
Stat 8931 (Aster Models)
Lecture Slides Deck 7

Charles J. Geyer

School of Statistics
University of Minnesota

June 7, 2015

Simulation

What cannot be done by theory can be done by brute force and
ignorance.

If you can simulate a probability model, then you can calculate
(approximately) any probability or expectation with respect to that
model by simulating the model and averaging over simulations.

The central limit theorem guarantees that eventually the error of
the approximation is about σ/

√
n, where σ is the standard

deviation of random variable whose expectation is being
approximated and n is the number of simulations.

Simulation (cont.)

More precisely, suppose we are trying to calculate

ψ = E{g(X)} =

∫
g(x)f (x) dx

where f is the PDF of X (or the same with the integral replaced by
a sum if X is discrete).

Suppose X1, X2, . . . are IID simulations from the distribution of X .

Then

ψ̂n =
1

n

n∑
i=1

g(Xi)

is the obvious approximation of ψ based on these simulations.

Simulation (cont.)

ψ̂n =
1

n

n∑
i=1

g(Xi)

And

σ̂2n =
1

n

n∑
i=1

[
g(Xi)− ψ̂n

]2
is the obvious approximation of σ based on these simulations.

And the central limit theorem and Slutsky’s theorem say

ψ̂n − ψ
σ̂n/
√
n

is approximately standard normal for large n.

Simulation (cont.)

This may look a little weird, but is straight out of intro stats.
Define

Y = g(X)

and
Yi = g(Xi), i = 1, 2, . . .

then

ψ = E (Y) is the population mean of the distribution of Y ,

ψ̂n = Yn is the sample mean of the Y ’s, and

σ̂n is the sample standard deviation of the Y ’s.

Relevant and Irrelevant Simulation

The “relevant” and “irrelevant” are my own eccentric way of talking
about this subject. No one else says this.

There are two kinds of simulation that statisticians and other
scientists do.

One kind — usually called just simulation — uses some toy model
having no relevance to any particular application. The idea is that
one can transfer conclusions for the toy model to real applications,
but this is very questionable because the toy model will differ in
many respects from the models used in real applications.

How can we know whether the toy models were chosen
(consciously or unconsciously) specifically to make the author’s
methods look good? We can’t.

I call this irrelevant simulation. But many authors like it. Most
statistical papers have such. Many scientific papers have such.

Relevant and Irrelevant Simulation (cont.)

The other kind — usually called the bootstrap — uses the actual
model from the actual application, which means that every user
has to do their own “simulation study”.

That is annoying, because it makes work for every user. We don’t
just have the simulation done once and for all by the original
authors (on toy models, hence irrelevant).

But the real model from the real application is a family of
probability distributions and we don’t know the true unknown
parameter value, so we don’t actually know the precisely correct
probability distribution to simulate from.

So we use our best guess (point estimate) of the true unknown
parameter value to simulate from.

The Bootstrap

So the term bootstrap implies two ideas.

We calculate by simulation rather than theory.

We simulate from our best guess about the true unknown
distribution of the data.

The bootstrap then divides into two large categories

The nonparametric bootstrap assumes the data are
independent and identically distributed and simulates from the
empirical distribution P̂n of the data.

The parametric bootstrap assumes the data follow a
parametric model and simulates from the distribution indexed
by our estimate ψ̂n of the true unknown parameter ψ.

The Bootstrap (cont.)

Both kinds of bootstrap do close to but not exactly the right thing.

The empirical distribution P̂n is not the true unknown distribution
of the data P.

The estimated distribution Pψ̂n
is not the true unknown

distribution Pψ of the data.

But the estimates will be close for large sample size n.

The bootstrap is not (contrary to widespread popular opinion) an
exact, small-sample methodology.

The Nonparametric Bootstrap

Many people, having heard about the nonparametric bootstrap,
want to use that.

It’s gotta be better. It’s nonparametric! It doesn’t depend on any
model assumptions!

