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What is This?
Chapter 1 of the textbook (Agresti) already reviews bits of the theory of probability and statistics, but
IMHO that chapter is not basic enough for some students. Hence this.

Sample, Population, Parameters, and Statistics
The Fundamental Scam of Baby Statistics
In most (all, AFAIK) intro statistics classes, the theory of probability is dumbed down to the theory of
simple random sampling from a finite population. This makes much of the discussion of probability theory
in such classes wrong or at least wrongheaded or incoherent.

In real probability theory (like that taught in theory classes like Stat 4101–4102 or 5101–5102 at the U of
M) probabilities can be any numbers between zero and one, inclusive, not just rational numbers, as arise in
finite population sampling. Also in real probability theory we allow infinite sample spaces (sets of possible
outcomes of random processes), and that requires calculus for actually doing the math (which is why those
theory classes require calculus). But this course requires neither calculus nor those theory courses as a
prerequisite. So we will have to handwave some of the mathematical issues. But we won’t dumb it down
quite as much as baby statistics courses do.

So in statistics we are interested in random “samples” from finite “populations” except not really. This
language actually makes no sense when we have infinite sample spaces. It just becomes a bad metaphor
when we are “sampling” from an infinite “population”.

Independent and Identically Distributed, Probability Distributions
So we replace “sample” and “population” with the notion of independent and identically distributed (IID)
data. What corresponds to the “population” in the finite-population-sampling picture is a probability model,
also called a probability distribution. You may have already met some of these in previous statistics courses.
Those courses certainly used the binomial distribution, the normal distribution, the t distribution and the F
distribution. But they may have been very sloppy in their discussion (dumbing things down to the point of
actually being incorrect).

In this course, we will have no use for the t and F distributions. They only apply when the data are assumed
to be normally distributed. But this course is about discrete data, also called categorical data. Normally
distributed data is continuous not discrete. Hence no t and F. We will introduce some other distributions
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(chi-square, Poisson, multinomial, product multinomial, multivariate normal), but not on this page. They
can wait until we start with Chapter 1 of Agresti.

A sequence of observations is IID if every random variable in the sequence has the same distribution (that’s
the identically distributed part) and the value of any single random variable or any set of random variables has
nothing whatsoever to do with any other random variables (separately or collectively, that’s the independent
part). Here and everywhere else in probability and statistics independent means stochastically independent.
We will eventually give a more rigorous definition of IID, but this will have to do for now.

The Sample is Not the Population
When teaching baby statistics, I repeat this section heading as often as possible. This is the most fundamental
issue in statistics. Your data are wrong. They do not tell you what you want to know — no matter how
much effort you put into collecting it.

And Statistics are Not the Parameters They Estimate
In statistics (the subject) we call properties of the probability model parameters. Usually the true probability
model of the data is unknown. That is why we are doing statistics, we are trying to find out about the true
unknown probability model (metaphorically, find out about the “population”) by computing the analogous
properties for a (hopefully) representative sample from the “population”. Those quantities that we calculate
from the sample (that do not depend on the unknown population parameters) are called statistics (singular
statistic).

Thus we have statistics the academic subject whose practitioners are called statisticians. And we have
statistic a technical term of this academic subject that refers to functions of random data only (that do not
depend on unknown parameters).

Statistics of the second kind are used to estimate unknown parameters. For example, the sample mean (a
statistic) is an estimate of the population mean (a parameter) and the sample standard deviation (a statistic)
is an estimate of the population standard deviation (a parameter).

The “estimate” is there to remind you that statistics are not the parameters they estimate. The sample mean
is not the population mean. The sample mean is a random quantity (because the data are random). The
population is not random (unless you are a Bayesian, but we ignore that for now). Hence the sample mean
(because it is random) has a very small probability (perhaps zero) of being exactly equal to the population
mean.

The most we can hope for is that an estimate is close to the parameter it estimates.

Sampling Distributions
The Square Root Law
The square root law says that statistical precision varies like the square root of the sample size, more
specifically for any estimator ̂𝜃𝑛 we have

sd( ̂𝜃𝑛) ∝ 1√𝑛
where 𝑛 is the sample size and the symbol ∝ means proportional to.

If we do not use the ∝ symbol, we can rewrite this as

sd( ̂𝜃𝑛) = constant√𝑛

where constant is some constant (not random) that we may or may not be able to calculate (and even if we
do not know how to calculate it, sometimes the computer does know).
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This is not a “law” except in baby statistics. There are required conditions for it to hold, which is another
way to say there are exceptions to the rule (cases that do not satisfy the required conditions).

