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LM vs. GLM vs. EFM

GLM and EFM (exponential family models) are mostly like LM.

There are differences.

In GLM and EFM there is a difference between mean value
and canonical parameters. In LM they are the same.

In GLM and EFM inference is only approximate (large n,
asymptotic). In LM inference based on t and F distributions
is exact (if you believe the errors are exactly mean zero
homoscedastic normal),

But most things are more or less the same.



MLE at Infinity

In this subject, LM and EFM are radically different.

LM can never have MLE “at infinity”.

EFM can.



MLE at Infinity (cont.)

Begin with the simplest example.

We observe one Binomial(n, p) random variable x .

MLE for p is p̂ = x/n.

There are no canonical parameter values corresponding to these
“usual” parameter values

θ = logit(p) = log(p)− log(1− p)

does not exist when p = 0 or p = 1.

logit(p)→ −∞, as p → 0

logit(p)→ +∞, as p → 1

we can (loosely speaking) call these MLE “at infinity”.



Degeneracy

Binomial(n, p) distributions with p = 0 or p = 1 are degenerate.

p = 0 implies x = 0 with probability one.

p = 1 implies x = n with probability one.

Exponential families do not have degenerate distributions. Every
distribution in the family has the same sets of probability zero, the
same support.

So (considered as an exponential family) the binomial family does
not contain these degenerate distributions. Hence the MLE does
not exist (in the exponential family) when x = 0 or x = n.



Degeneracy (cont.)

We want to say the MLE is p̂ = 0 or p̂ = 1 (respectively) but there
is no corresponding θ̂ = logit(p̂).

We could say, let’s not use exponential family theory here, but we
have to use it for generalized linear models, for log-linear models
for categorical data analysis, and for aster models.

This issue has analogs in multiparameter exponential families.

But the high-dimensional geometry is hard to visualize.



Convex Support and Support Function

For any exponential family, the convex support of the canonical
statistic is the smallest closed convex set that has probability one
(all distributions in an exponential family agree on which sets have
probability zero or probability one).

Let C be a set in Rd . The support function of C is defined by

σC (δ) = sup
y∈C
〈y , δ〉, δ ∈ Rd

The supremum may be infinite, in which case the value is +∞.



Distributions that are Limits at Infinity

Theorem (Geyer, PhD thesis and Electronic Journal of Statistics,
2009). For a full exponential family having dimension d , canonical
statistic y , canonical parameter ϕ, convex support C , canonical
parameter space Φ, and PMDF of the canonical statistic fϕ, fix
δ ∈ Rd , and define

Hδ = { y ∈ Rd : 〈y , δ〉 = σC (δ) }

(Hδ is empty if σC (δ) = +∞), then for all ϕ ∈ Φ

lim
s→∞

fϕ+sδ(y) =


0, 〈y , δ〉 < σC (δ)

fϕ(y)/ prϕ(Hδ), 〈y , δ〉 = σC (δ)

+∞, 〈y , δ〉 > σC (δ)

(∗)

where the middle case is interpreted as +∞ if prϕ(Hδ) = 0.



Distributions that are Limits at Infinity (cont.)

lim
s→∞

fϕ+sδ(y) =


0, 〈y , δ〉 < σC (δ)

fϕ(y)/ prϕ(Hδ), 〈y , δ〉 = σC (δ)

+∞, 〈y , δ〉 > σC (δ)

(∗)

We are only interested in the case prϕ(Hδ) > 0 when the limit is a
PMDF

fϕ(y | Hδ) =


0, 〈y , δ〉 < σC (δ)

fϕ(y)/ prϕ(Hδ), 〈y , δ〉 = σC (δ)

+∞, 〈y , δ〉 > σC (δ)

(∗∗)

The value +∞ in the third case is not a problem because such y
are not in the convex support. (This is a convention of
measure-theoretic probability: 0×∞ = 0.)



Distributions that are Limits at Infinity (cont.)

Thus we have

fϕ+sδ(y)→ fϕ(y | Hδ), as s →∞, for all y and ϕ

Pointwise convergence of PMDF implies convergence in distribution
but is stronger (actually convergence in total variation).

These conditional distributions, which are also limits of
distributions in the original family, are degenerate, concentrated on
the hyperplane Hδ.



Exponential Family PMDF

The PMDF fϕ can be written

fϕ(y) = fϕ∗(y)e〈y ,ϕ−ϕ
∗〉−c(ϕ)+c(ϕ∗)

where c is the cumulant function of the family (deck 2,
slides 38–40).

