
Stat 8931 (Aster Models)
Lecture Slides Deck 4

Charles J. Geyer

School of Statistics
University of Minnesota

June 7, 2015

The Delta Method

The delta method is a method (duh!) of deriving the approximate
distribution of a nonlinear function of an estimator from the
approximate distribution of the estimator itself.

What it does is linearize the nonlinear function. If g is a nonlinear,
differentiable vector-to-vector function, the best linear
approximation, which is the Taylor series up through linear terms, is

g(y)− g(x) ≈ ∇g(x)(y − x),

where ∇g(x) is the matrix of partial derivatives, sometimes called
the Jacobian matrix. If gi (x) denotes the i-th component of the
vector g(x), then the (i , j)-th component of the Jacobian matrix is
∂gi (x)/∂xj .

The Delta Method (cont.)

The delta method is particularly useful when θ̂ is an estimator and
θ is the unknown true (vector) parameter value it estimates, and
the delta method says

g(θ̂)− g(θ) ≈ ∇g(θ)(θ̂ − θ)

It is not necessary that θ and g(θ) be vectors of the same
dimension. Hence it is not necessary that ∇g(θ) be a square
matrix.

The Delta Method (cont.)

The delta method gives good or bad approximations depending on
whether the spread of the distribution of θ̂ − θ is small or large
compared to the nonlinearity of the function g in the neighborhood
of θ.

The Taylor series approximation the delta method uses is a good
approximation for sufficiently small values of θ̂ − θ and a bad
approximation for sufficiently large values of θ̂ − θ.

So the overall method is good if those “sufficiently large” values
have small probability. And bad otherwise.

The Delta Method (cont.)

As with nearly every application of approximation in statistics, we
rarely (if ever) do the (very difficult) analysis to know whether the
approximation is good or bad.

We just use the delta method and hope it gives good results.

If we are really worried, we can check it using simulation (also
called the parametric bootstrap).

The Delta Method (cont.)

The delta method is particularly easy to use when the distribution
of θ̂ − θ is multivariate normal, exactly or approximately.

If it is only approximately normal, then this is another
approximation in addition to the Taylor series approximation.

The reason this is easy is that normal distributions are determined
by their mean vector and variance matrix, and there is a theorem
which gives the mean vector and variance matrix of a linear
function of a random vector.

The Delta Method (cont.)

Theorem. Suppose X is a random vector, a is a nonrandom
vector, and B is a nonrandom matrix such that a + BX makes
sense (because a, B, and X have dimensions such that the
indicated vector addition and matrix-vector multiplication are
defined). Then

E (a + bX) = a + BE (X)

var(a + bX) = B var(X)BT

A proof is given on slides 64–67 of deck 2 of my Stat 5101 course
slides.

Another way to say this is that if E (X) = µ and var(X) = V , then

E (a + bX) = a + Bµ

var(a + bX) = BVBT

The Delta Method (cont.)

So suppose θ̂ is normal with mean vector θ and variance matrix V ,
and write B = ∇g(θ), then θ̂ − θ has mean vector 0 and variance
matrix V , and

E
{
g(θ̂)− g(θ)

}
≈ 0

var
{
g(θ̂)− g(θ)

}
≈ BVBT

The Delta Method (cont.)

The Delta Method for Approximately Normal Estimators.
Suppose θ̂ is approximately normal with mean vector θ and
variance matrix V (θ). Suppose g is a vector-to-vector function
with derivative ∇g(θ) = B(θ). Then g(θ̂) is approximately normal
with mean vector g(θ) and variance matrix B(θ)V (θ)B(θ)T .

The Delta Method (cont.)

An approximate confidence region for g(θ) is centered at g(θ̂) and
has extent determined by B(θ)V (θ)B(θ)T . but we do not know
that because we do not know θ (the true unknown parameter
value).

Thus we make a last approximation and plug-in θ̂ for θ in the
variance and use B(θ̂)V (θ̂)B(θ̂)T .

This is known as the plug-in principle.

(For the statisticians in the audience, it is an application of
Slutsky’s theorem.)

The Delta Method (cont.)

Recall from deck 2 of these slides that the maximum likelihood
estimator in an unconditional canonical affine submodel of an aster
model can be written

β̂ = h−1(MT y)

where h is the transformation from canonical to mean value
parameters given by

h(β) = ∇csub(β) = MT∇c(a + Mβ)

and has derivative

∇h(β) = ∇2csub(β) = MT∇2c(a + Mβ)M

The Delta Method (cont.)

And by the inverse function theorem of real analysis, the derivative
of the inverse function is the (matrix) inverse of the derivative of
the forward function

∇h−1(τ) =
[
∇h(β)

]−1
, when τ = h(β) and β = h−1(τ).

Fisher Information

The matrix that appeared in the derivative of the
canonical-to-mean-value parameter map plays a very important
role in likelihood inference.

The observed Fisher information matrix is minus the second
derivative matrix of the log likelihood.

The expected Fisher information matrix is the expectation of
the observed Fisher information matrix.