But the nonparametric bootstrap comes with many issues the
parametric bootstrap doesn’t have.

It doesn’t do hypothesis tests (at least not easily).

It doesn’t do regression models (at least not easily).

If the estimators being bootstrapped are based on a
parametric model — MLE for example — then they have no
nonparametric interpretation anyway.

Nonparametric Bootstrap and Hypothesis Tests

In a test of statistical hypotheses, the P-value is based on
simulation under the null hypothesis.

The empirical distribution estimates the true unknown distribution
of the data, which is not in the null hypothesis when the null
hypothesis is false.

Hence naive use of the nonparametric bootstrap for hypothesis
tests (simulate from the empirical distribution, calculate the test
statistic for both the real data and the simulations, take the
P-value to be the fraction of simulated values of the test statistic
that exceed the value for the real data) is completely bogus. This
gives a test with the correct level but no power.

Nonparametric Bootstrap and Hypothesis Tests (cont.)

There are two correct ideas of how to do hypothesis tests with the
nonparametric bootstrap.

Sometimes, in simple situations, one can cook up a nonparametric
estimate (not the empirical distribution) of a distribution in the
null hypothesis. Already we have left the straightforward
nonparametric bootstrap. We need to use a tricky modified
nonparametric bootstrap with a different trick for every application
(and for most complicated applications — such as aster models —
there will be no such tricks).

If the test is about a single parameter of interest one can always
do a bootstrap confidence interval and then base a test on that
(reject H0 : ψ = ψ0 at level α if a 1− α confidence interval does
not contain ψ0).

Nonparametric Bootstrap and Regression

In a regression model we observe pairs

(xi , yi), i = 1, 2, . . .

where xi (a vector) is the predictor and yi (a scalar) is the
response.

There are two distributions of interest.

The joint distribution of the (xi , yi) which are assumed IID.

The conditional distribution of yi given xi which is different
for each xi .

In regression situations we are usually interested in the latter.

Nonparametric Bootstrap and Regression (cont.)

This leads to two ideas about how to bootstrap regression.

If one is interested in studying the joint distribution, bootstrap
cases. That is, simulate from the joint empirical distribution of the
(xi , yi) pairs.

This simulates the joint distribution and cannot draw inference
about the conditional distribution.

Nonparametric Bootstrap and Regression (cont.)

If one is interested in studying the conditional distribution,
bootstrap residuals. This needs more structure. Assume

yi = g(xi) + ei , i = 1, . . . , n (∗)

where g is an arbitrary function (the regression function) and the
ei are IID mean-zero (but not necessarily normal). Let ĝ denote
the estimator of the regression function (perhaps a nonparametric
estimate from some “smoothing” method). Define the residuals

êi = yi − ĝ(xi), i = 1, . . . , n

The residuals êi are not the errors ei , they are only estimates of
them. The residuals are not IID even though the errors are.

Nonparametric Bootstrap and Regression (cont.)

yi = g(xi) + ei , i = 1, . . . , n (∗)

Nevertheless, the method of bootstrapping residuals treats the
residuals as IID and simulates new errors e∗i from the empirical
distribution of the residuals and forms bootstrap data

y∗i = ĝ(xi) + e∗i , i = 1, . . . , n

Nonparametric Bootstrap and Regression (cont.)

yi = g(xi) + ei , i = 1, . . . , n (∗)

Bootstrapping residuals has a lot of issues

If the method of estimating ĝ is parametric, then it isn’t
completely nonparametric.

In GLM and aster models and other complicated parametric
regression models there are no IID errors like in (∗) so the
method has nowhere to start.

Nevertheless bootstrapping residuals is the only available method
for inference about the conditional distribution of the response
given the predictor, which is usually what is wanted.

The Parametric Bootstrap

For all these reasons we only recommend the parametric bootstrap
for aster models.

