control.outer = list(trace = FALSE)))

aout$convergence == 0

## [1] TRUE
aout$value

## [1] 0.6733144
gamma.lower <- aout$value
# gamma upper
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aout <- suppressWarnings(auglag(nout$estimate,
fn = function(theta) 1 - sum(theta),
hin = confun, control.outer = list(trace = FALSE),
control.optim = list(fnscale = -1)))

aout$convergence == 0

## [1] TRUE
aout$value

## [1] 0.7266693
gamma.upper <- aout$value

8.3 Rao (Score) Intervals
These turned out to be just too horrible to do. If we try to derive the Rao pivotal quantity analytically,
the calculus is horribly messy. If we try to let the computer do the calculus using R package numDeriv
then that doesn’t work because R function auglag in R package alabama needs derivatives of the nonlinear
constraint function that it tries to calculate by finite-difference approximation. So that means we either need
everything done analytically or calculating derivatives of functions containing derivatives by finite-difference
approximations of functions themselves defined by finite-difference approximations. And the latter does not
work. Computer arithmetic is too sloppy.

However much one may like Rao intervals for simple problems, they are just not worth the effort in com-
plicated problems. And this problem is already too complicated for them, even though it only involves a
contingency table with four cells and a curved exponential family with two parameters.

8.4 Summary
8.4.1 Wald Intervals

lower upper
alpha 0.2014 0.2544
beta 0.0544 0.0850
gamma 0.6737 0.7312

8.4.2 Likelihood Intervals

lower upper
alpha 0.2021 0.2552
beta 0.0554 0.0860
gamma 0.6733 0.7267

These intervals are not corrected for simultaneous coverage. See Section 10 below for that.

9 Fixing Up Our R Function
9.1 Error Messages
The first improvement to make to any function is to make it follow the policy of “garbage in, error messages
out”. And we want the error messages to be understandable and informative. So
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mlogl <- function(theta) {
stopifnot(is.numeric(theta))
stopifnot(is.finite(theta))
stopifnot(length(theta) == 2)
alpha <- theta[1]
beta <- theta[2]
gamma <- 1 - alpha - beta
- (nA * log(alpha^2 + 2 * alpha * gamma) +

nB * log(beta^2 + 2 * beta * gamma) +
nO * log(gamma^2) +
nAB * log(2 * alpha * beta))

}

We should check everything we reasonably can about our arguments. One might think we should also add

stopifnot(theta >= 0)
stopifnot(sum(theta) <= 1)

But, as we saw, R function nlm will call the function supplied to it (which is our function mlogl in this
handout) when the parameters are outside the sample space (because there is no way to indicate to it what
the sample space is). So we do not check these, but rather just suppress the warnings, as shown above, if we
don’t want to see them.

We had a similar problem with R function auglag because it also has the constraint function (argument
hin) that calls our function mlogl and it also does not know what the allowed parameter values are.

9.2 Using a Factory Function
Global variables are evil, as every course on computer programming says. If the project is one-off and not
to be (ever, under any circumstances) used as an example (even for one’s own future work), then there is
nothing wrong with global variables. But code tends to be re-used, even if the re-use is not planned. So
avoid global variables.

To do that we don’t rewrite our function mlogl. Instead we write an R function to write it. A function that
makes functions is called a function factory. So that is what we are using.

R functions remember the environment in which they were created. That is how our current version of the
function finds the variables nA, nB, nO, and nAB. It was created in the R global environment, and that is
where those variables are.

If one clobbers or removes those variables, our function will not work. When we use a function factory and
put those variables in the execution environment of the function factory, then they are where users to not
think to mess with them. Most users don’t even know functions have environments.

So here is how that looks.
mlogl.factory <- function(nA, nB, nO, nAB) {

stopifnot(is.numeric(nA))
stopifnot(is.finite(nA))
stopifnot(round(nA) == nA) # checks integer value
stopifnot(nA >= 0)
stopifnot(is.numeric(nB))
stopifnot(is.finite(nB))
stopifnot(round(nB) == nB) # checks integer value
stopifnot(nB >= 0)
stopifnot(is.numeric(nO))
stopifnot(is.finite(nO))
stopifnot(round(nO) == nO) # checks integer value
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stopifnot(nO >= 0)
stopifnot(is.numeric(nAB))
stopifnot(is.finite(nAB))
stopifnot(round(nAB) == nAB) # checks integer value
stopifnot(nAB >= 0)
function(theta) {

stopifnot(is.numeric(theta))
stopifnot(is.finite(theta))
stopifnot(length(theta) == 2)
alpha <- theta[1]
beta <- theta[2]
gamma <- 1 - alpha - beta
- (nA * log(alpha^2 + 2 * alpha * gamma) +

nB * log(beta^2 + 2 * beta * gamma) +
nO * log(gamma^2) +
nAB * log(2 * alpha * beta))

}
}

An R function returns the value of the last expression if there is no explicit call of R function return. The
last expression of mlogl.factory is the definition of a function that is identical to our function mlogl copied
from the code above.