Fisher Information (cont.)

What Fisher information is depends on what the parameter is
(what you are differentiating with respect to).

It also depends on what the model is (what the log likelihood is).

Thus, to be pedantically correct, we need decoration to indicate

observed or expected,

the model, and

the parameter

Sometimes we are not so fussy and let the context indicate what
we mean.

Fisher Information (cont.)

For log likelihood l for parameter ϕ, observed Fisher information
(for this model and parameter) is

Iobs(ϕ) = −∇2l(ϕ)

and expected Fisher information (for this model and parameter) is

Iexp(ϕ) = Eϕ{Iobs(ϕ)} = Eϕ{−∇2l(ϕ)}

Fisher Information (cont.)

If this is the log likelihood for a full exponential family

l(ϕ) = 〈y , ϕ〉 − c(ϕ),

then
Iobs(ϕ) = −∇2l(ϕ) = ∇2c(ϕ)

and since this is a nonrandom quantity, it is its own expectation
(expectation of a constant is that constant), so

Iexp(ϕ) = ∇2c(ϕ)

too.

Fisher Information (cont.)

Thus for a full exponential family, in general, and for saturated
aster models and their unconditional canonical affine submodels, in
particular, there is no difference between observed and expected
Fisher information for the unconditional canonical parameter, and
we can just write

I (ϕ) = ∇2c(ϕ)

Fisher Information (cont.)

But even restricting to Fisher information for the unconditional
canonical parameter, we distinguish Fisher information for
saturated models and canonical affine submodels

Isat(ϕ) = ∇2c(ϕ)

Isub(β) = ∇2csub(β)

= MT∇2c(a + Mβ)M

Fisher Information (cont.)

To figure out Fisher information for other parameters, there are
two ways to go:

Write the log likelihood in terms of the new parameter,
differentiate it twice, negate it, and take an expectation, if
expected Fisher information is wanted.

Prove a theorem about how Fisher information transforms
under change-of-parameter.

(The latter is just the former done abstractly and once and for all,
rather than concretely and repeated for each problem.)

Fisher Information Transforms by Covariance

If ψ is another parameter, then

∂l(ψ)

∂ψi
=
∑

k

∂l(ϕ)

∂ϕk

∂ϕk

∂ψi

(the multivariable chain rule), and

∂2l(ψ)

∂ψi∂ψj
=
∑

k

∑
l

∂2l(ϕ)

∂ϕk∂ϕl

∂ϕk

∂ψi

∂ϕl

∂ψj
+
∑

k

∂l(ϕ)

∂ϕk

∂2ϕk

∂ψi∂ψj

This is somewhat ugly. But if we plug in the MLE for ϕ, the
second term is zero because ∇l(ϕ̂) = 0 (the first derivative is zero
at the maximum). The second term also goes away for expected
Fisher information because Eϕ{∇l(ϕ)} = 0 by a differentiation
under the integral sign argument proved in theoretical statistics
courses (slides 33–35 and 86 of my 5102 course slides).

Fisher Information Transforms by Covariance (cont.)

This gives the tranformation rules

Iexp,ψ(ψ) = B(ψ)T Iexp,ϕ(ϕ)B(ψ)

where

ϕ = h(ψ)

B(ψ) = ∇h(ψ)

and
Iobs,ψ(ψ̂) = B(ψ̂)T Iobs,ϕ(ϕ̂)B(ψ̂)

with the same conditions and ϕ̂ = h(ψ̂).

Fisher Information and MLE

The so-called “usual” asymptotics of maximum likelihood says the
asymptotic (large sample, approximate) distribution of the MLE is
normal with mean vector the true unknown parameter value and
variance inverse Fisher information (either observed or expected,
but for that particular model and parameter).

For full exponential families, this is an application of the delta
method.

Fisher Information and MLE (cont.)

Recall again (from just before we started talking about Fisher
information) for a unconditional canonical affine submodel of an
aster model

β̂ = h−1(MT y)

where

h(β) = ∇csub(β) = MT∇c(a + Mβ)

∇h(β) = ∇2csub(β) = MT∇c(a + Mβ)M

and

∇h−1(τ) =
[
∇h(β)

]−1
, when τ = h(β) and β = h−1(τ).

Fisher Information and MLE (cont.)

The mean vector and variance matrix of the submodel canonical
statistic

E{MT y} = MTµ

var{MT y} = MT∇2c(a + Mβ)M = I (β)

(the latter is the submodel Fisher information matrix for β).

Assume (more on this later) that the distribution is approximately
multivariate normal with this mean vector and variance matrix.

Fisher Information and MLE (cont.)

Recognize that in the change of parameter τ ←→ β we have

∇h(β) = I (β)

∇h−1(τ) = I (β)−1

(when τ = h(β) and β = h−1(τ)).

And recognize τ̂ = MT y (observed equals expected).

