
Stat 8931 (Aster Models)
Lecture Slides Deck 6

Charles J. Geyer

School of Statistics
University of Minnesota

June 7, 2015

Random Effects Models

Abandon all hope, ye who enter here.

sign on the gates of hell in Dante’s Inferno

Random Effects Models (cont.)

A bit overdramatic, perhaps, but I want to warn against using
random effect aster models.

They have none of the good properties of fixed effect aster models.

The models have questionable (and untestable) validity.

Their parameter estimates have questionable validity.

They should be used only when irreplaceable, when nothing else
addresses the issues of scientific interest.

Random Effects Models (cont.)

Bad reasons for using random effects.

They make a good story. It sounds better when certain effects
are described as “random”.

They supposedly make the inference stronger, describing an
imaginary “population” from which the “random” effects are
drawn.

Random Effects Models (cont.)

The only good reason for using random effects.

They are the only way to address important questions of
scientific interest.

Here are two such issues:

nested predictors and

quantitative genetics.

There may be more, but those are the only ones in published
examples.

Paper and Tech Report

Geyer, et al. (Annals of Applied Statistics, 2013) and School of
Statistics Technical Report 692.

Nested Predictors

We say two categorical predictor variables (R calls them factors)
are nested if each value of one only occurs with a single value of
the other. We say the former is “nested within” the latter.

In the first example in the paper and TR (data on the invasive
California wild radish Raphanus sativus collected and first analyzed
by Caroline Ridley) there are two nested predictors.

There were two experimental sites, and there were blocks within
sites.

There were two regions (northern, coastal California and southern,
inland California) and there were three ancestral populations
collected from each region.

One experimental site was in each region.

Nested Predictors (cont.)

We wish (the scientists wished) to make inference about site and
region. In particular, a statistically significant site by region
interaction (this time “interaction” really means interaction) may
indicate local adaptation.

Certainly, there is no evidence of local adaptation if this interaction
is not statistically significant.

But even if this interaction is statistically significant, there is still
no evidence of local adaptation unless each “region” does better
(has higher fitness, outcompetes) than other “regions” in the
corresponding site.

“Region” is in scare quotes because “regions” don’t have fitness,
only individual organisms do. So this is about parameters of a
statistical model rather than direct observation of reality.

Nested Predictors (cont.)

The problem that random effects addresses here is that if we put
both the region predictor variable and the population predictor
variable in the model as fixed effects (the usual kind of aster
analysis that everything in the course up to here has been about),
the model isn’t full rank and some of these predictors need to be
dropped.

Nested Predictors (cont.)

And which ones get dropped is arbitrary (parameters are
meaningless quantities) so fixed effect models (all of the aster
models we have discussed so far) leave us with three options, none
of them good,

Put both the nested effects and the effects they are nested
within in the model, let R drop whatever it wants, and try to
interpret that.

Put only the nested effects (but not the effects they are
nested within) in the model, and try to interpret that.

Put only the effects they are nested within (omitting the
nested effects) in the model, and try to interpret that.

Nested Predictors (cont.)

In the radish example, only the latter is guaranteed to have the
effects of scientific interest (site and region) in the model (not
dropped to obtain full rank model matrix), and that is what Ridley
and Ellstrand (Evolutionary Applications, 2010) did (random
effects aster models weren’t available then).

But this ignores the “nested within” effects (block and population),
and it ignores them in a way that fans of random effects models do
not approve.

Nested Predictors (cont.)

The usual thing to do is treat nested effects as random effects.

This is not motivated by the idea of generalizing to the
“population” of block effects or population effects (different
meaning for “population”).

All possible blocks? Who cares about that?

All possible populations might be scientifically interesting
(assuming it is even a meaningful concept), but the actual
populations (six of them) are not a large sample, even if they were
chosen randomly in some sense, which they were not.

Nested Predictors (cont.)

It is motivated by the idea that just using some blocks and some
populations (and not very many) gives a less than ideal estimates
of the effects of scientific interest they are nested within (site and
region). And the random effects story at least tries to deal with
that.

Radishes

The invasive California wild radish (Raphanus sativus) data (Ridley
and Ellstrand, 2010) is in the dataset radish in the aster

package.

> library(aster)

> data(radish)

> dim(radish)

[1] 858 11

Radishes (cont.)

> levels(radish$varb)

[1] "Flowering" "Flowers" "Fruits"

The graph is

1
Ber−−−−→ y1

0-Poi−−−−→ y2
Poi−−−−→ y3

y1 (Flowering), indicator variable of any flowers produced

y2 (Flowers), count of the number of flowers produced

y3 (Fruits), count of the number of fruits produced

As usual, y1 is just the indicator of y2 > 0, and the combination of
the first two arrows is zero-inflated Poisson.

Radishes (cont.)

> names(radish)

[1] "Site" "Block" "Region"

[4] "Pop" "varb" "resp"

[7] "id" "root" "varbFlowering"

[10] "varbFlowers" "fit"

Site, Block, Region, and Pop (population) are the predictor
variables of scientific interest. Block is nested within Site. Pop is
nested within Region.

varb, resp, id, and root are as usual.

fit is, as usual, the indicator of the terminal node, here Fruits,
so it is the same as varbFruits when we put varb in the model.

Not sure what varbFlowering and varbFlowers are good for.

R function reaster

The R function reaster in the aster package fits random effects
aster models (much more about how later in this deck).

It fits aster models having the “model equation”

ϕ = a + Mα +
K∑

k=1

Zkbk (∗)

where a is a known vector (offset), M is a known matrix (model
matrix for fixed effects), each Zk is a known matrix (model matrix
for random effects), α is an unknown vector (fixed effects), and the
bk are independent random vectors whose components are assumed
IID mean-zero normal with variance σ2k (variance component).

The Greek letters (fixed effects and the variance components) are
the unknown parameters to be estimated.

R function reaster (cont.)

ϕ = a + Mα +
K∑

k=1

Zkbk (∗)

So there are a bunch of model matrices we need to specify, one for
fixed effects and one or more for random effects.

How do we do that?

Existing R packages that do random effects models, such as nlme

and lme4 have tricky (IMHO) ways to specify fixed and random
effects in one formula. The schemes used by the different packages
are different, even though those packages have some of the same
authors. What is more, those schemes are not general enough to
specify all models specified by (∗).

R function reaster (cont.)

ϕ = a + Mα +
K∑

k=1

Zkbk (∗)

So reaster uses a different scheme, with one formula per model
matrix. Obviously, our scheme can specify all the models specified
by (∗).

Our scheme is more general and more transparent, but more
clumsy.

Other schemes are (perhaps) more user-friendly, but trickier and
less general.

Anyway, like it or not, our scheme is the only one available for
aster models.

R function reaster (cont.)

The formulas for random effects are always fairly simple, often only
one categorical predictor (factor), which specifies one random
effect per category.

One almost always (the “almost” is just academic weasel wording,
AFAIK always always) wants to specify no intercept. Like

~ 0 + foo

if foo is a categorical predictor (factor).

The formula has a twiddle in it (like all R formulas) but does not
need to specify the response on the left hand side because
reaster gets the response from the formula for fixed effects (and
it doesn’t need to be specified more than once).

R function reaster (cont.)

Unlike what happens with fixed effects, the formulas

~ 0 + foo

and

~ foo

specify different random effects models.

The first specifies a model matrix with as many columns as levels
of foo, and each column is the dummy variable indicating one
category. Call that Z1.

The second specifies a model matrix of the same dimension of Z1

but having the first column (“intercept”) all ones and the rest of
the columns the same as Z1. Call that Z2.

R function reaster (cont.)

Considered as fixed effect model matrices, Z1 and Z2 would specify
the same models because they have the same column spaces

V1 = {Z1β : β ∈ Rp }
V2 = {Z2β : β ∈ Rp }

Considered as random effect model matrices, Z1 and Z2 would
specify different models because the Z1b and Z2b are mean zero
normal random vectors with variance matrices

σ2Z1ZT
1

σ2Z2ZT
2

where σ2 is the variance of the components of b, and these are
different.

R function reaster (cont.)

Just one way that fixed effects models and random effects models
are different.

Z1 and Z2 having the same column space (so specifying the same
fixed effects models) does not mean Z1ZT

1 = Z2ZT
2 (so they

specify the same random effects models).

So we do have to be careful with formulas for random effects.

But we also had to be careful with formulas for fixed effects.

Specification of model matrices using the R formula mini-language
is tricky! This is just another aspect of the trickiness.

Radishes (cont.)

1
Ber−−−−→ y1

0-Poi−−−−→ y2
Poi−−−−→ y3

> pred <- c(0,1,2)

> fam <- c(1,3,2)

> sapply(fam.default(), as.character)[fam]

[1] "bernoulli"

[2] "truncated.poisson(truncation = 0)"

[3] "poisson"

Radishes (cont.)

> rout <- reaster(resp ~ varb + fit : (Site * Region),

+ list(block = ~ 0 + fit : Block,

+ pop = ~ 0 + fit : Pop),

+ pred, fam, varb, id, root, data = radish)

Here we have two variance components because we have two
groups of nested effects (Block within Site and Pop within
Region).

For the same reasons as always, we want “no naked predictors” so
our formulas for random effects have fit : Block instead of
just Block and so forth.

We collect the formulas for random effects in a list (one formula
for each variance component). The names in the list are not
necessary, they only make the summary printout nicer.

Radishes (cont.)