The parametric bootstrap has none of the problems of the
nonparametric bootstrap.

No problem with hypothesis tests (simulate from the MLE for
the null hypothesis).

No problem with regression (simulate from the MLE for the
regression model).

It is more accurate than the nonparametric bootstrap when
the statistical model is correct.

Its only issue is when the statistical model is wrong. But then you
have more worries since all your estimators are wrong too. The
nonparametric bootstrap couldn’t fix that even if it didn’t have all
the problems discussed above.

Example One Re-revisited

We revisit example one yet again. We fit this model

> aout <- aster(resp ~ varb + layer : (nsloc + ewloc) +

+ fit : pop, pred, fam, varb, id, root, data = redata)

and then did prediction like this

> pout.amat <- predict(aout, newdata = renewdata,

+ varvar = varb, idvar = id, root = root,

+ se.fit = TRUE, amat = amat)

Example One Re-revisited (cont.)

And got this table.

> foo <- cbind(pout.amat$fit, pout.amat$se.fit)

> rownames(foo) <- as.character(fred$pop)

> colnames(foo) <- c("estimates", "std. err.")

> round(foo, 3)

estimates std. err.

AA 2.376 0.446

Eriley 1.502 0.196

Lf 1.566 0.249

Nessman 1.064 0.309

NWLF 1.800 0.182

SPP 2.499 0.289

Stevens 1.706 0.222

Now we want to parametric bootstrap these confidence intervals.

Example One Re-revisited (cont.)

We follow the aster package vignette tutor.pdf.

The R function that simulates aster models is called raster. It
wants the model specified by conditional canonical parameters
(more PBD) and it wants θ as a matrix rather than as a vector
(more PBD).

> theta.hat <- predict(aout, model.type = "cond",

+ parm.type = "canon")

> theta.hat <- matrix(theta.hat, nrow = nrow(aout$x),

+ ncol = ncol(aout$x))

Example One Re-revisited (cont.)

We also need data for initial nodes

> root <- matrix(1, nrow = nrow(theta.hat),

+ ncol = ncol(theta.hat))

and now we can simulate data like this

> resp.star <- raster(theta.hat, pred, fam, root)

Example One Re-revisited (cont.)

It turns out to be simpler and faster if we fit aster models to the
simulated data not using formulas (using the function
aster.default). For this we need a model matrix, and also (just
for efficiency) we record the estimate of the regression coefficients
to use as a starting point for the aster fitting optimization.

> modmat <- aout$modmat

> beta.hat <- aout$coefficients

and then we fit the aster model to the simulated data as follows

> aout.star <- aster(resp.star, root, pred, fam, modmat,

+ beta.hat)

Example One Re-revisited (cont.)

Now to make our “predictions” (estimate expected fitness). We
also don’t use formulas (cannot, since we didn’t in fitting). And for
this we need some more stuff.

> modmat.pred <- pout.amat$modmat

> root.pred <- matrix(1, nrow = dim(modmat.pred)[1],

+ ncol = dim(modmat.pred)[2])

> resp.pred <- root.pred

Now predict

> pout.amat.star <- predict(aout.star, resp.pred,

+ root.pred, modmat.pred, amat, se.fit = TRUE)

(We do not actually need resp.pred — it is ignored — but there
is such an argument, so we supply it.)

Example One Re-revisited (cont.)

So that is the pattern, with the setup we have

> resp.star <- raster(theta.hat, pred, fam, root)

> aout.star <- aster(resp.star, root, pred, fam, modmat,

+ beta.hat)

> pout.amat.star <- predict(aout.star, resp.pred,

+ root.pred, modmat.pred, amat, se.fit = TRUE)

simulates new data from the model, fits the MLE for the new data,
and “predicts” expected fitness for the seven populations.

All that remains is to wrap this in a loop.

Example One Re-revisited (cont.)

To make the simulation repeatable we set the seeds of the random
number generator

> set.seed(42)

If this statement is removed, we get different results every time
this file is run.