So the delta method says the approximate normal distribution of
β̂ = h−1(τ̂) has mean vector

β = h−1(τ) = h−1(MTµ)

and variance matrix[
∇h−1(τ)

]
var(τ̂)

[
∇h−1(τ)

]
= I (β)−1I (β)I (β)−1 = I (β)−1

Asymptotics

Suppose X1, X2, . . . is an infinite sequence of IID random vectors,
each having mean vector µ and variance matrix V . Define

Xn =
1

n

n∑
i=1

Xi .

Then √
n(Xn − µ)

D−→ Normal(0,V). (1)

Statement (1) is called the central limit theorem (CLT).

The type of convergence it uses is called convergence in
distribution. It means the distribution of the random vector on
the left-hand side (which is a different distribution for each n) gets
closer and closer to the distribution on the right-hand side as n
goes to infinity.

Asymptotics (cont.)

The sense in which it gets “closer and closer” we leave vague.
Roughly speaking, probabilities and expectations “nice enough”
events and random variables calculated with respect to the
distribution of the left-hand side (which is a different distribution
for each n) get closer and closer to the corresponding probabilities
and expectations calculated with respect to the distribution of the
right-hand side.

The story about n going to infinity is not really interesting.

In practice we have a distribution we want to calculate, the exact
distribution of some random quantity for the actual n of the data
we are analyzing. But this is too hard, so we use the asymptotic
approximation. But the actual n of our actual data is not going to
infinity or anywhere else.

Asymptotics (cont.)

Asymptotic approximation does not approximate all probabilities
and expectations with the same accuracy at the same n. It may be
fairly good for some and very poor for others.

The accuracy of asymptotic approximation is absolute not relative.
An asymptotic approximation P = 1.35× 10−9 has good absolute
accuracy if the true probability being approximation is any fairly
small number, perhaps P = 0.001.

Asymptotics (cont.)

Despite its limitations, asymptotic approximation is the only game
in town. For all models more complicated than LM, including GLM
and aster models, no exact sampling distributions are available.

We have to use asymptotic approximation even though we have no
idea what its accuracy is.

We will later learn about a very time-consuming method called the
parametric bootstrap which tells us something about how well
asymptotics work but it itself justified asymptotically.

Most researchers do not use the parametric bootstrap routinely.
Many never use it.

Asymptotics Summary

The two main tools of asymptotic approximation are the central
limit theorem and the delta method. For an unconditional aster
model they say β̂ has approximately the multivariate normal
distribution with mean β (the true unknown parameter value) and
variance I (β̂)−1 (inverse Fisher information).

If worried about whether the asymptotic approximation is good,
parametric bootstrap.

The same recipe works for any other parameter, just replace β
everywhere with ξ or whatever, but one has to use inverse Fisher
information for that parameter.

Asymptotics Summary (cont.)

Alternatively, one can use the delta method again.

If ψ = g(β) for any differentiable function g , and G (β) = ∇g(β)
and ψ̂ = g(β̂), then ψ̂ has approximately the multivariate normal
distribution with mean ψ (the true unknown parameter value) and
variance

G (β̂)I (β̂)−1G (β̂)T

This is the method actually used by the R functions
predict.aster and predict.aster.formula.

If worried about whether the asymptotic approximation is good,
parametric bootstrap.

The Theory of Population Growth Rates

Example 1 in the second paper about aster models (Shaw, Geyer,
Wagenius, Hangelbroek and Etterson, American Naturalist, 2008)
is about estimating population growth rate.

This theory has its origins in books by Lotka (1925) and Fisher
(1930) and papers by Leslie (1945), but we were following a paper
by Lenski and Service (Ecology, 1982) that proposed using a
statistical technique called the “jackknife” to estimate standard
errors for estimates of the population growth rate. They in turn
cite a paper by Goodman (1968) for derivation of the theory, so
that is where the theory presented here comes from.

The Theory of Population Growth Rates (cont.)

Suppose we have a graph

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ · · · Ber−−−−→ yn−1

Ber−−−−→ ynyPoi

yPoi

yPoi

yPoi

yn+1 yn+2 · · · y2n−1 y2n

where the dots indicate more of the same. The variables in the
first row are survival indicators and the variables in the second row
are offspring counts (we could more layers between survival and
offspring counts).

The Theory of Population Growth Rates (cont.)

Write
ξ∗j = ξn+j , j = 1, . . . , n

We consider j to index age classes rather than time. (Individuals
are born at different times, but yj and yn+j refer to survival and
fecundity, respectively, at age j for all individuals.)

So

ξj is the conditional probability that an individual alive at age
j − 1 survives to age j , and

ξ∗j is the conditionally expected number of offspring produced
at age j given survival to age j .

The Theory of Population Growth Rates (cont.)

We introduce the same convention for unconditional mean values

µ∗j = µn+j , j = 1, . . . , n

The relation between conditional and unconditional mean values is

µj =

j∏
k=1

ξk

and
µ∗j = µjξ

∗
j

The Theory of Population Growth Rates (cont.)