> summary(rout)

Call:

reaster.formula(fixed = resp ~ varb + fit:(Site * Region), random = list(block = ~0 +

fit:Block, pop = ~0 + fit:Pop), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = radish)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -467.24230 1.75183 -266.717 <2e-16 ***

varbFlowers 474.13821 1.75416 270.293 <2e-16 ***

varbFruits 466.11036 1.76038 264.779 <2e-16 ***

fit:SitePoint Reyes -0.03620 0.20781 -0.174 0.862

fit:RegionS -0.12249 0.07892 -1.552 0.121

fit:SiteRiverside:RegionS 0.49930 0.01211 41.223 <2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

block 0.32820 0.07358 4.461 4.09e-06 ***

pop 0.09619 0.02992 3.214 0.000654 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Radishes (cont.)

Recall that the question of scientific interest is local adaptation
which is shown by

the fixed effects for interaction (here Site by Region) are
statistically significantly different from zero and

the pattern of means is as expected (each population is the
best in the locality it is from).

We have the first. The fit:SiteRiverside:RegionS fixed effect
is highly statistically significantly different from zero (P ≈ 0).

For the second, it is difficult to even say what “prediction” of mean
value parameters means for random effects models (more on this
later), so we use the fixed effects model for that.

Radishes (cont.)

> aout <- aster(resp ~ varb + fit : (Site * Region),

+ pred, fam, varb, id, root, data = radish)

> summary(aout, info.tol = 1e-9)

Call:

aster.formula(formula = resp ~ varb + fit:(Site * Region), pred = pred,

fam = fam, varvar = varb, idvar = id, root = root, data = radish)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.198e+02 1.590e+00 -326.949 < 2e-16 ***

varbFlowers 5.267e+02 1.593e+00 330.727 < 2e-16 ***

varbFruits 5.188e+02 1.591e+00 326.145 < 2e-16 ***

fit:SitePoint Reyes -3.257e-03 2.370e-03 -1.374 0.16934

fit:RegionS -5.339e-03 1.972e-03 -2.707 0.00678 **

fit:SiteRiverside:RegionS 3.853e-01 7.470e-03 51.574 < 2e-16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)

fit:SiteRiverside

Radishes (cont.)

> pout <- predict(aout)

> varb <- as.character(radish$varb)

> site <- as.character(radish$Site)

> region <- as.character(radish$Region)

> unique(varb)

[1] "Flowering" "Flowers" "Fruits"

> unique(site)

[1] "Riverside" "Point Reyes"

> unique(region)

[1] "N" "S"

Radishes (cont.)

> unique(pout[varb == "Fruits" & site == "Riverside" &

+ region == "N"])

[1] 171.4521

> unique(pout[varb == "Fruits" & site == "Riverside" &

+ region == "S"])

[1] 338.6892

For those who don’t know, University of California at Riverside is
in southern California (La la land), and indeed the southern
populations do better there.

Radishes (cont.)

> unique(pout[varb == "Fruits" & site == "Point Reyes" &

+ region == "N"])

[1] 154.2576

> unique(pout[varb == "Fruits" & site == "Point Reyes" &

+ region == "S"])

[1] 111.7123

By elimination, Point Reyes National Seashore must be in northern
California (actually in Marin county, north of the Golden Gate),
and indeed the northern populations do better there.

So that is “local adaptation” each variety does better (has higher
fitness, outcompetes) the other varieties in it own bailiwick.

Radishes (cont.)

We could also “predict” using the random effects model, but what
does that mean?

We could say the random effects are zero on average, so we
should put in zero for the random effects.

We could try to account for the nonlinearity of the ϕ→ µ
transformation somehow.

If we are predicting for observed individuals, we should take
into account the data for that individual, perhaps by using
estimated random effects (more on this later).

And in the latter we could try to account for nonlinearity.

All are reasonable, we will just illustrate the first.

Radishes (cont.)

> identical(names(aout$coefficients), names(rout$alpha))

[1] TRUE

> prout <- predict(aout, newcoef = rout$alpha)

> site <- site[varb == "Fruits"]

> region <- region[varb == "Fruits"]

> prout <- prout[varb == "Fruits"]

> pout <- pout[varb == "Fruits"]

> fred <- paste(site, region, sep = ":")

> sapply(split(prout, fred), unique)

Point Reyes:N Point Reyes:S Riverside:N Riverside:S

154.2742 131.6803 161.8043 273.3486

> sapply(split(pout, fred), unique)

Point Reyes:N Point Reyes:S Riverside:N Riverside:S

154.2576 111.7123 171.4521 338.6892

Radishes (cont.)

Not that we need it for these data, but if there were more than two
regions or more than two sites so there would be more than one
parameter for the “interaction” of region and site, we would have to
do a general test of model comparison like so

> rout0 <- reaster(resp ~ varb + fit : (Site + Region),

+ list(block = ~ 0 + fit : Block,

+ pop = ~ 0 + fit : Pop),

+ pred, fam, varb, id, root, data = radish)

> anova(rout0, rout)

Analysis of Deviance Table

Model 1: resp ~ varb + fit:(Site + Region), ~0 + fit:Block, ~0 + fit:Pop

Model 2: resp ~ varb + fit:(Site * Region), ~0 + fit:Block, ~0 + fit:Pop

Mod Df Fix Mod Df Rand Mod Dev Df Fix Df Rand Deviance P-value

1 5 2 1175212

2 6 2 1176704 1 0 1492.3 0

In fact, the R function anova.asterOrReaster that does this was
written at the request of a user who had just this problem.

Oats

The second example in Geyer, et al. (2013) is about data on the
slender wild oat (Avena barbata) collected and first analyzed by
Bob Latta. It is in the dataset oats in the R contributed package
aster.

The graph is

1
Ber−−−−→ y1

0-Poi−−−−→ y2

where

y1 is the indicator of whether any spikelets (compound
flowers) were produced

y2 is the count of the number of spikelets produced

So here the unconditional distribution of the number of spikelets is
zero-inflated Poisson.

Oats (cont.)

We load the data

> data(oats)

> names(oats)

[1] "Plant.id" "Env" "Gen" "Fam"

[5] "Site" "Year" "varb" "resp"

[9] "id" "root" "fit"

> levels(oats$varb)

[1] "Spike" "Surv"

varb, resp, id, root, and fit are the same as usual (the last, the
indicator of “fitness” nodes, here Spike nodes).

Oats (cont.)

> sapply(oats, class)

Plant.id Env Gen Fam Site

"factor" "factor" "factor" "factor" "factor"

Year varb resp id root

"factor" "factor" "integer" "integer" "numeric"

fit

"numeric"

Gen is the “ecotype”"X" for xeric (from more dry region) or
"M" for mesic (from less dry region)

Fam is the“accession”the particular variety, nested withing Gen

Site is the site (more on next slide)

Year is the year

Oats (cont.)

The experimental sites were at the Sierra Foothills Research and
Extension Center (Site == "SF"), which is northeast of
Sacramento on the east side of the Central Valley of California,
and at the Hopland Research and Extension center
(Site = "Hop"), which is in the California Coastal Ranges north
of San Francisco. Hopland receives 30% more rainfall and has a
less severe summer drought than Sierra foothills.

So if we have local adaptation we expect the xeric varieties to do
better at Sierra Foothills and the mesic varieties to do better at
Hopland.

In fact, the pattern of means is not right for local adaptation
(Latta, Molecular Ecology, 2009). The mesic ecotype had higher
fitness in both environments.

Oats (cont.)

So we are doing this analysis not to show local adaptation, but just
to show that we can do a complicated random effects aster
analysis.

Latta (2009) did not do a random effects aster analysis, because it
wasn’t available yet. And he did want random effects. So he had
to “assume” fitness is normally distributed and use conventional
normal response, normal random effects models.

We redo his analysis but using the aster model with the same fixed
and random effects.

Oats (cont.)

These fixed and random effects were

Effect Type

Site fixed
Year random
Gen fixed
Fam random
Gen : Site fixed
Gen : Year random
Site : Fam random
Year : Fam random

An interaction of a fixed effect and a random effect is a random
effect. So is an interaction of a random effect and a random effect.

There is one variance component for each random effect term.

Oats (cont.)

> data(oats)

> pred <- c(0,1)

> fam <- c(1,3)

> woof <- suppressWarnings(try(load("rout.rda"),

+ silent = TRUE))

> if (inherits(woof, "try-error")) {

+ rout <- reaster(resp ~ varb + fit : (Gen * Site),

+ list(year = ~ 0 + fit : Year, fam = ~ 0 + fit : Fam,

+ fam.site = ~ 0 + fit : Fam : Site,

+ fam.year = ~ 0 + fit : Fam : Year,

+ gen.year = ~ 0 + fit : Gen : Year),

+ pred, fam, varb, id, root, data = oats)

+ save(rout, file = "rout.rda")

+ }

Oats (cont.)

Always use : rather than * in random effects formulas.

Main effects and “interaction” effects are in different variance
components (have different variance), hence in a different formulas.

Also there wouldn’t even be the same number of random effects!

> cc <- sample(c("red", "blue", "green"), 100,

+ replace = TRUE)

> dd <- sample(c("N", "S", "E", "W"), 100, replace = TRUE)

> foo <- data.frame(color = cc, direction = dd)

Oats (cont.)

> ncol(model.matrix(~ 0 + color, data = foo))

[1] 3

> ncol(model.matrix(~ 0 + direction, data = foo))

[1] 4

> ncol(model.matrix(~ 0 + color : direction, data = foo))

[1] 12

> ncol(model.matrix(~ 0 + color * direction, data = foo))

[1] 12

First three do not add up to the last!

Oats (cont.)