Example One Re-revisited (cont.)

> nboot <- 200

> npop <- length(pout.amat$fit)

> woof <- suppressWarnings(try(load("boot1.rda"),

+ silent = TRUE))

> if (inherits(woof, "try-error")) {

+ mu.star <- matrix(NA, nboot, npop)

+ mu.se.star <- matrix(NA, nboot, npop)

+ for (iboot in 1:nboot) {

+ resp.star <- raster(theta.hat, pred, fam, root)

+ aout.star <- aster(resp.star, root, pred, fam,

+ modmat, beta.hat)

+ pout.amat.star <- predict(aout.star, resp.pred,

+ root.pred, modmat.pred, amat, se.fit = TRUE)

+ mu.star[iboot,] <- pout.amat.star$fit

+ mu.se.star[iboot,] <- pout.amat.star$se.fit

+ }

+ save(mu.star, mu.se.star, file = "boot1.rda")

+ }

Example One Re-revisited (cont.)

That was either the hard part or the easy part (not sure which).

Bootstrapping is unfamiliar and time consuming, but we just
followed the vignette.

All that is left is turning the bootstrap samples into confidence
intervals. The computations are trivial but the theory is hard.

Many, many methods of doing bootstrap confidence intervals have
been proposed. Most are for the nonparametric bootstrap.

But the same principles apply to the parametric bootstrap.

We illustrate just two

bootstrap percentile intervals

bootstrap t intervals

Bootstrap Percentile Intervals

These intervals are very simple to do (their theory is complicated).

If we have bootstrap estimators θ∗1, . . ., θ∗nboot the interval between
the α/2 and 1− α/2 sample quantiles is the 100(1− α)%
bootstrap percentile interval.

conf.level <- 0.95

probs <- (1 + c(-1, 1) * conf.level) / 2

quantile(theta.star, probs = probs)

Easy to do, but

Bootstrap Percentile Intervals (cont.)

Bootstrap percentile intervals were invented by Brad Efron, who is
also the inventor of the bootstrap.

Peter Hall, who besides Brad Efron is perhaps the next most
famous authority about the bootstrap, has said doing percentile
intervals is like “looking up [in] the wrong statistical tables
backwards.”

Here’s what he is talking about. Suppose the bootstrap
distribution is highly skewed with heavy left tail. That is, θ∗ is less
than θ̂, sometimes a lot less, with high probability.

The bootstrap analogy suggests that θ̂ is less than θ (the true
unknown parameter value), sometimes a lot less, with high
probability.

To correct for this our confidence interval should be skewed in the
other direction: longer to the right of θ̂ than to the left.

Bootstrap Percentile Intervals (cont.)

Efron is not stupid. There is an argument for percentile intervals.

Suppose there is a monotone, symmetrizing, and variance
stabilizing transformation g , that is,

ψ̂ = g(θ̂)

is symmetrically distributed, centered at ψ = g(θ), and the
variance of ψ̂ does not depend on ψ.

Then, because of the symmetry and variance stabilizing
assumptions, the percentile interval for ψ makes sense.

But, because the transformation is monotone, the interval for ψ
can be mapped to an interval for θ, which is the percentile interval.

Bootstrap Percentile Intervals (cont.)

The argument is a bit weird. The monotone, symmetrizing, and
variance stabilizing transformation, just needs to exist.

We do not need to know what it is or use it in any way.

If it exists, then the percentile interval for θ does the right thing. If
no such transformation exists, the percentile interval does the
wrong thing.

Bootstrap Percentile Intervals (cont.)

But even if it is the right thing, it is not second order correct (like
some other bootstrap intervals, including bootstrap t intervals).

To repeat, the bootstrap is not an exact small-sample procedure.
So these confidence intervals cannot be exact.

The coverage probability is something like

1− α + O(n−1/2)

called first order correct. Better intervals have coverage
probability

1− α + O(n−1)

called second order correct.