We want to consider a population of individuals undergoing
exponential growth. Let πj(t) denote the expected number of
individuals of age j at time t, and suppose that we only observe at
times t spaced in the same way as the age classes. Then we have

πj(t) = πj−1(t − 1)ξj , j = 1, . . . , n (2a)

with

π0(t) =
n∑

j=1

πj(t − 1)ξ∗j (2b)

being the number of individuals born at time t (all offspring when
just born go into age class zero where they have no past mortality).

All of this is a bit crude, ignoring the variations of age within an
age class, but it is the basis of a huge literature.

The Theory of Population Growth Rates (cont.)

The exponential growth assumption is

πj(t) = πjλ
t , for all j and t (3)

where πj is simplified notation for πj(0).

This too is an oversimplification. It can be shown that if we do not
introduce this assumption that we will have

πj(t) ≈ πjλt

for very large t, where now πj is not πj(0). Rather πj are
components of the eigenvector of the “Leslie matrix” corresponding
to the largest eigenvalue, which is λ (with the eigenvector
normalized to make this equation work).

The Theory of Population Growth Rates (cont.)

But exponential growth always comes up against resource limits
and stops, so the value of this asymptotic theory is limited and
unlike statistical asymptotic theory (the central limit theorem and
the delta method) there is no method analogous to the parametric
bootstrap of checking validity of exponential growth. So we will
just assume it.

The Theory of Population Growth Rates (cont.)

πj(t) = πj−1(t − 1)ξj (2a)

Iterating (2a) we get

πj(t) = πj−1(t − 1)ξj

= πj−2(t − 2)ξj−1ξj

= πj−3(t − 3)ξj−2ξj−1ξj
...

= π0(t − j)

j∏
k=1

ξk

= π0(t − j)µj

(4)

The Theory of Population Growth Rates (cont.)

πj(t) = πjλ
t (3)

πj(t) = µjπ0(t − j) (4)

From the exponential growth assumption (3) we get

π0(t)

π0(t − j)
= λj (5)

Hence, combining (4) and (5), we get

πj(t)

π0(t)
=
µjπ0(t − j)

π0(t)
=
µj
λj

(6)

The Theory of Population Growth Rates (cont.)

πj(t)

π0(t)
=
µj
λj

(6)

Define

ν(t) =
n∑

j=0

πj(t)

(the total population size at time t). Combining this with (6) gives

ν(t)

π0(t)
=

n∑
j=0

πj(t)

π0(t)
=

n∑
j=0

µj
λj

(7)

Divide (7) into (6) to get

πj(t)

ν(t)
=

µjλ
−j∑n

k=1 µkλ
−k

The Theory of Population Growth Rates (cont.)

π0(t) =
n∑

j=1

πj(t − 1)ξ∗j (2b)

πj(t) = µjπ0(t − j) (4)

Combine (2b) and (4) to get

π0(t) =
n∑

j=1

µjπ0(t − j − 1)ξ∗j

Plugging in µ∗j = µjξ
∗
j (relation between conditional and

unconditional means) and dividing through by π0(t), this becomes

1 =
n∑

j=1

µ∗j
π0(t − j − 1)

π0(t)
(8)

The Theory of Population Growth Rates (cont.)

π0(t)

π0(t − j)
= λj (5)

1 =
n∑

j=1

µ∗j
π0(t − j − 1)

π0(t)
(8)

Combining (5) and (8) we get

1 =
n∑

j=1

µ∗j λ
−(j+1) (?)

We have arrived at the stable age equation, equation (27) in
Goodman (Demography, 1968), equation (1) in Lenski and Service
(Ecology, 1982) and equation (5.1) in the technical report (U. of
M. School of Statistics TR 658) that does the calculations for the
paper Shaw, Geyer, Wagenius, Hangelbroek and Etterson
(American Naturalist, 2008).

The Theory of Population Growth Rates (cont.)

1 =
n∑

j=1

µ∗j λ
−(j+1) (?)

As λ→ 0 the right-hand side of (?) goes to ∞.

As λ→∞ the right-hand side of (?) goes to zero.

Moreover the right-hand side of (?) is a strictly decreasing function
of λ.

Hence (?) always has exactly one solution for λ (thought of as a
function of µ∗1, . . . , µ∗n).

The Theory of Population Growth Rates (cont.)

1 =
n∑

j=1

µ∗j λ
−(j+1) (?)

Equation (?) is the key to all life history analysis that uses
population growth rates.

Life history analyses that do not involve the population growth rate
λ or subpopulation growth rates (with a different λ for each
subpopulation) do not need (?). Those that do, do.

By (?) the population growth rate λ is an implicitly defined
function of mean value parameters. Aster can estimate the latter,
so between aster and (?) we can estimate λ.

Aphids

The data used by Lenski and Service (Ecology, 1982) and by Shaw,
Geyer, Wagenius, Hangelbroek and Etterson (American Naturalist,
2008, Example 1) is on the brown ambrosia aphid Uroleucon
rudbeckiae.

> library(aster)

> data(aphid)

> class(aphid)

[1] "data.frame"

> names(aphid)

[1] "root" "varb" "resp" "id"

We see this is a “long format” data set (as the help page says). No
reshape necessary.