Hence

fϕ(y | Hδ) =
fϕ∗(y)

prϕ(Hδ)
e〈y ,ϕ−ϕ

∗〉−c(ϕ)+c(ϕ∗)



Limiting Conditional Model

fϕ(y | Hδ) =
fϕ∗(y)

prϕ(Hδ)
e〈y ,ϕ−ϕ

∗〉−c(ϕ)+c(ϕ∗)

Hence the family of all such limits

Fδ = { fϕ( · | Hδ) : ϕ ∈ Φ }

is another exponential family with canonical statistic y and
canonical parameter ϕ and cumulant function

cδ(ϕ) = c(ϕ)− c(ϕ∗) + log prϕ(Hδ)

Conditioning on Hδ turns the original exponential family into
another exponential family.



Aggregate Exponential Family

In the special case δ = 0 the set Hδ is not a hyperplane but all of
Rd and Fδ is just the original family.

The union ⋃
δ∈Rd

prϕ(Hδ)>0

Fδ (?)

in “nice” cases contains the original family and all its limits.

In some “pathological” cases some families Fδ are not full and one
may need to take limits in them.

In other “pathological” cases the union (?) does not have all the
limits, and one must apply the same limiting procedure to each Fδ
(and possibly iterate the limiting procedure over and over until all
limits are found — since each limiting procedure reduces the
dimension of the family by at least one, the recursion stops after at
most d steps).



Aggregate Exponential Family (cont.)

It is not obvious that taking limits in straight lines (parameter
values ϕ+ sδ and s goes to infinity with ϕ and δ fixed) gets all
possible limits, but Chapter 4 of Geyer (PhD thesis) shows it does
(if iterated limits are done).

This process of taking all limits is called the Barndorff-Nielsen
completion of the family.

This construction seems complicated (and it is) but it is the price
we pay for using exponential family theory.

When MLE do not exist in the original family, they may exist in the
Barndorff-Nielsen completion.



Directions of Recession and Constancy

For a regular full exponential family with log likelihood l , canonical
statistic Y , and observed value of the canonical statistic y ,

we say δ is a direction of recession of l if

〈Y , δ〉 ≤ 〈y , δ〉, almost surely,

and we say δ is a direction of constancy of l if

〈Y , δ〉 = 〈y , δ〉, almost surely.

Every direction of constancy is a direction of recession.

δ is a direction of constancy if and only if both δ and −δ are
directions of recession.



Directions of Recession and Constancy (cont.)

Consider a regular full exponential family with log likelihood l ,
observed value of the canonical statistic y , canonical parameter ϕ,
convex support C , and canonical parameter space Φ.

If δ is a direction of recession, then for all ϕ ∈ Φ

ϕ+ sδ ∈ Φ, s ≥ 0.

If δ is a direction of constancy, then for all ϕ ∈ Φ

s 7→ l(ϕ+ sδ) is a constant function on (−∞,∞).

If δ is a direction of recession that is not a direction of constancy,
then for all ϕ ∈ Φ

s 7→ l(ϕ+ sδ) is a strictly increasing function on [0,∞).



Directions of Recession and Constancy (cont.)

Theorem (Geyer, PhD thesis and 2009). In a full regular
exponential family the MLE exists if and only if every direction of
recession is a direction of constancy.

This is basically a general fact about concave functions
(Rockafellar, Convex Analysis, 1970, Theorem 27.1 (b)) applied to
exponential families.

Corollary. In a full regular exponential family the MLE exists and
is unique if and only if there are no directions of recession (hence
no directions of constancy).

One might think we would want uniqueness of MLE guaranteed by
corollary, but it turns out that in this context we do not.



Directions of Recession and Constancy (cont.)

A direction δ is a direction of constancy if and only if canonical
parameter values ϕ+ sδ correspond to the same probability
distribution for all s ∈ R.

So when there is a direction of constancy δ and ϕ̂ is an MLE, then
so is ϕ̂+ sδ for all s ∈ R but all of these MLE correspond to the
same probability distribution.

A direction δ is a direction of constancy (repeating what was said
before in different language) if and only if the family is degenerate,
concentrated on the hyperplane Hδ.

Before, we ruled out directions of constancy, but now we cannot
because all of the distributions added in the Barndorff-Nielsen
completion are degenerate, concentrated on some hyperplane Hδ.



Directions of Recession and Constancy (cont.)

Theorem (Geyer, PhD thesis and 2009). If ϕ̂1 and ϕ̂2 are MLE in
a regular full exponential family, then ϕ̂1 − ϕ̂2 is a direction of
constancy.

This says that directions of constancy are the only kind of
nonuniqueness a regular full exponential family can have.

Hence when the MLE is nonunique, all MLE correspond to the
same probability distribution.

Nonuniqueness is not a problem for statistical inference, merely a
computational nuisance.



Directions of Recession and Constancy (cont.)

Everything said so far applies to any regular exponential family.

In particular, it applies to unconditional canonical affine submodels
of aster models just like it applies to aster models.

The only difference is

the saturated model has canonical statistic y and canonical
parameter ϕ, whereas

the submodel has canonical statistic MT y and canonical
parameter β.



