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Conditional Aster Models

A conditional aster model is a submodel parameterized

θ = a + Mβ

An unconditional aster model is a submodel parameterized

ϕ = a + Mβ

There is a subtle but profound difference.



Conditional Aster Models (cont.)

Both are exponential families, but

An unconditional aster model is a regular full exponential
family.

A conditional aster model is a curved exponential family.

Curved exponential families have some nice properties (asymptotics
always work for sufficiently large sample sizes), but none of the
nice properties we talked about for unconditional aster models.



Conditional Aster Models (cont.)

Review. Unconditional aster models have

concave log likelihood,

MLE unique if they exist,

MLE characterized by “observed = expected”,

observed and expected Fisher information the same,

submodel canonical statistic is sufficient,

maximum entropy property,

multivariate monotone relationship between canonical and
mean value parameters.

Curved exponential families don’t, in general, have any of these
properties.



Conditional Aster Models (cont.)

Conditional aster models have two of these

concave log likelihood,

MLE unique if they exist.



Conditional Aster Models (cont.)

The log likelihood is (from deck 2)

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
= 〈y , θ〉 −

∑
j∈J

yp(j)cj(θj)

and the conditional canonical affine submodel is

l(β) = 〈MT y , β〉 −
∑
j∈J

yp(j)cj(θj)



Conditional Aster Models (cont.)

l(β) = 〈MT y , β〉 −
∑
j∈J

yp(j)cj(θj)

We see we get almost no sufficient dimension reduction.

The likelihood is a function of MT y and the set of all predecessors.
That typically is not a dimension reduction at all (when the
dimension of MT y is more than the number of terminal nodes).



Conditional Aster Models (cont.)

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

Each term in square brackets is strictly concave.

The sum of strictly concave functions is strictly concave.

The composition of a strictly concave function and an affine
function is strictly concave.

Hence the log likelihood for a conditional canonical affine
submodel is strictly concave. Hence the MLE is unique if it exists.



Conditional Aster Models (cont.)

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

The observed Fisher information matrix for θ for a saturated aster
model is

Jsat(θ) = −∇2l(θ)

is a diagonal matrix whose j , j component is

yp(j)c
′′
j (θj)

where the double prime indicates ordinary second derivative.



Conditional Aster Models (cont.)

The expected Fisher information matrix for θ, denoted Isat(θ), is
the expectation of the observed Fisher information matrix.

So it too is diagonal, and its i , i component is

µp(j)c
′′
j (θj)



Conditional Aster Models (cont.)

Then conditional canonical affine submodel observed and expected
Fisher information matrices are

J(β) = MTJsat(a + Mβ)M

I (β) = MT Isat(a + Mβ)M



Conditional Aster Models (cont.)

The maximum entropy argument only works for full exponential
families, not for curved exponential families.



Conditional Aster Models (cont.)

We do have the saturated model multivariate monotone
relationships µ←→ ϕ and ξ ←→ θ.

But that doesn’t tell us anything about canonical affine submodels.



Conditional Aster Models (cont.)

Unconditional canonical affine submodels have the property that
changing ϕj changes θk for all k � j .

Conditional canonical affine submodels do not have this property.
Changing θj only changes θj .

Thus conditional canonical affine submodels tend to need many
more parameters to fit adequately.



Conditional Aster Models (cont.)

So if conditional canonical affine submodels don’t have any nice
properties, why do they even exist?

One reason is just because they do exist as abstract mathematical
objects, and they weren’t that much extra code to implement, and
— who knows? — maybe they will find an important use someday.

Just because they exist does not mean we actually recommend
them for anything.



Conditional Aster Models (cont.)

One issue that would be a good reason to use conditional aster
models is if you do not want the property that changing ϕj

changes θk for all k � j .

For example, you might require that the conditional expectation of
survival given survival to the previous year be the same for all years.

An unconditional aster model wouldn’t do that, but a conditional
aster model could.


