Stat 5101 (Geyer) Fall 2020

Homework Assignment 6

Due Wednesday, October 28, 2020

Solve each problem. Explain your reasoning. No credit for answers with no explanation. If the problem is a proof, then you need words as well as formulas. Explain why your formulas follow one from another.

6-1. The function

$$
f(x)=2 x, \quad 0<x<1
$$

is a PDF. Suppose X is a random variable having this PDF.
(a) Calculate $E(X)$.
(b) Calculate $E\left(X^{2}\right)$.
(c) Calculate $\operatorname{var}(X)$.

6-2. The function

$$
f(x, y)=x+y, \quad 0<x<1,0<y<1
$$

is a PDF. Suppose (X, Y) is a random vector having this PDF.
(a) Calculate $E(X)$.
(b) Calculate var (X).
(c) Calculate $\operatorname{cov}(X, Y)$.
(By symmetry, $E(Y)=E(X)$ and $\operatorname{var}(Y)=\operatorname{var}(X)$ so we do not need to calculate them.)

6-3. Suppose (X, Y) is a continuous random vector having $\operatorname{PDF} f$. Say for each of the following definitions of f whether X and Y are independent or not.
(a) $f(x, y)=4 x y, 0<x<1,0<y<1$.
(b) $f(x, y)=8 x y, 0<x<y<1$.
(c) $f(x, y)=144(x-1 / 2)^{2}(y-1 / 2)^{2}, 0<x<1,0<y<1$.
(d) $f(x, y)=288(x-1 / 2)^{2}(y-1 / 2)^{2}, 0<x<y<1$.

6-4. Suppose X is a continuous random variable having PDF

$$
f(x)= \begin{cases}1+x, & -1 \leq x<0 \\ 1-x, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}
$$

(a) Find $E(X)$.
(b) Find $E\left(X^{2}\right)$.
(c) Find $\operatorname{var}\left(X^{2}\right)$.

Hint: Since the PDF has a case-splitting formula, you must split integrals into pieces

$$
E\{g(X)\}=\int_{-1}^{0} g(x) f(x) d x+\int_{0}^{1} g(x) f(x) d x
$$

such that the PDF is defined by one formula for each piece.
6-5. Suppose X is a continuous random variable having the $\operatorname{Exp}(\lambda)$ distribution. Write $\mu=E(X)$.
(a) Find $E\left\{(X-\mu)^{3}\right\}$.
(b) Find $E\left\{(X-\mu)^{4}\right\}$.

6-6. Suppose (X, Y) is a continuous random vector having PDF

$$
f(x, y)=2, \quad 0<x<y<1
$$

(a) Find $E(X)$
(b) Find $E(Y)$
(c) Find $E\left(X^{2}\right)$
(d) Find $E\left(Y^{2}\right)$
(e) Find $E(X Y)$
(f) Find $\operatorname{var}(X)$
(g) Find $\operatorname{var}(Y)$
(h) Find $\operatorname{cov}(X, Y)$

Hint: the limits of integration are a bit tricky.

$$
E\{g(X, Y)\}=2 \int_{0}^{1} \int_{0}^{y} g(x, y) d x d y=2 \int_{0}^{1} \int_{x}^{1} g(x, y) d y d x
$$

6-7. Suppose X is a continuous random variable having the same PDF as in problem 6-4. Find its distribution function. Be sure to define the DF on the whole real line.

6-8. Suppose X is a continuous random variable having DF

$$
F(x)= \begin{cases}0, & x \leq 1 \\ 1-1 / x, & x>1\end{cases}
$$

Find its PDF. Define the PDF on the whole real line.
6-9. Suppose U has the $\operatorname{Unif}(0,1)$ distribution. What is the PDF of

$$
Y=-\frac{1}{\lambda} \log (U)
$$

6-10. Suppose X has the $\operatorname{Unif}(-1,1)$ distribution. What is the PDF of

$$
Y=X^{2}
$$

6-11. Suppose (X, Y) has the uniform distribution on the disk

$$
\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}
$$

What is the PDF of the random vector (R, T) which is (X, Y) expressed in polar coordinates?

Hint: The map from (r, t) to (x, y) is given by

$$
\begin{aligned}
& x=r \cos (t) \\
& y=r \sin (t)
\end{aligned}
$$