Limiting Conditional Model

When we have a direction of recession δ that is not a direction of
constancy we have

l(β) = log fβ(y) < log fβ(y | Hδ) = lδ(β)

Thus, if we maximize the log likelihood lδ for the limiting
conditional model (LCM) we maximize the log likelihood over the
model that is the union of the original model and the LCM. If the
MLE in the LCM exists, then we are done. That is the MLE in the
Barndorff-Nielsen completion.



Directions of Recession and Constancy (cont.)

So how do we find directions of recession and constancy?

Directions of constancy are fairly easy. Mostly they arise from
formulas specifying model matrices that are not full rank. The R
function aster takes care of most cases of that automatically.

Directions of recession that are not directions of constancy are
hard. They arise when the observed value of the natural statistic is
on the relative boundary of the convex support.

For submodels, the support of MT y is hard to visualize. Geyer
(2009) shows how to use computational geometry software (R
package rcdd) to find directions of recession. Those methods are
slow, and their application to aster models has never been worked
out.



Directions of Recession and Constancy (cont.)

The R function summary.aster has a dumb methodology for
finding directions of recession.

If δ is a direction of recession that is not a direction of constancy,
then l(ϕ+ sδ) is a strictly increasing function of s. But this
function is bounded above because

l(β + sδ)→ log f (y | Hδ), as s →∞.

Thus both first and second derivatives

dl(β + sδ)

ds
= (y − µ(a + Mβ + sMδ)TMδ

d2l(β + sδ)

ds2
= −δTMT I (a + Mβ + sMδ)TMδ

must go to zero as s →∞.



Directions of Recession and Constancy (cont.)

Thus summary.aster looks for null eigenvectors of the Fisher
information matrix and reports them as possible directions of
recession or constancy.

If aout is an object of class "aster", then

fred <- eigen(aout$fisher, symmetric = TRUE)

sally <- fred$values < max(fred$values) * info.tol

zapsmall(fred$vectors[, sally])

is the code in aster.summary that computes these possible
directions of recession or constancy.



Directions of Recession and Constancy (cont.)

Because computer arithmetic is inexact (about 16 decimal place
precision) one cannot expected computed eigenvalues to be exactly
zero. Hence we use a tolerance info.tol.

This “test” for directions of recession leads to many false positives.

But it also has revealed many true positives: actual directions of
recession that were not directions of constancy. These had to be
dealt with. They could not be ignored.



Computer Arithmetic

Computer arithmetic is not exact.

> .Machine$double.eps

[1] 2.220446e-16

is the precision or machine epsilon, the smallest number that
when added to one is greater than one

> 1 + .Machine$double.eps / 2 - 1

[1] 0

It makes no sense to test the computer’s so-called real numbers for
equality (to zero or to anything else).



Computer Arithmetic (cont.)

One can change info.tol from its default value

> sqrt(.Machine$double.eps)

[1] 1.490116e-08

to something smaller. 1e-9 and 1e-10 are fairly safe. 1e-11 and
1e-12 are getting iffy. Much below that is too close to the
machine epsilon.

An error of 1 machine epsilon in one calculation can build up to
millions or billions of machine epsilons after millions or billions of
operations.



Directions of Recession and Constancy (cont.)

Futzing with info.tol gives one (uncertain) way to tell whether
putative directions of recession summary.aster warns about are
real ones. If the warning goes away when info.tol is lowered a
little bit, then there is probably (cannot be certain) not a problem.

Looking at the putative direction of recession itself is another
(even less certain) way to tell whether putative directions of
recession summary.aster warns about are real ones. If the vector
is highly structured, with a lot of zeros and a lot of repetitions of
the same nonzero numbers, so it looks like it could be multiplied
by a scalar and have small integer values, then it probably (cannot
be certain) is a true direction of recession.



Directions of Recession and Constancy (cont.)

This test based on eigenvectors of the Fisher information matrix is
not only inexact, even if some eigenvector is nearly along a
direction of recession, this doesn’t say which way is the direction of
recession. (Directions of recession point one way. Eigenvectors
don’t. If v is an eigenvector, so is −v).



Directions of Recession and Constancy (cont.)

So suppose we have a submodel direction of recession δβ.

Mapping to the saturated model, we get a direction of recession

δϕ = Mδβ

We only care about the signs of components of δϕ. If the j-th
component of δϕ is positive, then ϕj goes to +∞ when the
likelihood is maximized. And similarly for negative and −∞. Only
the zero components of δϕ correspond to components of ϕ that
stay finite.



Directions of Recession and Constancy (cont.)

Consider a single arrow, the j-th.

Suppose the one-parameter family for the arrow has convex support
which is the interval from aj to bj (either of which can be infinite).