> z1 <- model.matrix(~ 0 + color : direction, data = foo)

> z2 <- model.matrix(~ 0 + color * direction, data = foo)

> identical(dim(z1), dim(z2))

[1] TRUE

> all.equal(z1 %*% t(z1), z2 %*% t(z2))

[1] "Mean relative difference: 6.805674"

So ~ 0 + color : direction and ~ 0 + color * direction

do not specify the same random effects!

Oats (cont.)

> summary(rout)

Call:

reaster.formula(fixed = resp ~ varb + fit:(Gen * Site), random = list(year = ~0 +

fit:Year, fam = ~0 + fit:Fam, fam.site = ~0 + fit:Fam:Site,

fam.year = ~0 + fit:Fam:Year, gen.year = ~0 + fit:Gen:Year),

pred = pred, fam = fam, varvar = varb, idvar = id, root = root,

data = oats)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.86833 0.36873 7.779 7.31e-15 ***

varbSurv -15.15044 0.48600 -31.174 < 2e-16 ***

fit:GenM 0.27250 0.13975 1.950 0.05118 .

fit:SiteSF -0.32606 0.09609 -3.393 0.00069 ***

fit:GenX:SiteSF 0.09138 0.14293 0.639 0.52259

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

year 0.70794 0.25524 2.774 0.00277 **

fam 0.00000 NA NA NA

fam.site 0.17502 0.03013 5.809 3.13e-09 ***

fam.year 0.18193 0.02538 7.168 3.81e-13 ***

gen.year 0.10986 0.06078 1.807 0.03535 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Oats (cont.)

Wouldn’t need to do this except for slides

> sout <- summary(rout)

> printCoefmat(sout$alpha)

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.868332 0.368725 7.7790 7.307e-15 ***

varbSurv -15.150443 0.486001 -31.1737 < 2.2e-16 ***

fit:GenM 0.272503 0.139750 1.9499 0.0511837 .

fit:SiteSF -0.326056 0.096087 -3.3933 0.0006905 ***

fit:GenX:SiteSF 0.091382 0.142927 0.6394 0.5225896

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Coefficient for local adaptation (fit:GenX:SiteSF) isn’t
statistically significantly different from zero.

Oats (cont.)

> printCoefmat(sout$sigma)

Estimate Std. Error z value Pr(>|z|)/2

year 0.707939 0.255239 2.7736 0.002772 **

fam 0.000000 NA NA NA

fam.site 0.175019 0.030126 5.8095 3.133e-09 ***

fam.year 0.181932 0.025382 7.1679 3.809e-13 ***

gen.year 0.109865 0.060785 1.8074 0.035347 *

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Variance component fam is estimated to be exactly zero. If the
true unknown parameter value is actually zero (on the boundary),
the estimator is not asymptotically normal and “standard error”
makes no sense. So everything else in the row is NA.

Oats (cont.)

Of course, we do not confuse the estimator and the true unknown
parameter (σ̂k 6= σk) so we don’t know whether the true unknown
parameter is zero or not.

So we could do a one-sided confidence interval for σk , but the
notion of “standard error” is no help. There is nothing useful to
print in this kind of table except NA.

For most purposes, it is enough that σ̂k = 0 is certainly not
evidence against the null hypothesis σk = 0, so we certainly have
no evidence in favor of the alternative hypothesis σk > 0.

Oats (cont.)

If we really wanted that one-sided confidence interval, we could do
something.

But it would be some work and there is no function in the aster

package that just does it.

If two or more variance components were estimated to be zero,
things get very tricky theoretically. The theory is understood
(Chernoff, Annals of Mathematical Statistics, 1954; Geyer, Annals
of Statistics, 1994), but there is no easy way to calculate the
theoretical asymptotic joint distribution of the parameter estimates
nor its marginals.

This is an interesting open research question.

Oats (cont.)

Why is Year a random effect?

> levels(oats$Year)

[1] "2003" "2004" "2006" "2007"

Does making Year a random effect make data about 4 years say
everything there is to be said about all years (forever)?

If that were the case, random effects models would be true magic,
voodoo statistics.

There is nothing wrong with making Year a random effect if you
want to, but there is no magic.

Exponential Family Mixed Models

At first, random effects models (also called “mixed” models because
they have fixed effects too) were only normal response and normal
random effects.

To distinguish them from generalized linear mixed models (GLMM)
and exponential family mixed models (EFMM) that appeared later,
we call the original ones linear mixed models (LMM).

Exponential Family Mixed Models (cont.)

LMM start with R. A. Fisher (Proceedings of the Royal Society of
Edinburgh, 1918) and Sewall Wright (Genetics, 1918; Proceedings
of the National Academy of Sciences, 1920; Journal of Agricultural
Research, 1921). All are genetics papers.

LMM were soon turned into a more general methodology (Fisher,
Statistical Methods for Research Workers, 1925; Design of
Experiments, 1935).

However, according to the authoritative book on the subject
(Searle, Casella, and McCulloch, Variance Components, 1992) the
full theory of maximum likelihood estimation and restricted
maximum likelihood estimation (REML) for general LMM doesn’t
appear until the seventies (Hartley and Rao, Biometrika, 1967;
Patterson and Thompson, Biometrika, 1971; Proceedings of the
8th International Biometric Conference, 1974).

Exponential Family Mixed Models (cont.)

GLMM appear in Stiratelli, Laird, and Ware (Biometrics, 1984) but
do not really start to catch on until Breslow and Clayton (Journal
of the American Statistical Association, 1993) provided a useful
but only approximate method of calculating maximum likelihood
estimates.

For simple enough GLMM, those in which only one random effect
is involved in the “model equation” for each individual, the
likelihood can be calculated by numerical integration, and this is
also done (not sure who deserves the credit for this).

Exponential Family Mixed Models (cont.)

For models with “crossed” random effects, like those we have
already looked at, there is no hope of exact calculation of the
likelihood (more on this later). Only two methods for approximate
calculation have any sizable literature: Breslow and Clayton (1992,
Google Scholar says cited by 3040) and Markov chain Monte Carlo
(MCMC) (Thompson and Guo, IMA Journal of Mathematics
Applied in Medicine and Biology, 1991, Google Scholar says cited
by 88; Geyer, Journal of the Royal Statistical Society, Series B,
1994, Google Scholar says cited by 194).

Of course, even more papers, cite papers that cite these (without
necessarily citing the originals), and so forth.

Exponential Family Mixed Models (cont.)

MCMC is hard for ordinary users to get right (hard even for experts
in non-toy models). No widely used software implements it for
general GLMM.

R and SAS and other statistical computing languages have
packages for GLMM that use either numerical integration (for
simple enough models) or Breslow-Clayton (for the rest).

The R function reaster uses Breslow-Clayton.

Exponential Family Mixed Models (cont.)

A third method using good old-fashioned Monte Carlo (ordinary
Monte Carlo, OMC) was introduced by Sung and Geyer (Annals of
Statistics, 2007), but it does not work for complicated models.

Exponential Family Mixed Models (cont.)

As we shall see, Breslow-Clayton is far from ideal.

IMHO, it is an open research question to really do maximum
likelihood (or other non-maximum-likelihood) estimation right for
GLMM.

Maybe MCMC or OMC will make a comeback. Maybe something
completely different (but have no idea what that would be).

Exponential Family Mixed Models (cont.)

There is an even worse problem with GLMM than difficulty of
computing estimates.

Even the simple toy models that much of the literature analyze and
which the OMC method (Sung and Geyer, 2007) handle perfectly
are far from asymptopia.

Very large sample sizes are needed for these very simple models to
have approximately normal parameter estimates (examples in Sung
and Geyer, 2007).

So, in general, even if you can get estimates, it is unclear whether
your P-values and confidence intervals have any validity.

Exponential Family Mixed Models (cont.)

Hence Geyer, et al. (2013) recommend doing a parametric
bootstrap if one has any doubt about the asymptotics and wants
to be sure about the inference. (That’s hardly profound advice.
Whenever one doubts asymptotics, do a parametric bootstrap!)

But bootstrapping an already slow method like MCMC or OMC is
intolerably slow!

Hence (so far) the preference for the (possibly bad)
Breslow-Clayton estimators.

Exponential Family Mixed Models (cont.)

IMHO this whole area has a long way to go and the very optimistic
literature on the subject (and there is a lot of that) is foolishly
optimistic.

A lot more caution is warranted than most users understand.

Exponential Family Mixed Models (cont.)

EFMM were introduced by Geyer, et al. (2013). They don’t call
them that. They do say “Exponential Family Models with Random
Effects” in the title of the paper, but are really only interested in
aster models with random effects.

The only reason for EFMM is to be like GLMM and LMM. (Of
course, nobody says LMM either. That too is to be like GLMM.)

Exponential Family Mixed Models (cont.)

ϕ = a + Mα +
K∑

k=1

Zkbk (∗)

So what is an EFMM? It is a regular full exponential family
statistical model in which the canonical parameter ϕ is specified
using the “model equation” (∗), in which, recall, the bk are
independent vectors whose components are IID normal, mean zero,
variance σ2k .

The unknown parameters to be estimated are the Greek letters: the
vector α of fixed effects and the vector of variance components σ2k .

I don’t like differentiating with respect to parameters that don’t
have explicit notation, so write νk = σ2k and ν for the vector with
components νk .

Missing Data, Latent Variables, Empirical Bayes

And the title doesn’t have enough keywords. . . . Hierarchical
Models, Multi-Level Models, Structural Equation Models, Causal
Models, Hidden this and that (like Hidden Markov Models), and
probably a lot more I can’t think of or haven’t heard of.

But there is only one idea in all of this. The probability model has
two kinds of variables. The PDF (or PMF or PMDF) is

fθ(x , y)

where y is observed and x is not observed (missing, latent,
random, whatever).