First order correct is only as good as the “usual asymptotics of
maximum likelihood”. Second order correct is better.

Bootstrap t Intervals

In contrast to the weird bootstrap percentile intervals, the
bootstrap t intervals are very familiar. The work just like Student t
confidence intervals except we replace the Student t distribution
with the bootstrap distribution.

Bootstrap t Intervals (cont.)

Suppose ŝ is an estimator of the standard error of θ̂, and s∗ are the
corresponding bootstrap estimators of standard error (like the ones
we have stored in mu.se.star). Then

z =
θ̂ − θ
ŝ

is approximately standard normal, so

θ̂ ± zα/2ŝ

is an approximate 100(1− α)% confidence interval for θ, where
zα/2 denotes the upper α/2 quantile of the standard normal
distribution.

Bootstrap t Intervals (cont.)

But we want to do better than that. The bootstrap analog

z∗ =
θ∗ − θ̂
s∗

should also be approximately standard normal, but we don’t need
to know that, because we have simulated its whole distribution. Let

z∗α/2 and z∗1−α/2

be the α/2 and 1− α/2 quantiles of the bootstrap distribution of
z∗ (note that these will not be ± something because, unlike the
normal distribution, this bootstrap distribution distribution is not
exactly symmetric about zero).

Bootstrap t Intervals (cont.)

So now we have

z∗α/2 <
θ∗ − θ̂
s∗

< z∗1−α/2

with (approximate) probability 1− α. And by the bootstrap
analogy

z∗α/2 <
θ̂ − θ
ŝ

< z∗1−α/2

Inverting these inequalities gives

θ̂ − z∗1−α/2ŝ < θ < θ̂ − z∗α/2ŝ

(we don’t have ± but typically z∗1−α/2 is plus and z∗α/2 is minus).

Bootstrap t Intervals (cont.)

θ̂ − z∗1−α/2ŝ < θ < θ̂ − z∗α/2ŝ

Bootstrap t intervals do do the right thing when the distribution of
θ̂ is noticeably skewed or biased because the quantiles switched
ends when we inverted the pivotal quantity z to make the
confidence interval.

Example One Re-revisited (cont.)

Bootstrap percentile intervals.

> conf.level <- 0.95

> probs <- (1 + c(-1, 1) * conf.level) / 2

> percentile <- apply(mu.star, 2, quantile,

+ probs = probs)

> percentile <- t(percentile)

Example One Re-revisited (cont.)

> mu.hat <- pout.amat$fit

> mu.se.hat <- pout.amat$se.fit

> z.star <- mu.star

> z.star <- sweep(z.star, 2, mu.hat)

> z.star <- z.star / mu.se.star

> crit <- apply(z.star, 2, quantile,

+ probs = rev(probs))

> crit <- t(crit)

> boott <- sweep(crit, 1, mu.se.hat, "*")

> boott <- sweep(boott, 1, mu.hat)

> boott <- (- boott)

Example One Re-revisited (cont.)

And for comparison we do the usual normal intervals.

> zcrit <- qnorm((1 + conf.level) / 2)

> normint <- cbind(mu.hat - zcrit * mu.se.hat,

+ mu.hat + zcrit * mu.se.hat)

Example One Re-revisited (cont.)

> goo <- cbind(percentile, boott, normint)

> rownames(goo) <- rownames(foo)

> colnames(goo) <- c("pct low", "pct hig",

+ "t low", "t hig", "z low", "z hig")

> round(goo, 2)

pct low pct hig t low t hig z low z hig

AA 1.60 3.25 1.62 3.32 1.50 3.25

Eriley 1.17 1.92 1.14 1.88 1.12 1.89

Lf 1.09 2.04 1.16 2.15 1.08 2.05

Nessman 0.56 1.66 0.58 1.83 0.46 1.67

NWLF 1.49 2.20 1.44 2.15 1.44 2.16

SPP 1.98 3.05 2.00 3.09 1.93 3.07

Stevens 1.33 2.11 1.35 2.14 1.27 2.14

Random Effects

Now we switch from the aster package vignette tutor.pdf to
the aster models with random effects tech report (TR 692).