The inequalities this makes for the response vector of the aster
model are

ajyp(j) ≤ yj ≤ bjyp(j)

Since these involve at most two coordinates of the response vector,
a direction of recession that yields an LCM that only conditions on
ajyp(j) = yj or yj = bjyp(j) has at most two nonzero coordinates.

The direction of recession

δϕ,k =


−1, k = j

aj k = p(j)

0, otherwise

yields the LCM that conditions on ajyp(j) = yj .



Directions of Recession and Constancy (cont.)

The direction of recession

δϕ,k =


1, k = j

−bj k = p(j)

0, otherwise

yields the LCM that conditions on yj = bjyp(j).

More complicated directions of recession yield aster models with
more arrows conditioned at their upper or lower bounds.



Directions of Recession and Constancy (cont.)

When we condition on one or more arrows being at one of their
bounds, we have the same aster model we had before with the
following changes.

The j-th arrow now corresponds to the degenerate exponential
family of distributions concentrated at aj or bj . We need to
figure out its cumulant function.

What was the direction of recession is now a direction of
constancy. So we no longer have uniqueness of the MLE (in
the limiting conditional model).

From now on we write bj for either bound (lower or upper).
Conditioning on the j-th arrow being at its bound we write as
yj = bjyp(j) with bj now standing for whichever bound we are
conditioning on.



Degenerate One-Parameter Exponential Families

Suppose we have a one-parameter exponential family concentrated
at the point b. What is its cumulant function?

The PMF is

f (y) =

{
1, y = b

0, otherwise

The only data we can observe is y = b, and for that the log
likelihood is log(1) = 0. And this does not depend on the
parameter (all parameter values correspond to this same
degenerate distribution). So

0 = l(θ) = yθ − c(θ) = bθ − c(θ)

so we must have
c(θ) = bθ, for all θ



Degenerate One-Parameter Exponential Families (cont.)

Let us check that the rest of the theory works too

c(θ) = bθ

c ′(θ) = b

c ′′(θ) = 0

which says the canonical statistic Y has mean b and variance 0,
which is correct for the degenerate distribution concentrated at b.



Directions of Recession and Constancy (cont.)

Unfortunately, the R package aster does not allow degenerate
distributions (concentrated at one point) for arrows.

The R package aster2 does allow them, but is not ready for
ordinary users.

So we need to figure out how a model with degenerate arrows
corresponds to models without them.



Directions of Recession and Constancy (cont.)

θj = ϕj +
∑
k∈J

p(k)=j

ck(θk) (∗)

Recall (deck 2, slide 32) that (∗) must be used in an order that
calculates θj for successors before θj for predecessors.

Suppose we are processing the j-th arrow, which is degenerate.



Directions of Recession and Constancy (cont.)

cj(θj) = bjθj

θj = ϕj +
∑
k∈J

p(k)=j

ck(θk)

θp(j) = ϕp(j) +
∑
m∈J

p(m)=p(j)

cm(θm)

= ϕp(j) + cj(θj) +
∑
m∈J

p(m)=p(j)
m 6=j

cm(θm)

= ϕp(j) + bj

ϕj +
∑
k∈J

p(k)=j

ck(θk)

 +
∑
m∈J

p(m)=p(j)
m 6=j

cm(θm)



Directions of Recession and Constancy (cont.)

θp(j) = ϕp(j) + bjϕj + bj
∑
k∈J

p(k)=j

ck(θk) +
∑
m∈J

p(m)=p(j)
m 6=j

cm(θm)

For all of the distributions we have mentioned in the course bj will
be either zero or one.

Bernoulli and Poisson have lower bound zero.

Bernoulli has upper bound one.

Zero-truncated Poisson has lower bound one.

If we are only dealing with these kinds of arrows then we always
have bj = 0 or bj = 1 in the formula.



Directions of Recession and Constancy (cont.)

If bj = 0, that is, we are conditioning on Yj = 0, this essentially
eliminates the j-th node and all of its successors, successors of
successors, etc. from the model (we know they are all zero), and
the formula on the preceding slide becomes

θp(j) = ϕp(j) +
∑
m∈J

p(m)=p(j)
m 6=j

cm(θm)

just what we have when we set up the aster model with the j-th
node and all of its successors, successors of successors, etc.
eliminated.



Directions of Recession and Constancy (cont.)

If bj = 1, that is, we are conditioning on Yj = Yp(j), this essentially
fuses Yj and Yp(j) into one variable, and the formula from two
slides ago becomes

θp(j) = ϕp(j) + ϕj +
∑
k∈J

p(k)=jorp(k)=p(j)

ck(θk)

This is just the formula we get if we fuse the j-th and p(j)-th
nodes of the original model, hanging all of the successors of either
j or p(j) off of the fused node.

The canonical parameter for this fused node is ϕp(j) + ϕj so the
sum of the “regression equations” for each of the nodes that are
fused applies to the fused node.



Directions of Recession and Constancy (cont.)