Aphids (cont.)

> levels(aphid$varb)

[1] "B2" "B3" "B4" "B5" "B6" "B7" "B8" "B9"

[9] "S1" "S10" "S11" "S12" "S13" "S2" "S3" "S4"

[17] "S5" "S6" "S7" "S8" "S9"

The "Sx" variables are the survival variables and the "Bx"
variables are the fecundity variables.

Note that B1, B10 B11 B12, and B13 are missing. The reason for
this is that they were zero for all individuals and would have caused
problems for the models fit by Shaw, Geyer, Wagenius,
Hangelbroek and Etterson (American Naturalist, 2008, Example 1).
(More on this later.)

Aphids (cont.)

For no particular reason, partly because the American Naturalist
paper fit conditional aster models and we haven’t covered them yet
and don’t want to stop to introduce them, but also partly just
because we can, we are going fit different models.

So we are going to restore the data missing from this dataset.

> aphid.wide <- reshape(aphid, direction = "wide",

+ timevar = "varb", v.names = "resp")

> head(names(aphid.wide))

[1] "root" "id" "resp.S1" "resp.S2" "resp.B2"

[6] "resp.S3"

> fred <- sub("resp.", "", names(aphid.wide))

> names(aphid.wide) <- fred

Aphids (cont.)

> z <- rep(0, nrow(aphid.wide))

> aphid.wide <- transform(aphid.wide, B1 = z, B10 = z,

+ B11 = z, B12 = z, B13 = z)

> aphid.wide$id <- NULL

> names(aphid.wide)

[1] "root" "S1" "S2" "B2" "S3" "B3" "S4"

[8] "B4" "S5" "B5" "S6" "B6" "S7" "B7"

[15] "S8" "B8" "S9" "B9" "S10" "S11" "S12"

[22] "S13" "B1" "B10" "B11" "B12" "B13"

Aphids (cont.)

Now we do the graph,

> vars <- outer(c("S", "B"), 1:13, paste, sep = "")

> vars <- as.vector(t(vars))

> vars

[1] "S1" "S2" "S3" "S4" "S5" "S6" "S7" "S8"

[9] "S9" "S10" "S11" "S12" "S13" "B1" "B2" "B3"

[17] "B4" "B5" "B6" "B7" "B8" "B9" "B10" "B11"

[25] "B12" "B13"

> pred <- c(0:12, 1:13)

> fam <- rep(1:2, each = 13)

Aphids (cont.)

And check that the graph is what we want

> foo <- rbind(vars, c("initial", vars)[pred + 1])

> rownames(foo) <- c("successor", "predecessor")

> foo

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

successor "S1" "S2" "S3" "S4" "S5" "S6" "S7"

predecessor "initial" "S1" "S2" "S3" "S4" "S5" "S6"

[,8] [,9] [,10] [,11] [,12] [,13] [,14]

successor "S8" "S9" "S10" "S11" "S12" "S13" "B1"

predecessor "S7" "S8" "S9" "S10" "S11" "S12" "S1"

[,15] [,16] [,17] [,18] [,19] [,20] [,21]

successor "B2" "B3" "B4" "B5" "B6" "B7" "B8"

predecessor "S2" "S3" "S4" "S5" "S6" "S7" "S8"

[,22] [,23] [,24] [,25] [,26]

successor "B9" "B10" "B11" "B12" "B13"

predecessor "S9" "S10" "S11" "S12" "S13"

Aphids (cont.)

And check that the graph is what we want

> rbind(vars, fam)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]

vars "S1" "S2" "S3" "S4" "S5" "S6" "S7" "S8" "S9"

fam "1" "1" "1" "1" "1" "1" "1" "1" "1"

[,10] [,11] [,12] [,13] [,14] [,15] [,16] [,17]

vars "S10" "S11" "S12" "S13" "B1" "B2" "B3" "B4"

fam "1" "1" "1" "1" "2" "2" "2" "2"

[,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25]

vars "B5" "B6" "B7" "B8" "B9" "B10" "B11" "B12"

fam "2" "2" "2" "2" "2" "2" "2" "2"

[,26]

vars "B13"

fam "2"

Aphids (cont.)

> redata <- reshape(aphid.wide, varying = list(vars),

+ direction = "long", timevar = "varb",

+ times = as.factor(vars), v.names = "resp")

> fred <- as.character(redata$varb)

> surv <- as.numeric(grepl("S", fred))

> fecund <- as.numeric(grepl("B", fred))

> age <- as.numeric(sub("[SB]", "", fred))

> redata <- transform(redata, surv = surv,

+ fecund = fecund, age = age)

> names(redata)

[1] "root" "varb" "resp" "id" "surv"

[6] "fecund" "age"

Aphids (cont.)

Now we are going to fit some aster models without varb. We are
still going to obey the “no naked predictors” dictum by “interacting”
every predictor with either surv, which indicates the "Sx" nodes
of the graph, or fecund, which indicates the "Bx" nodes of the
graph.

Aphids (cont.)