Thus the probability model for the actual observed data is the
marginal

fθ(y) =

∫
fθ(x , y) dx (∗∗)

(or sum if PMF or sum and integrate if PMDF).

Missing Data, Latent Variables, Empirical Bayes (cont.)

fθ(y) =

∫
fθ(x , y) dx (∗∗)

And that’s it! That’s the whole theory!

In LMM where everything is normal, the integral can be done
analytically, because every marginal of normal is normal.

In GLMM and EFMM, the integral can never be done analytically.
And only in the simplest models can it be done exactly by
numerical integration.

So we need approximations, and then we need to theorize about
approximations.

Exponential Family Mixed Models (cont.)

ϕ = a + Mα +
K∑

k=1

Zkbk (∗)

For doing theory we want to simplify (∗). Write

Z =
(
Z1 Z2 · · · ZK

)
and

b =

b1
b2
...

bK

so

Zb =
K∑

k=1

Zkbk

Exponential Family Mixed Models (cont.)

So now the “model equation” is

ϕ = a + Mα + Zb (∗∗∗)

where

a is the offset vector

M is the model matrix for fixed effects

Z is the model matrix for random effects

α is the vector of fixed effects

b is the vector of random effects

We assume the distribution of b is multivariate normal with mean
zero and variance matrix D, which is diagonal.

Exponential Family Mixed Models (cont.)

By putting all of the random effects in one vector b we have lost
track of which random effects go with which variance component.

Since all of the random effects are independent, D is diagonal.

And each diagonal element of D is one of the νk , but the diagonal
elements are not all different, the random effects come in blocks
with the same variance.

Ek =
∂D

∂νk

is a diagonal zero-or-one-valued matrix the same shape as D.

The ones on the diagonal of Ek tell us which random effects have
variance νk .

Why are Random Effects Assumed Normal?

Like the title asks!

In the assume-everything-is-normal era (approximately 1800 to
1970) assumptions of normality were more or less unquestioned.

Everybody believes in the law of errors, the
experimenters because they think it is a mathematical
theorem, the mathematicians because they think it is an
experimental fact.

— Lippman, quoted by Poincaré, quoted by Cramér

“The law of errors” is an old name for the normal distribution.

Note that it builds into the name “the law . . .” the idea that it is
the only distribution we consider for “errors”.

Also note the Lippman quote is sarcastic. Justification for this
belief was always known to be, at best, shaky.

Why are Random Effects Assumed Normal? (cont.)

The central limit theorem does say that if each data point is the
sum of lots and lots of little independent thingummies all having
about the same variance, then the data point will be approximately
normal.

But if one actually looks at data instead of just theorizing about it,
one finds a lot of data does not look very normal!

Tukey’s (1977) book Exploratory Data Analysis was revolutionary.

But what was revolutionary in it? Partly just looking at data. It
introduced boxplots and stem-and-leaf plots. It also introduced a
bunch of robust and nonparametric methods that aren’t used much
any more (median polish smoothing, for example) but only because
better methods have been invented since then.

Why are Random Effects Assumed Normal? (cont.)

But IMHO what was really revolutionary about EDA (Exploratory
Data Analysis) was that it drove a stake through the heart of the
idea of statistical analysis based on assumptions that can be shown
to be radically wrong by a simple plot.

It changed statistics forever.

Why are Random Effects Assumed Normal? (cont.)

But nobody applies EDA to purely hypothetical random variables
that no one can see. You cannot prove they are not normal with a
plot!

But if we now admit that a lot of real observable data is not
normal, why would we continue to maintain that completely
imaginary unobservable data is normal?

You hear people say maybe it doesn’t make much difference.
Perhaps the inference would be more or less the same with
non-normal random effects.

But perhaps not. It’s not like anybody ever uses non-normal
random effects models! AFAIK there is no theory about this.

Why are Random Effects Assumed Normal? (cont.)

In theory, semiparametric inference applies to this situation. One
could be parametric about the fixed effects and nonparametric
about the random effects.

But (again AFAIK) nobody has ever done this. It is another open
research question.

So we just don’t know how much the assumption of normal
random effects affects statistical inference.

If anybody tells you there isn’t much effect, ask them what
theorem says so.

Exponential Family Mixed Models (cont.)

So that is three reasons to be skeptical about GLMM and EFMM.

Estimates are only approximate MLE of unknown accuracy.

Models are not in asymptopia. P-values and confidence
intervals have unknown accuracy.

Parametric bootstrap helps with these.

Unknown effect of normality assumptions, which are
uncheckable.

Parametric bootstrap no help with this one.

Exponential Family Mixed Models (cont.)

And if that isn’t enough issues, here’s another.

In GLM and EFM we have strictly concave log likelihood so the
MLE is unique if it exists.

This is no longer true for LMM or GLMM or EFMM. The log
likelihood can be multimodal so there is no guarantee that a local
maximum is the global maximum.

Exponential Family Mixed Models (cont.)

Actually, the “usual” asymptotics of maximum likelihood does not
require global maximizers. The theory describes the “right” local
maximizer. It proves there is only one root-n-consistent local
maximizer and describes it.

The theory also says a one-step-Newton update of a
root-n-consistent preliminary estimator is asymptotically equivalent
to the MLE (a fully efficient estimator).

But we don’t know any provably root-n-consistent estimators for
LMM or GLMM or EFMM. So that’s no help.

There is no reason to believe that a local maximum of the true log
likelihood — even it we can calculate one — is a good estimator.

Exponential Family Mixed Models (cont.)

Enough gloom and doom.

We’ve said it. We don’t need to keep saying it.

From now on, it goes without saying.

We’ll just present the theory and then more examples.

Exponential Family Mixed Models (cont.)

The log likelihood for a regular full exponential family model (and,
in particular, for a saturated aster model in the unconditional
canonical parameterization) is

l(ϕ) = 〈y , ϕ〉 − c(ϕ).

We turn this into the so-called “complete data” log likelihood by
plugging in the “model equation”

lc(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b − 1

2 log det(D) (∗∗∗∗)

The extra terms are the log of the marginal normal PDF of b.

If we observed b (which we don’t), this would be the log likelihood.

Exponential Family Mixed Models (cont.)

fθ(y) =

∫
fθ(x , y) dx (∗∗)

lc(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b − 1

2 log det(D) (∗∗∗∗)

lm(α, ν) = log

(∫
e lc(α,b,ν) db

)
This is the actual log likelihood for the actual (observed) data.

To distinguish this from the “complete data” log likelihood, I
sometimes call this the “missing data” log likelihood, but that isn’t
a good name. It is just the actual correct log likelihood for this
problem.

Exponential Family Mixed Models (cont.)

lm(α, ν) = log

(∫
e lc(α,b,ν) db

)

If this integral breaks up into a product of univariate integrals,
which happens when there is only one random effect per individual,
this integral can be done by numerical integration.

Otherwise, it is a high-dimensional integral, and intractable.

Thus we seek approximations.

Laplace Approximation

Breslow and Clayton (1993) introduced Laplace approximation for
GLMM log likelihoods.

As one can tell from the eponym, it is an old method of evaluating
integrals.

Laplace Approximation (cont.)

lm(α, ν) = log

(∫
e lc(α,b,ν) db

)

Expand the log integrand, here lc(α, b, ν), in a Taylor series in
the variable of integration, here b,

expand around a local maximum b∗, where the first derivative
is zero,

throw away all terms higher-order than second derivative,

then the integrand is “e to a quadratic” in b, which is
analytically tractable, essentially a multivariate normal
distribution integral.

Laplace Approximation (cont.)

The idea is that if b∗ is the actual global maximum of the
integrand we get fairly good approximation where the integrand is
high and maybe the rest doesn’t matter.

For EFMM we know that lc(α, b, ν) is a concave function of b and
the tails decrease quadratically. So Laplace approximation may do
fairly well.

Laplace Approximation (cont.)

l(ϕ) = 〈y , ϕ〉 − c(ϕ)

lc(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b − 1

2 log det(D) (∗∗∗∗)

µ(ϕ) = ∇c(ϕ)

W (ϕ) = ∇2c(ϕ)

(unconditional mean value parameter vector and Fisher information
matrix)

∇blc(α, b, ν) = ZT
[
y − µ(a + Mα + Zb)

]
− D−1b

∇2
blc(α, b, ν) = −ZTW (a + Mα + Zb)Z − D−1

Laplace Approximation (cont.)

lc(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b − 1

2 log det(D)

∇blc(α, b, ν) = ZT
[
y − µ(a + Mα + Zb)

]
− D−1b

∇2
blc(α, b, ν) = −ZTW (a + Mα + Zb)Z − D−1

lc(α, b, ν) ≈ lc(α, b∗, ν)

− 1
2(b − b∗)T

[
ZTW (a + Mα + Zb∗)Z + D−1

]
(b − b∗)

considered as a function of b only, this looks like a log likelihood
for a multivariate normal distribution with mean vector b∗ and
variance matrix[

ZTW (a + Mα + Zb∗)Z + D−1
]−1

Laplace Approximation (cont.)

The d-variate normal PDF with mean vector µ and variance matrix
Σ is

f (x) = (2π)−d/2 det(Σ)−1/2 exp
(
−1

2(x − µ)TΣ−1(x − µ)
)

so ∫
exp

(
−1

2(x − µ)TΣ−1(x − µ)
)

dx = (2π)d/2 det(Σ)1/2

Laplace Approximation (cont.)

lc(α, b, ν) ≈ lc(α, b∗, ν)

− 1
2(b − b∗)T

[
ZTW (a + Mα + Zb∗)Z + D−1

]
(b − b∗)

∫
exp
(
lc(α, b, ν)

)
db ≈ exp

(
lc(α, b∗, ν)

)
(2π)d/2 det

(
ZTW (a + Mα + Zb∗)Z + D−1

)−1/2
the −1/2 is because the matrix in the determinant is the analog of
Σ−1 and because det(A−1) = det(A)−1.