In either case (bj = 0 or bj = 1) this gives us a recipe for setting
up an aster model which does have a maximum likelihood estimate
and for which we can do inference.

But a bunch of issues remain. This tells us how to do inference for
the LCM but we don’t believe the MLE is the truth (β̂ is not β).

So we don’t believe the canonical parameter goes all the way to
infinity and we don’t believe the mean value parameter goes all the
way to the boundary of the convex support.

Geyer (2009) describes how to do one-sided confidence intervals
that address this issue, but the R package aster does not
implement them and the R package aster2 does not implement
them yet.



Directions of Recession and Constancy (cont.)

The best we can do for now, and what everyone has done
whenever this issue has arisen (whenever an actual direction of
recession that was not a direction of constancy was discovered) is
“fix up” the data by either deleting some nodes of the graph or
fusing some nodes of the graph, thus forming the limiting
conditional model (although users weren’t always aware of that
description of what they were doing).

Then we just analyze the “fixed up” data.



Example

Several real examples of directions of recession that are not
directions of constancy have arisen in real data. But because the
aster package does not handle them correctly, they have been
treated as something of an embarrassment and only the “fixed up”
data has been publicly analyzed.

The only published data that has directions of recession (as
originally analyzed) is the aphid data that Shaw et al. (American
Naturalist, 2008) to show how to do population growth rate
reanalysis (and we redid but with a different submodel that doesn’t
have directions of recession in Deck 4).



Example (cont.)

Rather than redo aphids, we will use some toy data.

> d<-"http://www.stat.umn.edu/geyer/8931aster/foobar.rda"

> load(url(d))

> rm(d)

> ls()

[1] "fam" "pred" "redata" "vars"



Example (cont.)

> vars

[1] "surv" "has.flowers" "flowers"

[4] "seeds"

> pred

[1] 0 1 2 3

> fam

[1] 1 1 3 2

> sapply(redata, class)

trt blk varb resp id

"factor" "factor" "factor" "numeric" "integer"

root fit

"numeric" "numeric"



Example (cont.)

Everything is much the same as we expect for a long format aster
dataset. The variables varb, resp, id, root, and fit are as usual
with the latter being the indicator of “fitness” nodes, which are in
this case the terminal nodes, the "seeds" ones.

The two categorical predictors

> levels(redata$trt)

[1] "a" "b" "c"

> levels(redata$blk)

[1] "A" "B" "C" "D"



Example (cont.)

> library(aster)

> aout <- aster(resp ~ varb + fit : (trt * blk), pred, fam, varb,

+ id, root, data = redata)

> try(summary(aout))

apparent null eigenvectors of information matrix

directions of recession or constancy of log likelihood

[1] 0.0000000 0.0000000 0.0000000 0.0000000

[5] 0.3162278 0.0000000 -0.3162278 -0.3162278

[9] -0.3162278 0.3162278 0.3162278 0.3162278

[13] 0.3162278 0.3162278 0.3162278

Oops! But in this example, we expect that!



Example (cont.)

> fred <- eigen(aout$fisher, symmetric = TRUE)

> dor <- fred$vectors[ , fred$values == min(fred$values)]

> names(dor) <- names(aout$coefficients)

> dor <- zapsmall(dor / max(dor))

> dor

(Intercept) varbhas.flowers varbseeds

0 0 0

varbsurv fit:trta fit:trtb

0 1 0

fit:blkB fit:blkC fit:blkD

-1 -1 -1

fit:trtb:blkB fit:trtc:blkB fit:trtb:blkC

1 1 1

fit:trtc:blkC fit:trtb:blkD fit:trtc:blkD

1 1 1



Example (cont.)

Because there are so many nonzero components, this is very
confusing.

But the fact that we can multiply the putative direction of
recession by a scalar and get all the components to be small
integers means this is almost certainly a true direction of recession.

> modmat <- aout$modmat

> dim(modmat)

[1] 300 4 15

> modmat <- as.vector(modmat)

> modmat <- matrix(modmat, ncol = length(dor))

> dor.phi <- modmat %*% dor

> dor.phi <- as.vector(dor.phi)



Example (cont.)

> unique(dor.phi)

[1] 0 1

> sum(dor.phi)

[1] 25

> foo <- data.frame(trt = as.character(redata$trt),

+ blk = as.character(redata$blk), id = redata$id,

+ varb = as.character(redata$varb),

+ resp = redata$resp, stringsAsFactors = FALSE)

> foo <- foo[dor.phi == 1, ]



Example (cont.)

> unique(foo$trt)

[1] "a"

> unique(foo$blk)

[1] "A"

> unique(foo$varb)

[1] "seeds"

> unique(foo$id)

[1] 1 13 25 37 49 61 73 85 97 109 121 133

[13] 145 157 169 181 193 205 217 229 241 253 265 277

[25] 289



Example (cont.)

