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1 Discreteness versus Hypothesis Tests

You cannot do an exact level α test for any α when the data are dis-
crete. For example, consider a lower-tailed test for binomial data with null
hypothesis H0 : π = π0 and sample size n given by

> n <- 20

> pi0 <- 0.3

The P -value is Prπ0(X ≤ x), and the only P-values that can occur that are
less than 0.2 are

> x <- 0:n

> p <- pbinom(x, n, pi0)

> foo <- cbind(x, p)

> colnames(foo) <- c("data", "P-value")

> rownames(foo) <- rep("", nrow(foo))

> round(foo[p < 0.2, ], 4)

data P-value

0 0.0008

1 0.0076

2 0.0355

3 0.1071

This behavior clearly has nothing to do with the particular values chosen
for n and π0. The code will always produce a finite set of possible P -values.
This behavior also clearly has nothing to do with the binomial distribution.
Any discrete distribution will do the same.

Strictly speaking, a hypothesis test like this should not be called “ex-
act” but rather only “conservative-exact”. An “exact” test should have the
property that the P -value is uniformly distributed on (0, 1) when the null
hypothesis is correct, that is, we have

Prθ0(P ≤ α) = α, 0 < α < 1,
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where P is the random variable that is the P -value. Exact tests whose
test statistics are continuous random variables (t tests, F tests) have this
property. Tests whose test statistics are discrete random variables cannot
have this property, as we saw above. They only have the property

Prθ0(P ≤ α) ≤ α, 0 < α < 1.

The difference between these properties means that a so-called “exact” (but
better called “conservative-exact”) hypothesis test with a discretely dis-
tributed test statistic is not really analogous to an exact test with a contin-
uously distributed test statistic. The language we use to talk about them
may mislead us into thinking they are analogous, but they aren’t.

If you do the test in the example and observe x = 3 and report the
P -value P = 0.1071 with no indication that the next possible lower P -value
is 0.0355, then that is highly misleading. Yes, the reported P -value is far
above 0.05 (if that is the standard for significance you are using), but it is as
close to 0.05 as it could be without being below 0.05. And that is something
that merely reporting P = 0.1071 does not even hint at.

2 Randomized Hypothesis Tests

The standard theory of hypothesis testing taught in all PhD-level theory
classes (Lehmann and Romano, 2005, Chapters 3 and 4) fixes up this defect
of hypothesis tests for discrete data by allowing randomized tests. The test
does not deterministically map data values to accept or reject (the null
hypothesis) decisions. Rather for each data value x it rejects the null with
probability φ(x) and accepts with probability 1 − φ(x), and φ is chosen so
that

Prθ0(reject) = Eθ0{φ(x)} = α, 0 < α < 1. (1)

and thus the test rejects the null with probability α for all α just like hy-
pothesis tests with continuous test statistics.

Then there is a lot of elaborate theory surrounding the Neyman-Pearson
lemma that shows that it is possible to choose φ so that the test is uniformly
most powerful (UMP), that is, the graph of the power function of the UMP
test lies on or above the graph of the power function of any other test with
the same level. In short, the UMP (randomized) test is provably better than
any other test!

The φ function for the UMP lower-tailed test at level α has the obvious
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form

φ(x) =


1, x < x∗

p∗, x = x∗

0, x > x∗

where x∗ is the largest x value such that

Prθ0(X < x) < α

and

p∗ =
α− Prθ0(X < x∗)

Prθ0(X = x∗)
. (2)

For example, if we want to conduct a level 0.05 level lower-tailed UMP
test for the situation above we want

> alpha <- 0.05

> xstar <- qbinom(0.05, n, pi0) - 1

> xstar

[1] 2

> pbinom(xstar, n, pi0)

[1] 0.03548313

> pstar <- (alpha - pbinom(xstar, n, pi0)) / dbinom(xstar, n, pi0)

> pstar

[1] 0.5213292

so the UMP (randomized) lower-tailed test rejects the null with probability
one if the observed data is less than x∗ = 2 and with probability p∗ = 0.5213
if the observed data is equal to x∗ and otherwise accepts the null.

This is beautiful theory. The existence of UMP (randomized) tests is
an important theoretical result. As mentioned above, it is taught as the
standard theory of hypothesis testing to all PhD students in statistics.

But it is weird from an applied statistics point of view. Because of
the artificial randomization, if you and I both do the UMP (randomized)
hypothesis test of the same hypotheses for the same distribution and the
same data, we may get different decisions for the same data. If we observe
X = x∗, then we have to randomize. So I generate a Uniform(0, 1) random
variable and say “reject the null” if it is less than p∗ given by (2), and you
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do the same. If we each generate a different Uniform(0, 1) random variable,
then we can get different results, even though the data are the same.