Laplace Approximation (cont.)

lc(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b − 1

2 log det(D)

Thus we get

lm(α, ν) ≈ lc(α, b∗, ν)− 1
2 log det

(
ZTW (a + Mα + Zb∗)Z + D−1

)
= l(a + Mα + Zb∗)− 1

2(b∗)TD−1b∗ − 1
2 log det(D)

− 1
2 log det

(
ZTW (a + Mα + Zb∗)Z + D−1

)
= l(a + Mα + Zb∗)− 1

2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

)
the last equality being det(AB) = det(A) det(B), and I denotes
the identity matrix.

Laplace Approximation (cont.)

So that is our Laplace approximation approximate log likelihood

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

) (†)

where b∗ is a function of α and ν and D is a function of ν
although the notation does not indicate this.

Recall that b∗ is the maximizer of

lc(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b − 1

2 log det(D)

and the last term on the right doesn’t matter because it does not
contain b.

Laplace Approximation (cont.)

Thus b∗ is the maximizer of the penalized log likelihood

l(a + Mα + Zb)− 1
2bTD−1b (?)

where the “penalty” is the second term on the right-hand side,
which looks like the penalty for ridge regression, although it arises
from completely different reasoning.

For GLMM this is called penalized quasi-likelihood (PQL) because
GLM allow quasi-likelihood rather than likelihood. For EFMM,
PQL is a misnomer. Should be just PL, but we’ll keep PQL.

Because (?) is strictly concave and decreases quadratically at
infinity, the maximum b∗ always exists and is unique.

The PQL step is very well behaved.

Laplace Approximation (cont.)

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

) (†)

In contrast, the whole procedure is very ill-behaved.

To calculate the objective function q(α, ν) we have to first
calculate b∗(α, ν) via a PQL step. This will not be exact, and the
sloppier the convergence tolerance in this optimization, the sloppier
our evaluation of (†).

Thus we need extreme precision in the PQL step optimization.

Even so, our evaluation of (†) will be sloppy, so “calculating”
derivatives of (†) by finite difference approximation will be very
sloppy.

Laplace Approximation (cont.)

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

) (†)

Optimizing (†) is very different from the nice smooth functions
with nice smooth derivatives that can be evaluated to high
precision that optimization software likes (and is designed for).

So we’re not out of the woods yet.

Laplace Approximation (cont.)

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

) (†)

Worse. For either Newton’s method in optimization or for using the
“usual” asymptotics of maximum likelihood (asymptotic variance of
MLE is inverse Fisher information) we need two derivatives of (†).

But W is already the second derivative of the cumulant function c,
so second derivatives of (†) involve fourth derivatives of c.

O. K. in principle. Cumulant functions are infinitely differentiable.

Bad in practice. The function mlogl in the aster package
calculates the log likelihood, the first derivative vector, and the
second derivative matrix. But no higher-order derivatives.

Laplace Approximation (cont.)

After all this, I have to tell you that this whole Laplace
approximation scheme is a wild goose chase.

Breslow and Clayton (1993) introduce it, but don’t use it, not
exactly.

No other GLMM software does either AFAIK.

The reaster function doesn’t either.

All make further approximations and kludges.

So it makes a nice story to tell people about what we’re doing, but
we actually do even messier things. (As if this wasn’t already
messy enough!)

Laplace Approximation (cont.)

The intractability of differentiating the objective function q leads
to the idea of just ignoring third and higher-order derivatives of the
cumulant function (they aren’t really zero but we just treat them
as zero).

This is equivalent to assuming that first derivatives of W are zero,
which is the same as assuming that it is a constant matrix.

Breslow and Clayton (1993) use the same idea.

Of course, W isn’t constant, so we adopt the schizophrenic
attitude of assuming it is constant in some parts of our argument
and non-constant in other parts.

Laplace Approximation (cont.)

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

) (†)

Replace (†) with

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW̃ ZD + I

) (††)

where W̃ is a constant, positive definite, symmetric matrix.

We want W̃ to be close to W (a + Mα̂ + Zb̂), where α̂ and ν̂
maximize (†) and b̂ = b∗(α̂, ν̂), but for most of the argument it

doesn’t matter what W̃ is.

Laplace Approximation (cont.)

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW̃ ZD + I

) (††)

Now we notice that b∗ maximizes (††), that is,

q(α, ν) = sup
b∈Rd

p(α, b, ν)

where

p(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b

− 1
2 log det

(
ZTW̃ ZD + I

) (†††)

Hence we can (so long as we are imagining W̃ is constant) find α̂,
b̂, and ν̂ by jointly maximizing (†††).

Laplace Approximation (cont.)

p(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b

− 1
2 log det

(
ZTW̃ ZD + I

) (†††)

q(α, ν) = sup
b∈Rd

p(α, b, ν)

Key ideas:

Can maximize q by maximizing p.

Can calculate derivatives of q from those of p by the implicit
function theorem.

(assuming W̃ is a constant matrix, which it isn’t).

Implicit Function Theorem

Suppose f is a differentiable vector-valued function of two vector
variables, write the partial derivatives ∇x f (x , y) and ∇y f (x , y)
(these are matrices, with row dimension the dimension of f (x , y)
and column dimension the dimension of x and y , respectively).

Suppose ∇y f (x0, y0) is square and invertible. Then there exists a
function g defined on some open neighborhood O of x0 such that

f
(
x , g(x)

)
= f (x0, y0), x ∈ O,

and
∇g(x0) = −

[
∇y f (x0, y0)

]−1∇x f (x0, y0)

and g is differentiable as many times as f is.

Implicit Function Theorem (cont.)

To get into the right notation for the implicit function theorem, we
change notation letting ψ be the vector of all the parameters (α
and ν) and write

p(ψ, b) = l(a + Mα + Zb)− 1
2bTD−1b

− 1
2 log det

(
ZTW̃ ZD + I

)
q(ψ) = p(ψ, b∗)

where, as always, b∗ is the maximizer of p(ψ, b) and is a function
of ψ although the notation does not explicitly indicate this.

A Digression on Notation for Derivatives

We are going to simplify notation for partial derivatives, so the
notation does not get intolerably messy.

f is a scalar-valued function f of two vector variables

fx(x , y) is the column vector whose components are partial
derivatives with respect to components of x

fy (x , y) similarly

fxx(x , y) is the square matrix whose components are second
partial derivatives with respect to components of x

fyy (x , y) similarly

fxy (x , y) is the non-square matrix whose i , j component is
∂2f (x , y)/∂xi∂yj

fyx(x , y) = fxy (x , y)T

A Digression on Notation for Derivatives (cont.)

f is a vector-valued function f of two vector variables

fx(x , y) is the non-square matrix whose row dimension is the
dimension of f (x , y) and whose column dimension is the
dimension of x .

fy (x , y) similarly

We don’t need to discuss second derivatives here. They would be
three-index thingummies (tensors) and matrix notation wouldn’t
work.

Implicit Function Theorem (cont.)

Since b∗ is the maximizer of p(ψ, b), it solves

pb(ψ, b) = 0

so the implicit function theorem says

b∗ψ(ψ) = −pbb(ψ, b∗)−1pbψ(ψ, b∗)

where on the right-hand side b∗ is a function of ψ although the
notation does not explicitly indicate this.

Implicit Function Theorem (cont.)

q(ψ) = p(ψ, b∗)

Now we are ready to differentiate q using the chain rule

qψ(ψ) = pψ(ψ, b∗) + pb(ψ, b∗)b∗ψ(ψ)

but by definition of b∗

pb(ψ, b∗) = 0

where, as always, b∗ is a function of ψ although the notation does
not explicitly indicate this. So

qψ(ψ) = pψ(ψ, b∗)

Implicit Function Theorem (cont.)

b∗ψ(ψ) = −pbb(ψ, b∗)−1pbψ(ψ, b∗)

qψ(ψ) = pψ(ψ, b∗)

qψψ(ψ) = pψψ(ψ, b∗) + pψb(ψ, b∗)b∗ψ(ψ)

= pψψ(ψ, b∗)− pψb(ψ, b∗)pbb(ψ, b∗)−1pbψ(ψ, b∗)

Implicit Function Theorem (cont.)

qψψ(ψ) = pψψ(ψ, b∗)− pψb(ψ, b∗)pbb(ψ, b∗)−1pbψ(ψ, b∗)

This gives us approximate second derivatives of the approximate
log likelihood which is minus the approximate observed Fisher
information matrix.

Implicit Function Theorem (cont.)

qψψ(ψ) = pψψ(ψ, b∗)− pψb(ψ, b∗)pbb(ψ, b∗)−1pbψ(ψ, b∗)

Why is −qψψ(ψ) positive definite?

This form looks familiar. Suppose

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
is the partitioned variance matrix of a normal random vector, then
(look in any multivariate statistics book) the conditional variance
of the first block of variables x1 given the second x2 is

Σ11 − Σ12Σ−122 Σ21

Implicit Function Theorem (cont.)

If the conditional distribution of x1 given x2 is degenerate, then so
is the joint distribution of x1 and x2.

Conversely, if Σ is positive definite, then so is Σ11 − Σ12Σ−122 Σ21.