Now we use the factory to make a new mlogl.
mlogl <- mlogl.factory(nA, nB, nO, nAB)

And now we don’t need the global variables.
rm(nA, nB, nO, nAB)

We check that our new function mlogl works just like the old one.
nout.estimate.save <- nout$estimate
nout <- suppressWarnings(nlm(mlogl, theta.start))
nout$code <= 2 # should be TRUE for solution

## [1] TRUE
all.equal(nout$estimate, nout.estimate.save)

## [1] TRUE
# have to redefine because have clobbered above
# global variables are evil
crit <- qchisq(conf.level, df = 1)
aout <- suppressWarnings(auglag(nout$estimate, fn = function(theta) theta[1],

hin = confun, control.outer = list(trace = FALSE)))
aout$convergence == 0

## [1] TRUE
all.equal(aout$value, alpha.lower)

## [1] TRUE

How does this work? If we removed the data, where is it?
ls(envir = environment(mlogl))
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## [1] "nA" "nAB" "nB" "nO"

10 Simultaneous Coverage
10.1 Confidence Regions
A confidence interval is a random interval that covers the true unknown (scalar) parameter value with a
specified probability. A confidence region is a random region that covers the true unknown (vector) parameter
value with a specified probability.

Confidence regions are not much used, not even mentioned in intro stats books. We are primarily interested
in them as a tool for constructing simultaneous confidence intervals. But we develop the general theory here.

Like confidence intervals, confidence regions can be constructed by inverting hypothesis tests. The confidence
region is the set of 𝜃0 that are not rejected by the hypothesis test with hypotheses

𝐻0 ∶ 𝜃 = 𝜃0
𝐻1 ∶ 𝜃 ≠ 𝜃0

Let 𝑐 be the appropriate chi-square critical value (the degrees of freedom is the dimension of the parameter
space). Then inverting the likelihood ratio test gives the confidence region

{ 𝜃 ∶ 2[𝑙( ̂𝜃) − 𝑙(𝜃)] ≤ 𝑐 }

where ̂𝜃 is the MLE for the alternative hypothesis (the unrestricted MLE).

In the handout titled “Likelihood Inference” the formula for the Wald test statistic using observed Fisher
information is

𝑊 ′
𝑛 = 𝑔( ̂𝜃𝑛)𝑇 [∇𝑔( ̂𝜃𝑛)𝐽𝑛( ̂𝜃𝑛)−1(∇𝑔( ̂𝜃𝑛))𝑇 ]−1𝑔( ̂𝜃𝑛)

Here we use the special case where 𝑔(𝜃) = 𝜃 − 𝜃0, the first derivative of which is the identity matrix. Then
we have

𝑊 ′
𝑛 = ( ̂𝜃𝑛 − 𝜃)𝑇 𝐽𝑛( ̂𝜃𝑛)( ̂𝜃𝑛 − 𝜃)

Then the Wald confidence region is

{ 𝜃 ∶ ( ̂𝜃𝑛 − 𝜃)𝑇 𝐽𝑛( ̂𝜃𝑛)( ̂𝜃𝑛 − 𝜃) < 𝑐 }

We have to solve a multivariate quadratic equation to find the boundary of the region.

10.2 Simultaneous Confidence Intervals from Confidence Regions
If 𝑅 is a confidence region and 𝑔 is any scalar-valued function whatsoever, then

inf
𝜃∈𝑅

𝑔(𝜃) < 𝑔(𝜃) < sup
𝜃∈𝑅

𝑔(𝜃)

is a confidence interval for the parameter 𝑔(𝜃), and, moreover, the coverage probability is the same as the
coverage probability for 𝑅, and this is simultaneous for all possible functions 𝑔. This is how we are going to
derive simultaneous confidence intervals here.

10.3 Likelihood Intervals
To fix up our likelihood intervals for simultaneous coverage, all we need is to use a critical value for two
degrees of freedom. Everything else is the same. Why two? Because there are two independently adjustable
parameters. The degrees of freedom for simultaneous coverage is always the number of independently ad-
justable parameters.

We won’t show the work just the result. First do
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crit

## [1] 3.841459
crit <- qchisq(conf.level, df = 2)
crit

## [1] 5.991465

and then redo the likelihood intervals shown above (work not shown, but is in the source (Rmd) file).

lower upper
alpha 0.1960 0.2621
beta 0.0521 0.0904
gamma 0.6698 0.7330

Comparing with Section 8.3.2 above we see the intervals aren’t actually that much wider.

10.4 Wald Intervals
The same trick works for Wald intervals. This is similar to what is called Scheffé’s method for linear models,
but the same idea works in general. We just use the same critical value, as for the likelihood intervals, but
when we use it for Wald intervals, we need to take a square root. We have been using all along the critical
value for Wald intervals is the square root of the critical value for the confidence intervals. We just didn’t
note that explicitly. But a chi-square random variable with one degree of freedom is the square of a standard
normal random variable. Now a chi-square random variable on 𝑘 degrees of freedom is the sum of squares
of 𝑘 independent standard normal random variables.

So we do
crit <- sqrt(crit)
crit

## [1] 2.447747

and redo all of our Wald interval calculations (again work not shown but in the Rmd file).

lower upper
alpha 0.1948 0.2610
beta 0.0505 0.0888
gamma 0.6665 0.7383

Comparing with Section 8.3.1 above we see the intervals aren’t actually that much wider.
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