Because of this weirdness, every PhD statistician learns this theory in
theory class and then never uses it for a real data analysis!

3 Fuzzy P -values

Geyer and Meeden (2005) propose to keep the theory but jettison the
weirdness by the simple device of not actually doing the randomization but
only describing it. If we are both doing the UMP (randomized) test and
observe data x∗, then we both say the UMP test rejects the null with prob-
ability p∗ given by (2) and leave it at that.

We also know that for many reasons the modern tendency is to report
P -values rather than decisions. So Geyer and Meeden (2005) figured out
what the corresponding P -value notion is. They call it a fuzzy P -value,
something that is spread out rather than a single number.

For the lower-tailed UMP (randomized) test for the binomial distribution
(or other distributions satisfying the conditions for a UMP test to exist) the
fuzzy P -value is uniformly distributed on the interval from Prθ0(X < x) to
Prθ0(X ≤ x). If one were to actually generate such a uniformly distributed
random variable U and then say reject the null at level alpha when U < α,
this would be the UMP (randomized) test. But Geyer and Meeden (2005)
say you shouldn’t generate such a U . Instead you should just report that the
the fuzzy P -value is uniformly distributed on the interval from Prθ0(X < x)
to Prθ0(X ≤ x).

For example, if we want to report a fuzzy P -value for the lower-tailed
UMP test for the situation above it is uniformly distributed on the inter-
val (0.0355, 0.1071). This is what is really analogous to an exact (not just
conservative-exact) test like a t test.

The conservative-exact P -value is the upper end point of the fuzzy P -
value. The fuzzy P -value makes precise how conservative the conservative-
exact P -value is. The fuzzy P -value is exact-exact in the sense that if P is
a random variable having the (uniform) distribution of the fuzzy P -value,
then

Pr(P ≤ α) = α, for all α

which is just another way of stating the exactness property a hypothesis test
is supposed to have, equation (1) above in other notation.

Of course, for an upper-tailed UMP test, the fuzzy P -value is uniformly
distributed on the interval from Prθ0(X > x) to Prθ0(X ≥ x), which is just
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the same as the formulas for the lower-tailed test but with the inequalities
reversed.

All of this theory applies to hypothesis tests with continuous test statis-
tics but doesn’t do anything unconventional for them. A UMP (randomized)
test with a continuous test statistic isn’t actually randomized because any
point occurs with probability zero, hence x∗ occurs with probability zero.
The formula (2) gives 0/0, which is undefined, in that case, but it doesn’t
matter because we land in that case with probability zero. The correspond-
ing fuzzy P -value isn’t actually fuzzy because Prθ0(X < x) = Prθ0(X ≤ x),
and the interval over which the fuzzy P -value is distributed is degenerate,
collapsed to a single point.

So when the test statistic has a continuous distribution randomized and
fuzzy tests produce nothing new. They are only interesting for discrete data.

4 Two-Tailed Tests

There are no UMP (randomized) two-tailed tests. There are no tests that
are uniformly (in the true unknown parameter value) better than all other
tests. But if we add a side condition, then there are. The extra condition
is that the test be unbiased, which means the power is always greater than
the significance level (the probability of rejecting the null hypothesis H0 is
always greater when H0 is false than when H0 is true). This is a reasonable
criterion for a test to satisfy.

Then there is a lot of elaborate theory surrounding the Neyman-Pearson
lemma that shows that it is possible to choose φ so that the test is uniformly
most powerful unbiased (UMPU), that is, the graph of the power function
of the UMPU test lies on or above the graph of the power function of any
other unbiased test with the same level. In short, the UMPU (randomized)
test is provably better than any other unbiased test!

We won’t even describe the UMPU test but just show how to calculate
its fuzzy P -value (see Geyer and Meeden, 2005, for a thorough explanation
of UMPU theory). The fuzzy P -value for the UMPU (randomized) two-
tailed test is sometimes uniform on an interval and sometimes non-uniform,
but its PDF is always a step function. The R function arpv.binom in the
R package ump (Geyer and Meeden, 2014), which is a CRAN package, and
hence installable in R using either the install.packages function or the
menu on the GUI window if one is using a GUI app (as on Windows or
Macintosh).