Since any positive definite matrix is the variance matrix of some
normal random vector, this must be a general fact about matrices.
If (

pψψ(ψ, b∗) pψb(ψ, b∗)
pbψ(ψ, b∗) pbb(ψ, b∗)

)
is negative definite, then so is

qψψ(ψ) = pψψ(ψ, b∗)− pψb(ψ, b∗)pbb(ψ, b∗)−1pbψ(ψ, b∗)

Implicit Function Theorem (cont.)

Let ψ̂ and b̂ be the maximizers of p. Then b̂ = b∗(ψ̂).(
pψψ(ψ̂, b̂) pψb(ψ̂, b̂)

pbψ(ψ̂, b̂) pbb(ψ̂, b̂)

)
must be negative semidefinite and usually will be negative definite,
in which case our approximation of the observed Fisher information
matrix −qψψ(ψ̂) will be positive definite.

Sadly, this beautiful theorem does not work with computer
arithmetic (instead of real real numbers). We have run into the
problem of −qψψ(ψ̂) not being positive definite or even positive
semidefinite when calculated with inexact computer arithmetic.

A Digression on Matrix Calculus

Differentiation of Matrix Inverse

AA−1 = I

so by the product rule

∂A

∂ψ
A−1 + A

∂A−1

∂ψ
= 0

hence
∂A−1

∂ψ
= −A−1

∂A

∂ψ
A−1

A Digression on Matrix Calculus (cont.)

Differentiation of Matrix Determinant

Laplace’s rule for determinants says

det(A) =
d∑

i=1

(−1)i+jaijmij

where aij are the elements of A and mij (a “minor”) is the
determinant of A with the i-th row and j-th column deleted.

Hence
∂ det(A)

∂aij
= (−1)i+jmij

A Digression on Matrix Calculus (cont.)

∂ det(A)

∂aij
= (−1)i+jmij

Differentiation of Matrix Determinant (cont.)

Cramer’s rule for determinants says that if B = A−1, then

bji =
(−1)i+jmij

det(A)

Putting these two together gives

∂ det(A)

∂aij
= det(A)bji

A Digression on Matrix Calculus (cont.)

B = A−1

∂ det(A)

∂aij
= det(A)bji

Differentiation of Matrix Determinant (cont.)

Now the chain rule says

∂ det(A)

∂ψ
=

d∑
i=1

d∑
j=1

∂ det(A)

∂aij

∂aij
∂ψ

= det(A)
d∑

i=1

d∑
j=1

bji
∂aij
∂ψ

= det(A) tr

(
A−1

∂A

∂ψ

)

A Digression on Matrix Calculus (cont.)

∂ det(A)

∂ψ
= det(A) tr

(
A−1

∂A

∂ψ

)

Differentiation of Matrix Determinant (cont.)

And, finally, the rule for the determinant of a logarithm says

∂ log det(A)

∂ψ
=

1

det(A)
· ∂ det(A)

∂ψ

= tr

(
A−1

∂A

∂ψ

)

A Digression on Matrix Calculus (cont.)

Summary

∂A−1

∂ψ
= −A−1

∂A

∂ψ
A−1

∂ log det(A)

∂ψ
= tr

(
A−1

∂A

∂ψ

)

Implicit Function Theorem (cont.)

p(α, b, ν) = l(a + Mα + Zb)− 1
2bTD−1b

− 1
2 log det

(
ZTW̃ ZD + I

) (†††)

pα(α, b, ν) = MT
[
y − µ(a + Mα + Zb)

]
pb(α, b, ν) = ZT

[
y − µ(a + Mα + Zb)

]
− D−1b

pνk (α, b, ν) = 1
2bTD−1EkD−1b − tr

([
ZTW̃ ZD + I

]−1
ZTW̃ ZEk

)

Implicit Function Theorem (cont.)

pα(α, b, ν) = MT
[
y − µ(a + Mα + Zb)

]
pb(α, b, ν) = ZT

[
y − µ(a + Mα + Zb)

]
− D−1b

pνk (α, b, ν) = 1
2bTD−1EkD−1b − tr

([
ZTW̃ ZD + I

]−1
ZTW̃ ZEk

)
pαα(α, b, ν) = −MTW (a + Mα + Zb)M

pαb(α, b, ν) = −MTW (a + Mα + Zb)Z

pανk (α, b, ν) = 0

pbb(α, b, ν) = −ZTW (a + Mα + Zb)Z − D−1

pbνk (α, b, ν) = D−1EkD−1b

pνkνm(α, b, ν) = −bTD−1EkD−1EmD−1b

+ tr
([

ZTW̃ ZD + I
]−1

ZTW̃ ZEk

×
[
ZTW̃ ZD + I

]−1
ZTW̃ ZEm

)

Implicit Function Theorem (cont.)

pbb(α, b, ν) = −ZTW (a + Mα + Zb)Z − D−1

Note that pbb(α, b, ν) is negative definite because W (·) is positive
definite valued (by strict convexity of cumulant functions).

Hence it is invertible, which is a good thing because we have been
writing pbb(ψ, b)−1 a lot, and invertibility is the condition for the
implicit function theorem to hold.

Implicit Function Theorem (cont.)

So that finishes our treatment of derivatives of q.

It is horribly messy, but doable.

We have an approximation to observed Fisher information.

Laplace Approximation (cont.)

Should any of this actually work? If so, when?

In essence, we are“assuming”(hoping?) that the complete data log
likelihood is approximately quadratic in the random effects, that is,
lc(α, b, ν) is approximately quadratic in b.

All of the “usual” asymptotics of maximum likelihood is about
approximating log likelihoods by quadratic functions. That theory
says that as n goes to infinity (for aster models n would be the
number of individuals, the number of independent bits of the data,
not number of individuals times number of nodes per individual)
and the number of parameters stays fixed, then the log likelihood
does get closer and closer to a quadratic function.

Laplace Approximation (cont.)

Thus so long as

number of random effects� number of individuals ≈ ∞

where � means “much larger than” and ≈ ∞ means “very large,”
we can expect that the Laplace approximation will be not bad.

Laplace Approximation (cont.)

How about that other approximation, that W (·) is a constant
function of its arguments?

Since W (·) is the second derivative of the cumulant function and
the second derivative of the log likelihood, that is equivalent to
assuming that the saturated model log likelihood is “in asymptopia”
(almost quadratic). And we have no reason to assume that, since
there is no p � n working here, where p is the number of
(saturated model parameters and n is the number of individuals (in
fact we have p � n because p is number of individuals times
number of nodes per individual).

Laplace Approximation (cont.)

But we didn’t quite need that W (·) is constant.

More precisely, what we actually used (“assumed”) was that
W (a + Mα + Zb) is a constant function of α and b.

And that is equivalent to assuming that the log likelihood for the
aster model that treats all the random effects as fixed effects is
approximately quadratic, and we expect that if

number of effects� number of individuals ≈ ∞

where “number of effects” means number of fixed effects + number
of random effects.

Laplace Approximation (cont.)

So both approximations follow the same logic and can be “justified”
by appeal to the “usual” asymptotics of maximum likelihood.

What this analysis tells us that putting in one random effect per
individual so

number of random effects ≥ number of individuals

should not work well.

Laplace Approximation (cont.)

Presumably, there are some theorems that could be proved here if
anyone wants to do it.

For now we make do with these heuristic arguments.

We repeat: if you don’t believe the asymptotics, do a parametric
bootstrap!

Zero Variance Components

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

) (†)

D−1 is undefined when any of the variance components νk are zero.

Define σk such that νk = σ2k but, contrary to the usual practice,
allow both positive and negative signs for σk .

Then define

A =
K∑

k=1

σkEk

a diagonal matrix whose diagonal elements are elements of the
vector σ having elements σk . Then

D = A2

Zero Variance Components (cont.)

q(α, ν) = l(a + Mα + Zb∗)− 1
2(b∗)TD−1b∗

− 1
2 log det

(
ZTW (a + Mα + Zb∗)ZD + I

) (†)

Now define
b = Ac

where c are IID standard normal, and b are normal with mean
vector zero and variance matrix D = A2, as required. Then

q(α, σ) = l(a + Mα + ZAc∗)− 1
2(c∗)T c∗

− 1
2 log det

(
AZTW (a + Mα + ZAc∗)ZA + I

) (♠)

where c∗ is the maximizer of the penalized likelihood for c

l(a + Mα + ZAc)− 1
2cT c

Zero Variance Components (cont.)

q(α, σ) = l(a + Mα + ZAc∗)− 1
2(c∗)T c∗

− 1
2 log det

(
AZTW (a + Mα + ZAc∗)ZA + I

) (♠)

As before, if we make W constant,

q(α, σ) = l(a + Mα + ZAc∗)− 1
2(c∗)T c∗

− 1
2 log det

(
AZTW̃ ZA + I

) (♥)

we have
q(α, σ) = sup

c∈Rd

p(α, c, σ)

where

p(α, c, σ) = l(a + Mα + ZAc)− 1
2cT c

− 1
2 log det

(
AZTW̃ ZA + I

) (♦)

Zero Variance Components (cont.)

This change-of-parameter-and-random-effects has virtues and vices.

Virtues

Approximate log likelihood defined and continuously
differentiable for all parameter values (no problem with zero
variance components).

No need for constrained optimization (σk allowed to be
negative).

Vices

qσk (α, σ) = 0 by symmetry. Cannot use first derivative equal
to zero as test for solution.

Analog of −qψψ(ψ) for this parameterization even more
computationally unstable than in the other parameterization
(more likely to get failure to be positive definite due to
inexactness of computer arithmetic).

Zero Variance Components (cont.)