> aout.0.0 <- aster(resp ~ 0 + surv + fecund,

+ pred, fam, varb, id, root, data = redata)

> summary(aout.0.0)

Call:

aster.formula(formula = resp ~ 0 + surv + fecund, pred = pred,

fam = fam, varvar = varb, idvar = id, root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

surv -0.20297 0.13828 -1.468 0.142

fecund 0.62690 0.06757 9.277 <2e-16 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Aphids (cont.)

We try polynomial functions of age. Since we know that fecundity
is low (actually zero observed fecundity) at both ends, we only try
even degree polynomials for that. Theory says survival, should,
perhaps, go the same way, but that is less clear, especially in a
laboratory experiment.

> aout.0.2 <- aster(resp ~ 0 + surv + fecund +

+ fecund : poly(age, d=2),

+ pred, fam, varb, id, root, data = redata)

> summary(aout.0.2)

Call:

aster.formula(formula = resp ~ 0 + surv + fecund + fecund:poly(age,

d = 2), pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

surv 0.3288 0.2258 1.456 0.145

fecund -1.9329 0.4523 -4.273 1.93e-05 ***

fecund:poly(age, d = 2)1 -60.6462 10.4293 -5.815 6.06e-09 ***

fecund:poly(age, d = 2)2 -41.8304 6.0271 -6.940 3.91e-12 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Aphids (cont.)

> aout.0.4 <- aster(resp ~ 0 + surv + fecund +

+ fecund : poly(age, d=4),

+ pred, fam, varb, id, root, data = redata)

> summary(aout.0.4)

Call:

aster.formula(formula = resp ~ 0 + surv + fecund + fecund:poly(age,

d = 4), pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

surv 0.2262 0.2118 1.068 0.28560

fecund -6.9527 3.4996 -1.987 0.04695 *

fecund:poly(age, d = 4)1 -207.2506 101.9484 -2.033 0.04206 *

fecund:poly(age, d = 4)2 -189.5867 84.4659 -2.245 0.02480 *

fecund:poly(age, d = 4)3 -83.1739 43.3301 -1.920 0.05492 .

fecund:poly(age, d = 4)4 -45.4436 15.9402 -2.851 0.00436 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Aphids (cont.)

> aout.0.6 <- aster(resp ~ 0 + surv + fecund +

+ fecund : poly(age, d=6),

+ pred, fam, varb, id, root, data = redata)

> aout.0.8 <- aster(resp ~ 0 + surv + fecund +

+ fecund : poly(age, d=8),

+ pred, fam, varb, id, root, data = redata,

+ maxiter = 5000)

(We had to add the argument maxiter = 5000 because otherwise
we got a warning “did not converge” in the default for maxiter.)

Aphids (cont.)

> anova(aout.0.0, aout.0.2, aout.0.4, aout.0.6, aout.0.8)

Analysis of Deviance Table

Model 1: resp ~ 0 + surv + fecund

Model 2: resp ~ 0 + surv + fecund + fecund:poly(age, d = 2)

Model 3: resp ~ 0 + surv + fecund + fecund:poly(age, d = 4)

Model 4: resp ~ 0 + surv + fecund + fecund:poly(age, d = 6)

Model 5: resp ~ 0 + surv + fecund + fecund:poly(age, d = 8)

Model Df Model Dev Df Deviance P(>|Chi|)

1 2 -260.72

2 4 -152.95 2 107.772 < 2.2e-16 ***

3 6 -120.69 2 32.262 9.874e-08 ***

4 8 -117.69 2 2.992 0.2241

5 10 -116.51 2 1.182 0.5537

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Aphids (cont.)

Stop at degree = 4 for fecund.

> aout.1.4 <- aster(resp ~ 0 + surv + fecund +

+ surv : age + fecund : poly(age, d=4),

+ pred, fam, varb, id, root, data = redata)

> aout.2.4 <- aster(resp ~ 0 + surv + fecund +

+ surv : poly(age, d=2) + fecund : poly(age, d=4),

+ pred, fam, varb, id, root, data = redata)

> aout.3.4 <- aster(resp ~ 0 + surv + fecund +

+ surv : poly(age, d=3) + fecund : poly(age, d=4),

+ pred, fam, varb, id, root, data = redata)

> aout.4.4 <- aster(resp ~ 0 + surv + fecund +

+ surv : poly(age, d=4) + fecund : poly(age, d=4),

+ pred, fam, varb, id, root, data = redata)

Aphids (cont.)

> anova(aout.0.4, aout.1.4, aout.2.4, aout.3.4, aout.4.4)

Analysis of Deviance Table

Model 1: resp ~ 0 + surv + fecund + fecund:poly(age, d = 4)

Model 2: resp ~ 0 + surv + fecund + surv:age + fecund:poly(age, d = 4)

Model 3: c("resp ~ 0 + surv + fecund + surv:poly(age, d = 2) + fecund:poly(age, ", " d = 4)")

Model 4: c("resp ~ 0 + surv + fecund + surv:poly(age, d = 3) + fecund:poly(age, ", " d = 4)")

Model 5: c("resp ~ 0 + surv + fecund + surv:poly(age, d = 4) + fecund:poly(age, ", " d = 4)")

Model Df Model Dev Df Deviance P(>|Chi|)

1 6 -120.686

2 7 -81.540 1 39.146 3.933e-10 ***

3 8 -76.683 1 4.857 0.02754 *

4 9 -74.540 1 2.143 0.14327

5 10 -74.190 1 0.350 0.55392

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Aphids (cont.)