Everything is much the same except that we need to simulate
random effects (using the function rnorm) as well as the
conditional distribution of the response given the effects (using
raster).

Random Effects (cont.)

Recall that in deck 6 we fit the following model.

> data(radish)

> pred <- c(0,1,2)

> fam <- c(1,3,2)

> rout <- reaster(resp ~ varb + fit : (Site * Region),

+ list(block = ~ 0 + fit : Block,

+ pop = ~ 0 + fit : Pop),

+ pred, fam, varb, id, root, data = radish)

Now we want to parametric bootstrap it.

Random Effects (cont.)

First we store (approximate) maximum likelihood estimates

> names(rout)

[1] "obj" "fixed" "random"

[4] "dropped" "sigma" "nu"

[7] "c" "b" "alpha"

[10] "zwz" "response" "origin"

[13] "iterations" "counts" "deviance"

[16] "formula" "call"

> alpha.hat <- rout$alpha

> sigma.hat <- rout$sigma

> nu.hat <- rout$nu

> b.hat <- rout$b

> c.hat <- rout$c

Random Effects (cont.)

Standard errors are only calculated by the summary.reaster

function, so we look in the object it returns for them

> sout <- summary(rout)

> se.alpha.hat <- sout$alpha[, "Std. Error"]

> se.sigma.hat <- sout$sigma[, "Std. Error"]

> se.nu.hat <- sout$nu[, "Std. Error"]

Random Effects (cont.)

Then we collect all the model matrices into one model matrix.

> fixed <- rout$fixed

> random <- rout$random

> modmat.tot <- cbind(fixed, Reduce(cbind, random))

And we make the matrix Â that is the square root of the variance
matrix of the random effects

> nfix <- ncol(fixed)

> nrand <- sapply(random, ncol)

> a.hat <- rep(sigma.hat, times = nrand)

Actually a.hat is the diagonal of the (diagonal) matrix Â.

Random Effects (cont.)

To simulate new aster data we first need to change from
unconditional canonical parameters to conditional canonical
parameters (because that’s what the R function raster requires).

> c.star <- rnorm(sum(nrand))

> b.star <- a.hat * c.star

> eff.star <- c(alpha.hat, b.star)

> phi.star <- as.numeric(as.vector(routobjorigin) +

+ modmat.tot %*% eff.star)

> theta.star <- astertransform(phi.star, rout$obj,

+ to.cond = "conditional", to.mean = "canonical")

> y.star <- raster(theta.star, pred, fam, routobjroot)

> y.star <- as.vector(y.star)

Random Effects (cont.)

Now we need to redo the above analysis on the new data. We can
take the simulation truth as starting values.

> rout.star <- reaster(y.star ~ varb + fit:(Site * Region),

+ list(block = ~ 0 + fit:Block, pop = ~ 0 + fit:Pop),

+ pred, fam, varb, id, root, data = radish,

+ effects = c(alpha.hat, c.star), sigma = sigma.hat)

> sout.star <- summary(rout.star)

Random Effects (cont.)

> print(sout.star)

Call:

reaster.formula(fixed = y.star ~ varb + fit:(Site * Region),

random = list(block = ~0 + fit:Block, pop = ~0 + fit:Pop),

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = radish, effects = c(alpha.hat, c.star), sigma = sigma.hat)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -465.37507 3.41630 -136.222 <2e-16 ***

varbFlowers 472.27146 3.41732 138.200 <2e-16 ***

varbFruits 464.39994 3.41932 135.817 <2e-16 ***

fit:SitePoint Reyes 0.04351 0.16525 0.263 0.792

fit:RegionS -0.09240 0.09720 -0.951 0.342

fit:SiteRiverside:RegionS 0.50187 0.01262 39.763 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

block 0.26083 0.05863 4.449 4.32e-06 ***

pop 0.11846 0.03604 3.287 0.000507 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Random Effects (cont.)