However, the square root law does hold (at least approximately) for a very wide variety of estimators and
probability distributions, including most of those that arise in applied statistics and for every probability
model we will consider in this course.

Except this is dumbed down to the point of being wrong (see next section).

Asymptotics and a More Precise Square Root Law
Asymptotic Theory, also called Large Sample Theory

It is very common in statistics that, no matter how much theory you know, you do not know the exact
sampling distribution of an estimator. This will be true of most of the estimators we discuss in this course.

What we usually (not always) do have is consistency and asymptotic normality of estimators along with the
square root law. Then we say we have a consistent and asympotically normal (CAN) estimator. And we
write this is math as √𝑛( ̂𝜃𝑛 − 𝜃) 𝒟⟶ Normal(0, 𝜏2)
where

• ̂𝜃𝑛 is a statistic for sample size 𝑛,

• 𝜃 is the parameter is is supposed to estimate,

•
𝒟⟶ indicates convergence in distribution (a concept of probability theory we will not precisely define,

leaving that for theory courses),

• and 𝜏2 indicates a quantity which is the variance of the asymptotic normal distribution and which
typically depends on unknown parameters.

This 𝜏2 need not have anything to do with the “population” variance (the variance of the true unknown
probability distribution of the data). For example, we find out in theory courses that if ̂𝜃𝑛 is the sample
median for sample size 𝑛 and 𝜃 is the “population” median, then

√𝑛( ̂𝜃𝑛 − 𝜃) 𝒟⟶ Normal (0, 1
4𝑓(𝜃)2 )

where 𝑓 is the probability density function of the probability model (which means the this probability model
is continuous) and we need to assume 𝑓(𝜃) > 0 in order to not get divide by zero and we also need to assume
that 𝑓 is a continuous function (which is not implied by the probability distribution being continuous).

The only point of the example above is to show that the asymptotic variance need not have anything to do
with the population variance. Otherwise it is irrelevant to this course and may be forgotten. We will see
many other examples where the asymptotic variance has no obvious relationship to population variance, but
are not as simple as the median (which is why we did not choose an example more relevent to this course).

Now we come to where the preceding section is dumbed down to the point of being wrong.

The asymptotic variance 𝜏2 is the variance of the asymptotic distribution — the distribution that the exact
sampling distribution of

√𝑛( ̂𝜃𝑛 − 𝜃) is getting closer and closer to as 𝑛 goes to infinity.

The actual finite sample size estimator ̂𝜃𝑛 need not have a variance hence not a standard deviation either.

As an example of this phenomenon, we know from intro stats that the usual estimator ̂𝜋𝑛 of the usual
parameter 𝜋 of the binomial distribution has

sd( ̂𝜋𝑛) = √𝜋(1 − 𝜋)
𝑛
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so this estimator obeys the square root law exactly (not just approximately).

But for reasons to be discussed later (many times throughout the course, this being a major theme), we do
not want to use this parameter but rather

̂𝜃𝑛 = logit( ̂𝜋𝑛)

where the logit function (pronounced low-jit) is defined by

logit(𝜋) = log ( 𝜋
1 − 𝜋 ) = log(𝜋) − log(1 − 𝜋)

except when 𝜋 = 0 or 𝜋 = 1, where it is undefined. Or we can set

logit(0) = −∞
logit(1) = +∞

because

lim
𝜋↘0

logit(𝜋) = −∞

lim
𝜋↗1

logit(𝜋) = +∞

And either way this ̂𝜃𝑛 does not have variance or standard deviation (or has infinite variance and standard
deviation, depending on how you want to think about it) for all finite sample sizes.

In fact (much more on this later in the course)

√𝑛( ̂𝜃𝑛 − 𝜃) 𝒟⟶ Normal (0, 1
𝜋(1 − 𝜋))

So this is a CAN estimator, but it does not have a finite sample standard deviation. This is the usual case
for the estimators we use in this course.

Sloppy versus Careful Asymptotics

Usually we will rewrite the first displayed formula of the preceding section as

̂𝜃𝑛 ≈ Normal (𝜃, 𝜏2

𝑛 )

where ≈ means approximately distributed as or something of the sort.

This is theoretically sloppy, because the right-hand side here cannot be a limit as 𝑛 goes to infinity (such a
limit cannot depend on 𝑛; that’s the whole point of a limit, to get rid of the dependence on 𝑛). One will find
in theory courses that one cannot use this sloppy notation when arguments get complicated (too sloppy).
But the sloppy notation is good enough for most applied work and most of this course.