Looks like aout.2.4 is the best model.

Exercise for the reader. The formula

resp ~ poly(age, d=2) + fecund + fecund:poly(age, d=4)

looks like it violates our “no naked predictors” dictum, but it fits
exactly the same model as aout.2.4. Why?

Thus this really illustrates the “canonical parameters are
meaningless quantities” dictum.

Aphids (cont.)

Now we need mean value parameters for a typical individual, so we
use predict.aster.formula on newdata for one individual

> renewdata <- subset(redata, id == 1)

> pout <- predict(aout.2.4, varvar = varb, idvar = id,

+ root = root, newdata = renewdata)

> names(pout) <- as.character(renewdata$varb)

> round(pout, 3)

S1 S2 S3 S4 S5 S6 S7 S8 S9

0.798 0.794 0.794 0.792 0.778 0.733 0.637 0.473 0.306

S10 S11 S12 S13 B1 B2 B3 B4 B5

0.191 0.113 0.061 0.031 0.026 0.982 3.234 3.188 2.132

B6 B7 B8 B9 B10 B11 B12 B13

1.412 0.872 0.298 0.024 0.000 0.000 0.000 0.000

Aphids (cont.)

We only want the "Bx" components of the mean value parameter
vector

> mu.star <- pout[grepl("B", names(pout))]

> round(mu.star, 3)

B1 B2 B3 B4 B5 B6 B7 B8 B9

0.026 0.982 3.234 3.188 2.132 1.412 0.872 0.298 0.024

B10 B11 B12 B13

0.000 0.000 0.000 0.000

> sally <- function(lambda)

+ 1 - sum(mu.star / lambda^(1 + seq(along = mu.star)))

Aphids (cont.)

> sally(1)

[1] -11.16667

> sally(2)

[1] 0.5208323

> lout <- uniroot(sally, lower = 1, upper = 2)

> names(lout)

[1] "root" "f.root" "iter" "init.it"

[5] "estim.prec"

> lout$root

[1] 1.683472

> lout$estim.prec

[1] 6.103516e-05

Aphids (cont.)

> lambda.hat <- lout$root

> lambda.hat

[1] 1.683472

Jacobian Matrix for Lambda as a Function of Mu

1 =
n∑

j=1

µ∗j λ
−(j+1) (?)

Differentiating (?) with respect to µ∗k gives

0 = λ−k−1 +
n∑

j=1

µ∗j (−j − 1)λ−j−2
∂λ

∂µ∗k

= λ−k−1 − ∂λ

∂µ∗k

n∑
j=1

(j + 1)µ∗j λ
−j−2

∂λ

∂µ∗k
=

λ−k−1∑n
j=1(j + 1)µ∗j λ

−j−2 (??)

Aphids (cont.)

Now we are ready to apply the delta method “by hand” (using R
but not having everything done for us by some R function).

First we need the Jacobian of the map β → µ which is the
gradient component of the object returned by
predict.aster.formula when the optional argument se.fit =

TRUE is given (this is undocumented).

> pout <- predict(aout.2.4, varvar = varb, idvar = id,

+ root = root, newdata = renewdata, se.fit = TRUE)

> dim(pout$gradient)

[1] 26 8

> nrow(renewdata)

[1] 26

> length(aout.2.4$coefficients)

[1] 8

Aphids (cont.)

> jacobian.beta2mu <- pout$gradient

> inies <- grepl("B", as.character(renewdata$varb))

> as.character(renewdata$varb)[inies]

[1] "B1" "B2" "B3" "B4" "B5" "B6" "B7" "B8"

[9] "B9" "B10" "B11" "B12" "B13"

> jacobian.beta2mu <- jacobian.beta2mu[inies,]

> j <- 1:13

> jacobian.mu2lambda <- lambda.hat^(- j - 1) /

+ sum((j + 1) * mu.star * lambda.hat^(- j - 2))

> round(jacobian.mu2lambda, 3)

[1] 0.136 0.081 0.048 0.028 0.017 0.010 0.006 0.004

[9] 0.002 0.001 0.001 0.000 0.000

Aphids (cont.)

> jacobian.mu2lambda <- rbind(jacobian.mu2lambda)

> jacobian <- jacobian.mu2lambda %*% jacobian.beta2mu

> dim(jacobian)

[1] 1 8

> as.vector(round(jacobian, 3))

[1] 0.660 1.614 -0.017 -0.005 -0.058 -0.020 0.058

[8] -0.036

Aphids (cont.)