So that is the pattern. We are now ready to bootstrap. Because
the whole code for the bootstrap won’t fit on a slide, we break it
up into functions. More straightforward coding is shown in TR 692.

> extract <- function(rout) {

+ stopifnot(inherits(rout, "reaster"))

+ sout <- suppressWarnings(summary(rout))

+ c(rout$alpha, rout$sigma, rout$nu,

+ sout.star$alpha[, "Std. Error"],

+ sout.star$sigma[, "Std. Error"],

+ sout.star$nu[, "Std. Error"])

+ }

> e <- extract(rout.star)

Random Effects (cont.)

This function simulates new parametric bootstrap data

> generate <- function() {

+ c.star <- rnorm(sum(nrand))

+ b.star <- a.hat * c.star

+ eff.star <- c(alpha.hat, b.star)

+ phi.star <- as.numeric(as.vector(routobjorigin) +

+ modmat.tot %*% eff.star)

+ theta.star <- astertransform(phi.star, rout$obj,

+ to.cond = "conditional", to.mean = "canonical")

+ y.star <- raster(theta.star, pred, fam,

+ routobjroot)

+ as.vector(y.star)

+ }

Random Effects (cont.)

> nboot <- 199

> woof <- suppressWarnings(try(load("boot2.rda"),

+ silent = TRUE))

> if (inherits(woof, "try-error")) {

+ e.star <- matrix(NaN, nboot, length(e))

+ for (iboot in 1:nboot) {

+ y.star <- generate()

+ rout.star <- reaster(y.star ~ varb + fit:(Site*Region),

+ list(block = ~ 0 + fit:Block, pop = ~ 0 + fit:Pop),

+ pred, fam, varb, id, root, data = radish,

+ effects = c(alpha.hat, c.star), sigma = sigma.hat)

+ e.star[iboot,] <- extract(rout.star)

+ }

+ save(e.star, file = "boot2.rda")

+ }

Random Effects (cont.)

Now we take the results apart.

> colnames(e.star) <- names(e)

> nparm <- ncol(e.star) / 2

> se.star <- e.star[, seq(nparm + 1, 2 * nparm)]

> e.star <- e.star[, seq(1, nparm)]

> se.hat <- e[seq(nparm + 1, 2 * nparm)]

> e.hat <- e[seq(1, nparm)]

Random Effects (cont.)

We are particularly interested in the region-site interaction
parameter.

> theta.hat <- e.hat["fit:SiteRiverside:RegionS"]

> se.theta.hat <- se.hat["fit:SiteRiverside:RegionS"]

> theta.star <- e.star[, "fit:SiteRiverside:RegionS"]

> se.theta.star <- se.star[, "fit:SiteRiverside:RegionS"]

> sum(! is.finite(theta.star))

[1] 0

> sum(! is.finite(se.theta.star))

[1] 0

Random Effects (cont.)

The following code makes the figure on the next slide.

> hist(theta.star)

> abline(v = theta.hat, col = "red", lwd = 2)

Random Effects (cont.)

Histogram of theta.star

theta.star

F
re

qu
en

cy

0 5 10 15 20

0
50

10
0

15
0

20
0

Figure : Bootstrap distribution of region-site interaction parameter. Red
vertical line shows estimate for actual data.

Random Effects (cont.)

The histogram looks fairly normal and not too biased. But we
compare the two kinds of bootstrap confidence intervals we know
about with the asymptotic intervals printed out by the summary

command.

First asymptotic.