This makes sense because if √𝑛( ̂𝜃𝑛 − 𝜃)
had exactly (not approximately) the

Normal(0, 𝜏2)
distribution, then ̂𝜃𝑛 itself would have exactly (not approximately) the

Normal (𝜃, 𝜏2

𝑛 )

distribution by the linearity rule.
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The Square Root Law Again

Note that the sloppy version of the asymptotics agrees with the square root law: if the asymptotic variance
is 𝜏2/𝑛, then the asymptotic standard deviation is the square root of that, which is 𝜏/√𝑛. And that’s the
square root law (asymptotic version).

In this course, no estimators violate the square root law. So if your error of estimation (exact or approximate,
theoretical or estimated) is not proportional to 1/√𝑛 = 𝑛−1/2, then you are making a mistake.

Summary

If ̂𝜃𝑛 is as described in the binomial distribution example ̂𝜃𝑛 = logit( ̂𝜋𝑛)), then

• (wrong) the approximate or large-sample or asymptotic variance of ̂𝜃𝑛 is 1/(𝑛𝜋(1−𝜋)) (this is infinitely
wrong)

• (right) the approximate or large-sample or asymptotic distribution of ̂𝜃𝑛 is the normal distribution
having mean 𝜃 and variance 1/(𝑛𝜋(1 − 𝜋)).

Or even shorter (wrong) variance is approximated (right) the distribution is approximated.

There is No One True Way to Do Frequentist Statistics
In so-called frequentist statistics (which would be better called samplingdistributionist if English made
compound words this way — like German does — because it is statistical inference derived from sampling
distributions of statistics) there is no one right way to do anything.

• Any statistic you say is an estimator of a parameter 𝜃 is one. It may be completely ridiculuous, like the
estimator that ignores the data and always says 42. It may be even more than completely ridiculous,
like a negative estimate for a parameter that is known to be positive. Of course, some estimators are
better than others. So we need theoretical statistics to tell us how to figure that out so we can use
good ones rather than bad ones. But this course does not require theory as a prerequisite, so we will
just have to tell you what theory says rather than go through proofs. In this course, we will usually use
maximum likelihood estimation, which is asymptotically (but not exactly) best possible, meaning that
its asymptotic normal distribution has the smallest variance possible for any estimation procedure but
that does not tell that maximum likelihood is best at any finite sample size (and we have examples like
James-Stein estimators to show that maximum likelihood need not be the best at any finite sample
size in certain situations.

• Any interval you say is a confidence interval is one, even if it does not have the stated coverage
probability, it has approximately the stated coverage probability if very bad approximation is allowed.
In this course, because of discreteness, no confidence interval will be exact. So all will only have
approximately the stated coverage probability (and the coverage probability will depend on the true
unknown parameter value, which is unknown). Again, we know that confidence intervals associated
with the maximum likelihood estimator are asymptotically best possible. But this is tricky for discrete
data, because regardless of sample size, the approximation gets worse and worse as the parameter values
get extreme (mean values go to the boundary of their parameter space), so the confidence intervals
work well when the parameters are far from the boundary but not otherwise. More on this later.

• Similarly, for hypothesis tests. Any recipe for confidence intervals, implies a corresponding one for
hypothesis tests and vice versa so when you have many confidence interval recipes you also have many
hypothesis test recipes.

It would be nice (for you) if we dumbed this down and just said “learn this one” and allowed you to forget
the others. But it would not be nice if later on you had to deal with the others in real life. So we will learn
about all of the widely used procedures.
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There is One True Way to Do Bayesian Statistics
The one true way to do Bayesian statistics is to use Bayes’ rule (this may not make much sense if you have
not been exposed to Bayesian statistics, but will eventually).

But different Bayesians will produce different inferences: if they use different prior distributions, then they
will get different posterior distributions. But, unlike frequentist inference where some procedures are better
than others. All of these Bayesian inferences are perfectly correct (assuming Bayes’ rule was followed correctly
and the prior was defensible). More on this when we get to Bayes.

No One Right Answer
But either way (frequentist or Bayesian, or “other” for that matter, not all statistical inference is either of
these, although we will not cover anything else in this course) there will rarely be only one possible correct
answer (unless we are very specific in telling you what to do). And there will never be only one possible
correct answer in real life (if you ever do statistics in real life). Sorry about that. But that’s just the way it
is.
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