To obtain the virtues and avoid the vices, we use this
change-of-parameter-and-random-effects in optimization.

But we derived a test for whether variance components are zero
using the original parameterization and random effects.

And we calculate approximate observed Fisher information using
the original parameterization.

Overall Algorithm

Back to schizophrenia.

Define

q(σ) = l(a + Mα̃ + ZAc̃)− 1
2 c̃T c̃

− 1
2 log det

(
AZTW (a + Mα̃ + ZAc̃)ZA + I

) (♣)

where α̃ and c̃ are the joint maximizers of the penalized likelihood

l(a + Mα + ZAc)− 1
2cT c

so α̃ and c̃ and A are functions of σ although the notation does
not explicitly indicate this.

The maximizers α̃ and c̃ are unique if they exist by strict concavity
of l .

Overall Algorithm (cont.)

q(σ) = l(a + Mα̃ + ZAc̃)− 1
2 c̃T c̃

− 1
2 log det

(
AZTW (a + Mα̃ + ZAc̃)ZA + I

) (♣)

Maximize (♣) using a no-derivative method of optimization (the
optim function using the default "Nelder-Mead" method) giving
solutions σ̂, α̂ = α̃(σ̂) and ĉ = c̃(σ̂).

There is no justification for our optimizing jointly over α and c in
the penalized likelihood step rather than only over c. These
produce the same results when we assume W is constant. But here
we are not assuming W is constant.

Breslow and Clayton (1993) do the same thing we do. Again,
Laplace approximation is only a motivation, not actually used.

Overall Algorithm (cont.)

p(α, c, σ) = l(a + Mα + ZAc)− 1
2cT c

− 1
2 log det

(
AZTW̃ ZA + I

) (♦)

The fact that we did the wrong thing does not matter because we
only use it as a preliminary estimate.

Set
W̃ = W

(
a + Mα̂ + ZA(σ̂)ĉ

)
where α̂, ĉ, and σ̂ are the solutions from the previous estimate.

Minimize (♦) in α, c, and σ jointly using a high-precision
optimization algorithm that uses second derivatives (the trust

function in the trust package).

Repeat until estimates don’t change (because W̃ doesn’t).

Overall Algorithm (cont.)

Now have putative solutions α̂, ĉ, and σ̂.

Patch up, changing signs of σ̂ so all are positive and reversing the
signs of the corresponding components of ĉ so

b̂ = A(σ̂)ĉ

still makes sense. Estimates of variance components are ν̂k = σ̂2k .

Calculate approximate observed Fisher information in the original
parameterization −qψψ(ψ̂).

Overall Algorithm (cont.)

Test for Zero Variance Components

p̄νj (α, b, ν)− 1

4

∑
i∈I

dii=νj

p̄bi (α, b, ν)2 (�)

where p̄ is the part of p that does not contain D−1.

A sufficient condition for νj > 0 is (�) being negative. Conversely,
we appear to have ν̂j = 0 if (�) is nonnegative.

For once we will spare you the derivation (which is long and
involves a lot of optimization theory that statisticians don’t know).
A full derivation is in TR 692.

REML?

This is not the place to explain REML (restricted maximum
likelihood because we do not use it).

The general idea is that it produces inflated estimates of variance
components that are roughly analogous to dividing by n − p in
regression. But it does not produce unbiased estimators of variance
components.

REML is based on a marginal likelihood that is a function of
variance components only (so, strictly speaking, it does not
estimate fixed effects).

There is always a question whether REML or plain ML is preferred.

We like ML, especially when inference about fixed effects of
primary interest.

REML? (cont.)

Breslow and Clayton (1993) depart even further from simple
Laplace approximation, doing something they say is an analog of
REML.

Of course, it has none of the properties of real REML for LMM.

AFAIK, no one uses exactly the REML-like scheme of Breslow and
Clayton (1993), although many implementers of GLMM software
use some REML-like scheme of their own.

We don’t.

Our algorithm is as described above. No “REML-like” aspects.

A Formula Attributed to Lewis

For any missing data model with complete data density fθ(x , y)
with x missing and y observed and log likelihood

l(θ) = log

∫
fθ(x , y) dx

we have

∇2l(θ) = Eθ{∇2 log fθ(X ,Y) | Y = y}
+ varθ{∇ log fθ(X ,Y) | Y = y}

(a formula attributed to Lewis, Journal of the Royal Statistical
Society, Series B, 1982, in the EM literature, although also found
in Sundberg, Scandinavian Journal of Statistics, 1974).

A Formula Attributed to Lewis (cont.)

∇2l(θ) = Eθ{∇2 log fθ(X ,Y) | Y = y}
+ varθ{∇ log fθ(X ,Y) | Y = y}

The left-hand side is a negative definite matrix for θ near the MLE.
The second term on the right-hand side is positive definite (like all
variance matrices). Hence the first term on the right-hand side
must be even more negative definite than the left-hand side.

The left-hand side may be close to singular although neither term
on the right-hand side is.

Why missing data is hard: observed Fisher information is much less
than if missing data were observed.

A Formula Attributed to Lewis (cont.)

∇2l(θ) = Eθ{∇2 log fθ(X ,Y) | Y = y}
+ varθ{∇ log fθ(X ,Y) | Y = y}

Our analog

qψψ(ψ) = pψψ(ψ, b∗) + pψb(ψ, b∗)b∗ψ(ψ)

= pψψ(ψ, b∗)− pψb(ψ, b∗)pbb(ψ, b∗)−1pbψ(ψ, b∗)

Not the same, but right-hand side is the difference of negative
definite matrices. The left-hand side may be close to singular
although neither term on the right-hand side is.

Why random effects are hard: approximate observed Fisher
information is much less than if random effects were observed.

Peas

Partridge pea (Chamaecrista fasciculata) collected and first
analyzed by Julie Etterson (Etterson, Evolution, 2004; Etterson
and Shaw, Science, 2001). (The Evolution reference is two papers,
a “I” and a “II”.)

These data have been re-analyzed using aster models twice in
Shaw, et al. (2008) and once more in Geyer, et al. (2013). Only
the latter uses random effects, and that is the one we present here.

There are several R data sets containing parts of these data. The
one we want here is in the dataset chamae3 in the aster package.

> library(aster)

> data(chamae3)

> dim(chamae3)

[1] 19062 11

Peas (cont.)

The graph is

1
Ber−−−−→ y1

0-Poi−−−−→ y2

y1 being an indicator of whether any fruits were produced, y2 being
the count of the number of fruits produced, the unconditional
distribution of y1 being Bernoulli, and the conditional distribution
of y2 given y1 being zero-truncated Poisson.

> levels(chamae3$varb)

[1] "fecund" "fruit"

Peas (cont.)

> sapply(chamae3, class)

SIRE DAM POP SITE ROW

"factor" "factor" "factor" "factor" "integer"

BLK varb resp id root

"factor" "factor" "numeric" "integer" "numeric"

fit

"numeric"

The variables varb, resp, id, root, and fit are as usual for an
aster model (the latter the indicator of “fitness nodes” which here
are terminal nodes).

Peas (cont.)

C. fasciculata grows in the Great Plains of North America from
southern Minnesota to Mexico. Three populations were sampled in
the following locations

1 Kellog-Weaver Dunes, Wabasha County, Minnesota

2 Konza Prairie, Riley County, Kansas

3 Pontotoc Ridge, Pontotoc County, Oklahoma

(the numbers for the list items correspond to the levels of the
variable POP in the dataset). These sites are progressively more
arid from north to south and also differ in other characteristics.

Peas (cont.)

Seed pods were collected from 200 plants in each population,
crosses were done, germinated, and raised in the greenhouse. The
parent plants are indicated by the variables SIRE and DAM in the
dataset. The seedlings from the greenhouse were planted using a
randomized block design (Etterson, 2004) in three field sites

"O" Robert S. Kerr Environmental Research Center, Ada,
Oklahoma

"K" Konza Prairie Research Natural Area, Manhatten, Kansas

"M" University of Minnesota, St. Paul Minnesota

(the characters for the list items correspond to the levels of the
variable SITE in the dataset). The Oklahoma field site was 30 km
northwest of the Oklahoma population; the Kansas field site was 5
km from the Kansas population; the Minnesota field site was 110
km northwest of the Minnesota population.

Peas (cont.)

That explains SIRE, DAM, POP, and SITE.

BLK (block) is nested within site. We did not use ROW in our
re-analysis.

In our re-analysis, we analyze each of the nine population-site pairs
independently. So we split the data on POP and SITE. We do not
include these variables in the model.

All nine re-analyses are in TR 692. Here we show only one
(Kansas-Kansas).

> inies <- as.character(chamae3$SITE) == "K"

> inies <- inies & as.character(chamae3$POP) == "2"

> subdata <- subset(chamae3, inies)

> dim(subdata)

[1] 2342 11

Peas (cont.)

Now that we are analyzing only one site and only one population,
our remaining predictors are BLK, SIRE, and DAM.

Quantitative genetics theory says we should treat SIRE and DAM as
random effects representing the genetic contribution of parents to
offspring.

Peas (cont.)

> pred <- c(0,1)

> fam <- c(1,3)

> woof <- suppressWarnings(try(load("peas.rda"),

+ silent = TRUE))

> if (inherits(woof, "try-error")) {

+ rout <- reaster(resp ~ varb + fit : BLK,

+ list(sire = ~ 0 + fit:SIRE, dam = ~ 0 + fit:DAM),

+ pred, fam, varb, id, root, data = subdata)

+ save(rout, file = "peas.rda")

+ }

Peas (cont.)