> unique(foo$resp)

[1] 0

So that’s the story. Every individual in treatment "a" and block
"A" had zero seeds.

What we do about it depends on what the scientific issues are.

If we took out the interaction, we wouldn’t have a direction of
recession.

But perhaps the interaction is the main issue of scientific interest.



Example (cont.)

If we collapsed some blocks, putting block "A" together with some
other one, or if we collapsed some treatments, putting treatment
"a" together with some other one, we wouldn’t have a direction of
recession.

But perhaps the changing the treatments or the blocks is also
unacceptable scientifically.



Example (cont.)

We could just delete all individuals in treatment "a" and block "A"

had zero seeds. They had zero observed fitness.

We just say that without doing any statistics about them.

We fit the aster model and do statistics about the rest.

This has the drawback that the deleted individuals do not
contribute to the estimation of survival and number of flowers
(which is, strictly speaking, wrong).



Example (cont.)

If all of these easy solutions to the problem are considered
scientifically unacceptable, then the analysis becomes hard.

The R package aster insists that every individual have the same
graph.

But we want individuals in treatment "a" and block "A" to have a
different graph (with only three nodes not four, no "seeds").

But the R package aster does not care what you call an individual.
We can, if we like, treat the whole dataset as one individual.

This makes the graph a lot harder to specify.



Example (cont.)

> outies <- dor.phi == 1

> subdata <- redata[! outies, ]

We have now destroyed the structure of the aster model and must
construct it anew.

> id <- subdata$id

This saves what the real individual numbers were.

> subdata$id <- 1

There is now just one individual. What is its graph?



Example (cont.)

> idx <- seq(1, nrow(subdata))

> varb <- as.character(subdata$varb)

> pred <- rep(NA, length(idx))

> fam <- rep(NA, length(idx))

> pred[varb == "surv"] <- 0

> fam[varb == "surv"] <- 1

> head(idx[varb == "surv"])

[1] 1 2 3 4 5 6

> head(idx[varb == "has.flowers"])

[1] 301 302 303 304 305 306



Example (cont.)

> sum(varb == "surv") == sum(varb == "has.flowers")

[1] TRUE

> pred[varb == "has.flowers"] <- idx[varb == "surv"]

> fam[varb == "has.flowers"] <- 1

> sum(varb == "has.flowers") == sum(varb == "flowers")

[1] TRUE

> pred[varb == "flowers"] <- idx[varb == "has.flowers"]

> fam[varb == "flowers"] <- 3



Example (cont.)

Now we get to the tricky bit (as if that wasn’t tricky enough
already).

> sum(varb == "flowers") == sum(varb == "seeds")

[1] FALSE

> bar <- match(id[varb == "seeds"], id[varb == "flowers"])

> pred[varb == "seeds"] <- idx[varb == "flowers"][bar]

> fam[varb == "seeds"] <- 2



Example (cont.)

Are we ready? No.

aout.sub <- aster(resp ~ varb + fit : (trt * blk),

pred, fam, varb, id, root, data = subdata)

gives an error. It seems that the R function aster figures out the
number of nodes from the unique elements of varb. So we have to
make a correct varb.

> subvarb <- paste(as.character(subdata$varb), id,

+ sep = "")

> subdata <- data.frame(subdata, subvarb = subvarb)



Example (cont.)

Are we ready?

> aout.sub <- aster(resp ~ varb + fit : (trt * blk),

+ pred, fam, subvarb, id, root, data = subdata)

> summary(aout.sub)

Call:

aster.formula(formula = resp ~ varb + fit:(trt * blk), pred = pred,

fam = fam, varvar = subvarb, idvar = id, root = root, data = subdata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.64088 0.05383 11.906 < 2e-16

varbhas.flowers -3.35703 0.25605 -13.111 < 2e-16

varbseeds -0.02653 0.08143 -0.326 0.7446

varbsurv 0.23836 0.21093 1.130 0.2585

fit:trta -0.17879 0.04409 -4.055 5.02e-05

fit:trtb -0.04734 0.05481 -0.864 0.3877

fit:blkB 0.12805 0.07027 1.822 0.0684

fit:blkC 0.21500 0.06639 3.238 0.0012

fit:blkD 0.20003 0.04569 4.378 1.20e-05

fit:trtb:blkB -0.05711 0.08816 -0.648 0.5171

fit:trtc:blkB -0.02956 0.06696 -0.442 0.6588

fit:trtb:blkC -0.10005 0.08363 -1.196 0.2316

fit:trtc:blkC -0.11651 0.06252 -1.864 0.0624

fit:trtb:blkD -0.01389 0.06693 -0.208 0.8356

(Intercept) ***

varbhas.flowers ***

varbseeds

varbsurv

fit:trta ***

fit:trtb

fit:blkB .

fit:blkC **

fit:blkD ***

fit:trtb:blkB

fit:trtc:blkB

fit:trtb:blkC

fit:trtc:blkC .

fit:trtb:blkD

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)

fit:trtc

fit:trtc:blkD



Example (cont.)