> conf.level <- 0.95

> perc <- (1 + c(-1, 1) * conf.level) / 2

> perc

[1] 0.025 0.975

> normint <- theta.hat + qnorm(perc) * se.theta.hat

> normint

[1] 0.4771326 0.5266079

Random Effects (cont.)

Next percentile.

> percint <- sort(theta.star)[(nboot + 1) * perc]

> percint

[1] 0.4679506 0.5342365

Random Effects (cont.)

Next bootstrap t.

> z.star <- (theta.star - theta.hat) / se.theta.star

> c.star <- sort(z.star)[(nboot + 1) * perc]

> tint <- theta.hat - rev(c.star) * se.theta.hat

> tint

[1] 0.4803810 0.5243908

Random Effects (cont.)

> foo <- rbind(normint, percint, tint)

> rownames(foo) <- c("asymptotic", "percentile", "bootstrap t")

> colnames(foo) <- c("low", "high")

> round(foo, 4)

low high

asymptotic 0.4771 0.5266

percentile 0.4680 0.5342

bootstrap t 0.4804 0.5244

Seems the asymptotic (with all its approximations!) is at least in
the ballpark. Maybe a little too narrow.

But that is just for this one parameter in just this one example.

Random Effects (cont.)

Now for variance components and their square roots.

> foo <- e.hat[names(e.hat) == "pop"]

> foo

pop pop

0.1184597 0.0140327

> sigma.hat <- foo[1]

> nu.hat <- foo[2]

> foo <- se.hat[names(e.hat) == "pop"]

> se.sigma.hat <- foo[1]

> se.nu.hat <- foo[2]

> all.equal(sigma.hat^2, nu.hat)

[1] TRUE

Random Effects (cont.)

> foo <- e.star[, names(e.hat) == "pop"]

> sigma.star <- foo[, 1]

> nu.star <- foo[, 2]

> foo <- se.star[, names(e.hat) == "pop"]

> se.sigma.star <- foo[, 1]

> se.nu.star <- foo[, 2]

Random Effects (cont.)

The following code makes the figure on the next slide.

> hist(sigma.star)

> abline(v = sigma.hat, col = "red", lwd = 2)

Random Effects (cont.)

Histogram of sigma.star

sigma.star

F
re

qu
en

cy

0.00 0.05 0.10 0.15

0
10

20
30

40
50

60

Figure : Bootstrap distribution of square root of variance component for
population random effects. Red vertical line shows estimate for actual
data.

Random Effects (cont.)

The following code makes the figure on the next slide.

> hist(nu.star)

> abline(v = nu.hat, col = "red", lwd = 2)

Random Effects (cont.)

Histogram of nu.star

nu.star

F
re

qu
en

cy

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0
20

40
60

80

Figure : Bootstrap distribution of variance component for population
random effects. Red vertical line shows estimate for actual data.

Random Effects (cont.)

Now both histograms look highly biased. Either both will be or
neither will be, since squaring is a monotone transformation.

> normint <- sigma.hat + qnorm(perc) * se.sigma.hat

> percint <- sort(sigma.star)[(nboot + 1) * perc]

> z.star <- (sigma.star - sigma.hat) / se.sigma.star

> c.star <- sort(z.star)[(nboot + 1) * perc]

> tint <- sigma.hat - rev(c.star) * se.sigma.hat

Random Effects (cont.)

> foo <- rbind(normint, percint, tint)

> rownames(foo) <- c("asymptotic", "percentile", "bootstrap t")

> colnames(foo) <- c("low", "high")

> round(foo, 4)

low high

asymptotic 0.0478 0.1891

percentile 0.0249 0.1450

bootstrap t 0.0737 0.2766

Now, because of the high bias, the bootstrap percentile interval
seems worst of all. (We would need a double bootstrap to confirm
that.)

The bootstrap t interval is much shorter than the asymptotic
interval, and presumably the best.

Still the asymptotic interval isn’t really bad. Just longer than it
needs to because it assumes asymptotic unbiasedness.