> summary(rout)

Call:

reaster.formula(fixed = resp ~ varb + fit:BLK, random = list(sire = ~0 +

fit:SIRE, dam = ~0 + fit:DAM), pred = pred, fam = fam, varvar = varb,

idvar = id, root = root, data = subdata)

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -88.178261 1.429153 -61.70 <2e-16 ***

varbfruit 93.779086 1.429651 65.60 <2e-16 ***

fit:BLK1 -0.563040 0.005827 -96.63 <2e-16 ***

fit:BLK2 -0.277439 0.005319 -52.16 <2e-16 ***

fit:BLK3 -0.068424 0.005062 -13.52 <2e-16 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Square Roots of Variance Components (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

sire 0.12085 0.02999 4.029 2.8e-05 ***

dam 0.23771 0.01700 13.986 < 2e-16 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Peas (cont.)

Everything is highly statistically significant.

This was not true in all nine of the separate population-site
analyses. Geyer, et al. (2013) say

We found that the sire variance components for the
Minnesota and Oklahoma natural population are not
close to statistically significant at the Minnesota field
site. All the other sire variance components are at least
borderline statistically significant.

All nine aster analyses are all in Appendix B of TR 692.

The P-values called not close to statistically significant are 0.5 and
0.381.

The P-values called at least borderline statistically significant are
0.0565, 0.0406, 0.0305, 0.00681, 0.00092. 7.99× 10−5, and
2.8× 10−5.

Peas (cont.)

Geyer et al. (2013) also say

We focus on sire effects although dam effects are also
treated as random effects because in this experimental
design sire effects are expected to correspond closely to
pure breeding values but dam effects will be confounded
with maternal and dominance effects.

“Breeding values” are another name for additive genetic effects.
They are the ones that figure in evolutionary theory.

The dam effects were all highly statistically significant (all reported
as P < 2× 10−16), so we need them in the model, but they are
not of scientific interest with this experimental design.

Peas (cont.)

So what are these sire effects? Since they are not parameters, we
do not have parameter estimates of them. But we do have the b̂
values — the PQL estimates when α and ν are at the MLE.

> bhat <- rout$b

> head(names(bhat))

[1] "fit:SIRE2001" "fit:SIRE2003" "fit:SIRE2010"

[4] "fit:SIRE2012" "fit:SIRE2016" "fit:SIRE2020"

> bhat.sire <- bhat[grep("SIRE", names(bhat))]

> length(bhat.sire)

[1] 50

Peas (cont.)

> stem(bhat.sire)

The decimal point is 1 digit(s) to the left of the |

-2 | 30

-1 |

-1 | 32000

-0 | 88865555

-0 | 3221111000

0 | 222233344

0 | 55566667889

1 | 0014

1 | 5

Peas (cont.)

Looks fairly normal.

Of course they would because the ridge-type penalty tries to make
them so.

This is a well known fact about least squares. The residuals from
least squares look a lot more normal than the errors.

This is the reason for looking at leave-one-out residuals and at
residuals from robust regression methods.

Geyer, et al. (2013) checked this by redoing the PQL step with
much smaller penalty, that is, much larger ν than n̂. This spreads
out the resulting b∗, but it just approximately multiplies them by a
constant so they still look normal (Figures 7 through 9 in TR 692).

Peas (cont.)

We also want to map these b̂ values from the canonical parameter
scale to the mean value parameter scale (actual expected fitness).

This is a different form of “prediction” than we looked at before.
Here it is the random effects that are of interest. We don’t want to
just make them zero in the “prediction”.

Or, more precisely, we do want to set the dam effects to zero
(because we are not interested in them) but do not want to set the
sire effects to zero.

Again we see why there is no function predict.reaster. The
many jobs that are some sort of “prediction” are too much for any
one function. Worse, it seems that every new application needs a
new kind of “prediction” so we cannot yet imagine all the kinds of
“prediction” that someone might want to do.

Peas (cont.)

We need the nonlinear mapping ϕ→ µ. There are two functions in
the aster package that do this.

The function predict.aster goes from β to θ, ϕ, ξ, or µ
(with some fooling around necessary to get ξ).

The function astertransform goes from either θ or ϕ to any
of θ, ϕ, ξ, and µ.

Essentially, the first does parameter transformations for submodels
(including submodels for hypothetical data), and the second does
parameter transformations for the saturated model.

So for this job we use the former, following TR 692, Section 8.6.

Peas (cont.)

To use predict.aster we need a fixed effect model fit and there
is one in rout

> class(rout$obj)

[1] "aster" "asterOrReaster"

Peas (cont.)

> hoom <- predict(rout$obj, newcoef = rout$alpha)

> hoom <- matrix(hoom, ncol = 2)

> hoom <- hoom[, 2]

> unique(hoom)

[1] 154.1282 205.0772 252.7500 270.6497

These are predictions for the second node of the graph,
unconditional expected fitness for each block.

Peas (cont.)

Here we use the prediction for the first individual in the data.

> hoom[1]

[1] 154.1282

> as.character(subdata$BLK)[1]

[1] "1"

who appears to be in block 1.

Peas (cont.)

> rout$alpha

(Intercept) varbfruit fit:BLK1 fit:BLK2

-88.17826056 93.77908583 -0.56304041 -0.27743889

fit:BLK3

-0.06842436

Our strategy is to add a component of b̂ that we want to map to
the mean value parameter scale to the fit:BLK1 fixed effect,
predict, and take the value of the second node for the first
individual.

Peas (cont.)

Here’s a function to do this.

> map <- function(b) {

+ stopifnot(length(b) == 1)

+ stopifnot(is.finite(b))

+ alpha <- rout$alpha

+ alpha[3] <- alpha[3] + b

+ hoom <- predict(rout$obj, newcoef = alpha)

+ hoom <- matrix(hoom, ncol = 2)

+ return(hoom[1, 2])

+ }

Peas (cont.)

The following code makes the figure on the next slide

> fred <- Vectorize(map)

> curve(fred, from = - 1 / 2, to = 1 / 2, xlab = "b",

+ ylab = expression(mu(b)))

Peas (cont.)

−0.4 −0.2 0.0 0.2 0.4

10
0

15
0

20
0

25
0

b

µ(
b)

Figure : Mapping random effects from canonical parameter scale to mean
value parameter scale.

Peas (cont.)

And voila!

> bhat.sire.mu <- fred(bhat.sire)

> stem(bhat.sire.mu)

The decimal point is 1 digit(s) to the right of the |

12 | 26

13 | 57

14 | 000222567779

15 | 122333444777899

16 | 00022333445779

17 | 0127

18 | 0

Peas (cont.)

We can, perhaps, consider the differences of these from the value
for b = 0 to be the additive genetic effects for fitness

> stem(bhat.sire.mu - map(0))

The decimal point is 1 digit(s) to the right of the |

-3 | 2

-2 | 8

-1 | 97444222

-0 | 987775422111000

0 | 33345556688999

1 | 000235678

2 | 36

The Fundamental Theorem of Natural Selection

In R. A. Fisher’s 1930 book The Genetical Theory of Natural
Selection he formulated the “fundamental theorem of natural
selection” (FTNS) which states that the expected change in fitness
per generation is equal to the additive genetic variance for fitness
divided by mean fitness.

The Fundamental Theorem of Natural Selection (cont.)

FTNS is like Lande-Arnold analysis but without phenotypic trait
“predictors”.

Lande-Arnold beta “predicts” change in those phenotypic traits in
one generation of selection.

FTNS “predicts” change in expected fitness itself in one generation
of selection.

The Fundamental Theorem of Natural Selection (cont.)

FTNS makes qualitative sense. If there were no genetic variation
there could be no evolution. It is not so obvious that only additive
genetic variance matters, but that is what quantitative genetic
theory says.

The Fundamental Theorem of Natural Selection (cont.)

We follow TR 696 (yet another TR) in this bit.

Here is the main idea.

We know additive genetic variance on the canonical parameter
scale.

We need to transfer it to the mean value parameter scale.

How do we do that? The delta method.

How do we get the Jacobian matrix we need for the delta method?

The R function predict.aster returns it as the gradient

component of the returned object when se.fit = TRUE.

The Fundamental Theorem of Natural Selection (cont.)

Let us return to our β → µ mapping and add the gradient.

> hoom <- predict(rout$obj, newcoef = rout$alpha,

+ se.fit = TRUE)

> goom <- hoom$gradient

> dim(goom)

[1] 2342 5

> colnames(goom)

NULL

The Fundamental Theorem of Natural Selection (cont.)

> names(rout$alpha)

[1] "(Intercept)" "varbfruit" "fit:BLK1"

[4] "fit:BLK2" "fit:BLK3"

> moom <- goom[, 3]

> moom <- matrix(moom, ncol = 2)

> moom[1 , 2]

[1] 154.1282

There is our derivative of mean fitness for an individual in block 1
with respect to the beta for block 1, the beta to which we added b
in our mapping of b from β to µ.

The Fundamental Theorem of Natural Selection (cont.)

Now the “Jacobian” (here just an ordinary derivative) is squared in
the delta method

> names(rout$nu)

[1] "sire" "dam"

> 4 * moom[1 , 2]^2 * rout$nu[1] / map(0)

sire

9.004205

The factor of 4 comes from the fact that for this particular
experimental design (not in general) the variance due to sires is
1/4 of the additive genetic variance.

Aster Models with Random Effects

And that’s it.

Everything is moderately straightforward except:

Cannot do models with one random effect per individual.

Cannot really trust this stuff. Have to parametric bootstrap
for complete confidence.

“Prediction” means different things in different contexts, and
we probably haven’t even thought of them all. There is no
predict.reaster that just does what you want.