> summary(aout.sub)

Call:

aster.formula(formula = resp ~ varb + fit:(trt * blk), pred = pred,

fam = fam, varvar = subvarb, idvar = id, root = root, data = subdata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.64088 0.05383 11.906 < 2e-16 ***

varbhas.flowers -3.35703 0.25605 -13.111 < 2e-16 ***

varbseeds -0.02653 0.08143 -0.326 0.7446

varbsurv 0.23836 0.21093 1.130 0.2585

fit:trta -0.17879 0.04409 -4.055 5.02e-05 ***

fit:trtb -0.04734 0.05481 -0.864 0.3877

fit:blkB 0.12805 0.07027 1.822 0.0684 .

fit:blkC 0.21500 0.06639 3.238 0.0012 **

fit:blkD 0.20003 0.04569 4.378 1.20e-05 ***

fit:trtb:blkB -0.05711 0.08816 -0.648 0.5171

fit:trtc:blkB -0.02956 0.06696 -0.442 0.6588

fit:trtb:blkC -0.10005 0.08363 -1.196 0.2316

fit:trtc:blkC -0.11651 0.06252 -1.864 0.0624 .

fit:trtb:blkD -0.01389 0.06693 -0.208 0.8356

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)

fit:trtc

fit:trtc:blkD



Example (cont.)

Check.

> mu <- predict(aout)

> mu.sub <- predict(aout.sub)

> all.equal(mu[outies], rep(0, sum(outies)))

[1] TRUE

> all.equal(mu[! outies], mu.sub)

[1] "Mean relative difference: 0.00462172"

Despite the not exact equality, it seems to be close enough to be a
check. The aster function does not need to drive β all the way to
infinity to claim convergence and quit iterating.



Summary

Was the example too simple or too complicated?

Too simple to show all the issues that arise.

More complicated than many users want to deal with or try to
explain in a paper.

That is why we suggested 4 solutions to our toy problem.
Sometimes changing the model or just eliminating some individuals
from the data is the best way to go. Much easier to explain.



Summary (cont.)

So when you get the dreaded warning about directions of recession

it may be a false positive that futzing with info.tol may
reveal, or

it may be a true positive that you have to actually deal with:
identify the cause (what data is at what bound) and

change the submodel (one can always get rid of a direction of
recession by fitting a simpler model with fewer parameters) or
change the data (there is always an LCM and one can always
fit it by doing enough work)

so that cause is eliminated.



Summary (cont.)

Either kind of solution, change the model or change the data,
requires academic weasel wording in the write up.

Changing the model may be wrong because a simpler model that
does not have a direction of recession

does not fit the data as well (as shown by hypothesis tests) or

does not address the issues of scientific interest.

Changing the data to the LCM is wrong because the LCM does
not describe how close the canonical parameters of the original
model are to infinity or how close the mean value parameters of
the original model are to the boundary of the convex support.

In short, analysis of the LCM tells you anything statistics can tell
you about the LCM. What it doesn’t tell you is how close the true
unknown mean values of the data the LCM fixes at the boundary
are to really being at the boundary.



Other Issues

If you do a likelihood ratio test (with anova.asterOrReaster)
and the smaller model has no directions of recession, the test is
valid (regardless of whether the larger model has directions of
recession). Geyer (2009, Section 3.15) explains.

If you do a likelihood ratio test (with anova.asterOrReaster)
and the smaller model has directions of recession, the test is
invalid. The likelihood ratio test statistic is approximately
chi-squared but the degrees of freedom needs to be calculated
differently.

If you do a likelihood ratio test (with anova.asterOrReaster)
applied the the LCM (constructed as we did in the example) so the
null hypothesis applied to the LCM data has no directions of
recession, the test is valid.



Other Issues (cont.)

Confidence intervals (Geyer, 2009, Section 3.16) are even more
complicated.

The only principle that is simple to understand is (repeating what
was said earlier) statistical analysis of the LCM

does give valid inference about the parameters of the LCM,

does not give valid inference (or any inference) about the
parameters of the original model that are gone in the LCM.

What are those parameters that are “gone”? Easiest to see for
conditional mean value parameters: those for the arrows that have
been removed or fused. Hard to see for canonical parameters
because they are all mixed up. Some directions in the canonical
parameter space (the directions of constancy of the LCM) are
“gone” in the LCM.



One-Sided Confidence Intervals

Here is a simple idea from Geyer (2009) that is the basis of all the
one-sided confidence intervals proposed therein.

Suppose we have binomial data and we want to test

H0 : p = p0

H1 : p < p0

that is, a simple lower-tailed test.