For example, if we want to report a fuzzy P -value for the two-tailed
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UMP test for data

> n <- 20

> x <- 2

> pi0 <- 1 / 3

> library(ump)

> print(arpv.binom(x, n, pi0, plot = FALSE))

$alpha

[1] 0.006145670 0.008236254 0.028054957 0.033270042

$phi

[1] 3.312001e-17 8.426339e-02 8.242187e-01 1.000000e+00

What this returns is a specification of the cumulative distribution function
of the (random variable that is) the fuzzy P -value. Since the function is
piecewise linear, it just reports the “knots” which separate the pieces. If we
do not say plot = FALSE we get the plot (Figure 1, page 7). With a little
more effort it is possible to plot the probability density function (PDF)
rather than the cumulative density function (CDF). Your humble author
prefers PDF; some of his co-authors prefer CDF. Use whichever you like.

Here is how to plot the PDF. Figure 2 (page 8) is produced by the
following code

> foo <- arpv.binom(x, n, pi0, plot = FALSE)

> arpv.plot(foo$alpha, foo$phi, df = FALSE)

5 Interpretation of Fuzzy P -Values

.
Geyer and Meeden (2005) claim that fuzzy P -values are no harder to

interpret than conventional P -values. Very low P -values are still strong ev-
idence against the null hypothesis. Very large P -values are still no evidence
against the null hypothesis. In between P -values are still in between.

Despite people’s desires for definite answers, P -values don’t give definite
answers. I once wrote

Anyone who thinks there is an important difference between
P = 0.049 and P = 0.051 understands neither science nor statis-
tics.
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Figure 1: Cumulative Distribution Function (CDF) of Fuzzy P -Value. Bi-
nomial data x = 2, n = 20, two-tailed test with null hypothesis π = 0.33333.
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Figure 2: Probability Density Function (PDF) of Fuzzy P -Value. Binomial
data x = 2, n = 20, two-tailed test with null hypothesis π = 0.33333.
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But a co-author made me cut it from the paper, not because it was wrong,
but because it might offend.

Middling P -values are already equivocal. Making them fuzzy doesn’t
make them much more equivocal.

But making them fuzzy does make them truly exact rather than just
conservative-exact (for one-tailed tests). And making them fuzzy also makes
them possible for two-tailed tests (there are no sensible nonrandomized two-
tailed tests for non-symmetric binomial distributions, that is, unless the null
hypothesis is π0 = 1/2 there is no “exact” nonrandomized two-tailed test).

Also making them fuzzy makes them best possible (UMP or UMPU).

6 Confidence Intervals

Inverting a fuzzy hypothesis test gives a fuzzy confidence interval. We
won’t explain (see Geyer and Meeden, 2005) but just give examples and
interpretations.

6.1 Interpretation

A fuzzy confidence interval for observed data x is a function mx on the
parameter space taking values between zero and one. The interpretation
is that, if mx(θ) = 0, then θ is definitely out of the confidence interval, if
mx(θ) = 1, then θ is definitely in the confidence interval, and otherwise
θ is partly in and partly out and m(θ) says how much. We can think of
mx(θ) as being like “partial credit” on the question about θ. If θ0 is the
true unknown parameter value, then the fuzzy confidence interval gets full
marks if mx(θ0) = 1, it fails completely if mx(θ0) = 0, and gets partial credit
mx(θ0) whatever the value is.

When evaluating the performance of the fuzzy confidence interval, we
say its coverage probability is

Eθ{wX(θ)}

and we want to have this exactly at the specified confidence level.
And the R function fci.binom in the aforementioned R package ump

(Geyer and Meeden, 2014) does do this. It produces exact fuzzy confidence
intervals by inverting the UMPU two-tailed test.

Here’s how that works. Figure 3 (page 11) is produced by the following
code

> fci.binom(x, n)

9



95 percent fuzzy confidence interval

core is [0.0191, 0.2448]

support is (0.0027, 0.3138)

This function also blathers some. The “core” of the fuzzy confidence interval
is the set of points that are definitely in the interval and the “support” is the
set of points that are either definitely or partially in the interval.

If we don’t want to just plot the edges of the fuzzy confidence interval
(which it does by default). We can override that behavior with an optional
argument. Here’s how that works. Figure 4 (page 12) is produced by the
following code

> fci.binom(x, n, flat = 100)

95 percent fuzzy confidence interval

core is [0.0191, 0.2448]

support is (0.0027, 0.3138)
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95 percent fuzzy confidence interval

core is [0.0191, 0.2448]

support is (0.0027, 0.3138)
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Figure 3: Fuzzy Confidence Interval. Binomial data x = 2, n = 20. The
confidence interval goes straight across at level = 1 between the two figures.
Compare Figure 4.
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95 percent fuzzy confidence interval

core is [0.0191, 0.2448]

support is (0.0027, 0.3138)
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Figure 4: Fuzzy Confidence Interval. Binomial data x = 2, n = 20.
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