The obvious P-value is

prp0(X ≤ x),

where x is the observed value of the binomial data and X is a
random variable having the null distribution of the test statistic,
which here is Binomial(n, p0).

So far, standard elementary statistics.



One-Sided Confidence Intervals (cont.)

Now we want to invert the level α one-tailed hypothesis test to
make a one-sided 1− α confidence interval.

The interval is all of the p0 that the test does not reject at level α,
and the test rejects H0 : p = p0 at level α when P ≤ α, that is,
when

prp0(X ≤ x) ≤ α

so the corresponding confidence interval is

{ p ∈ [0, 1] : prp(X ≤ x) ≥ α }



One-Sided Confidence Intervals (cont.)

Now specialize to the case where we observe x = 0. The one-sided
1− α confidence interval is

{ p ∈ [0, 1] : prp(X = 0) ≥ α }

that is, we need p such that

(1− p)n ≥ α

and that interval is
0 ≤ p ≤ 1− α1/n



One-Sided Confidence Intervals (cont.)

Similar logic works for any discrete distribution. For Poisson, when
we observe x = 0, the interval is

{µ ∈ [0,∞) : prµ(X = 0) ≥ α }

that is, we need µ such that

e−nµ ≥ α

and that interval is

0 ≤ µ ≤ − log(α)

n

(this is for observing n IID Poisson(µ) individuals).



Example (cont.)

In our example we had

> idout <- redata$id[outies]

> rowout <- redata$id %in% idout

> varbflowers <- as.character(redata$varb) == "flowers"

> nzero <- sum(redata$resp[rowout & varbflowers])

> nzero

[1] 38

flowers observed in the class (treatment "a" and block "A") in
which zero seeds were observed.

Thus we have predecessor nzero and successor zero for a Poisson
arrow.



Example (cont.)

We want to make a one-sided interval for the conditional mean (ξj
not µj) number of seeds in this class in which zero seeds were
observed. Thus nzero is the n for this procedure.

We assumed seed count was (conditionally) Poisson. Thus the
corresponding one-sided confidence interval is

> conf.level <- 0.95

> alpha <- 1 - conf.level

> c(0, - log(alpha) / nzero)

[1] 0.00000000 0.07883506



One-Sided Confidence Intervals (cont.)

So this is in one sense the usual story. In this class we have ξ̂ = 0
but we don’t make the elementary mistake of confusing the sample
and the population, of confusing ξ̂ and ξ.

Our one-sided 95% confidence interval (0, 0.08) is not taught in
intro stats, but is not rocket science.



One-Sided Confidence Intervals (cont.)

But any further analysis becomes very complicated very fast, and
we have not thought of any way to make it simple (there may be
no way to make it simple).



Example (cont.)

> iout <- redata$id[outies]

> mu.sub.too <- predict(aout.sub, se.fit = TRUE)

> fred <- id %in% iout & subdata$varb %in% "flowers"

> mu.hat <- unique(mu.sub.too$fit[fred])

> se.mu.hat <- unique(mu.sub.too$se.fit[fred])

> mu.hat

[1] 0.2379846

> se.mu.hat

[1] 0.04222433



Example (cont.)

So that gives us a 95% asymptotic confidence interval for flower
count in this class

> zcrit <- qnorm((1 + conf.level) / 2)

> mu.hat + c(-1, 1) * zcrit * se.mu.hat

[1] 0.1552265 0.3207428

We know
µj = ξjµp(j)

(deck 2, slide 74) and now we have confidence intervals for ξj and
µp(j). Can we put them together?



Example (cont.)

With a little thought it becomes clear that we want to combine
two one-sided intervals (no point in combining a one-sided and a
two-sided).

> zcrit <- qnorm(conf.level)

> u1 <- - log(alpha) / nzero

> u2 <- mu.hat + zcrit * se.mu.hat

> c(0, u1)

[1] 0.00000000 0.07883506

> c(0, u2)

[1] 0.0000000 0.3074375

> c(0, u1 * u2)

[1] 0.00000000 0.02423685



One-Sided Confidence Intervals (cont.)

Since the intervals we combined did not have simultaneous
coverage, we only get a 90% confidence interval (this is Bonferroni
correction: add the alphas not the confidence levels).



Summary (cont.)

All of this can become arbitrarily complicated in an aster model
with a complicated graph and several arrows being conditioned on
in the LCM.

We do not have functions to deal with this, mainly because it is
not clear what users will want in complicated situations.

Honesty compells me to add that I do not know what happens in
all complicated situations. Geyer (2009) has a complete analysis of
what can happen in GLM and log-linear models for categorical
data. No such complete analysis has been done for aster models
(for all possible canonical affine submodels, what are all possible
LCM). So each new rigorous analysis may bring surprises. I didn’t
know how the example done in this deck of slides would work until
I worked through it.