> se.lambda <- jacobian %*%

+ solve(aout.2.4$fisher) %*% t(jacobian)

> se.lambda <- sqrt(se.lambda)

> se.lambda <- as.vector(se.lambda)

> se.lambda

[1] 0.0558462

Aphids (cont.)

There is an alternative way of computing standard errors for
nonlinear functions of parameters. Linearize them. Hand that
linearization to predict.aster.formula as the amat optional
argument. This will give incorrect “predictions” but correct
standard errors.

> nnode <- nrow(renewdata)

> amat <- array(c(rep(0, nnode/2), jacobian.mu2lambda),

+ c(1, nnode, 1))

> pout.amat <- predict(aout.2.4, varvar = varb, idvar = id,

+ root = root, newdata = renewdata, se.fit = TRUE,

+ amat = amat)

> pout.amat$se.fit

[1] 0.0558462

Standard Errors

Both methods (using the gradient component or using an
artificial amat) have their advantages and disadvantages.

Neither is trivial.

The former follows the delta method more closely and
transparently.

The latter is less code (and is the only one documented).

Either works.

Example 1 Revisited

Recall that in deck 1 of these slides we redid the analysis of the
first aster paper (Geyer, Wagenius, and Shaw, Biometrika, 2007),
and we fit three models, did the following analysis of deviance

> anova(aout.smaller, aout, aout.bigger)

Analysis of Deviance Table

Model 1: resp ~ varb + fit:(nsloc + ewloc + pop)

Model 2: resp ~ varb + layer:(nsloc + ewloc) + fit:pop

Model 3: resp ~ varb + layer:(nsloc + ewloc + pop)

Model Df Model Dev Df Deviance P(>|Chi|)

1 17 -2746.7

2 21 -2712.5 4 34.203 6.772e-07 ***

3 33 -2674.7 12 37.838 0.0001632 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example 1 Revisited (cont.)

But the authors of that paper blithely ignored the P-value
P = 0.00016 comparing the two models aout and aout.bigger

and chose the smaller model because it had a more direct
interpretation about the effect of population of origin (predictor
pop) on fitness.

How can they do that?

That is what we now propose to examine.

Example 1 Revisited (cont.)

First, a disclaimer. They did not actually make this choice
“blithely” as the preceding slide said. They did consider carefully.

The argument was that they were modeling fitness, and the
distribution of fitness (actually best surrogate of fitness in their
data) is not very different between the two models.

The distribution of other components of fitness (other than the
final one) may differ quite a lot, but that was not the question of
scientific interest. (More on this later).

So what do these models say about the distribution of fitness?

Example 1 Revisited (cont.)

> pop <- levels(redata$pop)

> nind <- length(unique(redata$id))

> nnode <- nlevels(redata$varb)

> npop <- length(pop)

> amat <- array(0, c(nind, nnode, npop))

> amat.ind <- array(as.character(redata$pop),

+ c(nind, nnode, npop))

> amat.node <- array(as.character(redata$varb),

+ c(nind, nnode, npop))

> amat.fit <- grepl("hdct", amat.node)

> amat.fit <- array(amat.fit,

+ c(nind, nnode, npop))

> amat.pop <- array(pop, c(npop, nnode, nind))

> amat.pop <- aperm(amat.pop)

> amat[amat.pop == amat.ind & amat.fit] <- 1

Example 1 Revisited (cont.)

> pout <- predict(aout,

+ varvar = varb, idvar = id, root = root,

+ se.fit = TRUE, amat = amat)

> pout.bigger <- predict(aout.bigger,

+ varvar = varb, idvar = id, root = root,

+ se.fit = TRUE, amat = amat)

Example 1 Revisited (cont.)

The first interesting thing about these “predictions” (actually point
estimates of parameters with standard errors) is that the point
estimates are exactly the same for the two models.

> pout$fit

[1] 81 171 112 31 286 218 167

> pout.bigger$fit

[1] 81 171 112 31 286 218 167

> all.equal(pout$fit, pout.bigger$fit)

[1] TRUE

Example 1 Revisited (cont.)

And why is that? These are submodel canonical statistics
(components of MT y). Thus by the observed-equals-expected
property of exponential families their MLE are equal to their
observed values and hence equal to each other.

So that is certainly not a reason to prefer one model to the other.

If the (estimated) means are exactly the same how about
(estimated, asymptotic, approximate) variances?

Example 1 Revisited (cont.)

The asymptotic variance matrix of these canonical statistics is
actually diagonal for each model. (This was not obvious to me. I
had to calculate it to see this.) The reason is that different
populations of origin have different individuals in the sample, and
only individuals from one population contribute to estimating one
of these canonical statistics.

Example 1 Revisited (cont.)

Thus it is enough to look at the asymptotic standard errors (all the
covariances are zero).

> pout$se.fit

[1] 13.617532 19.984170 16.267065 8.524453 25.968492

[6] 22.227096 19.884556

> pout.bigger$se.fit

[1] 14.521691 17.870387 14.513433 9.105173 27.857509

[6] 21.589790 21.642168

Not that different.

Example 1 Revisited (cont.)

If, like in Example 2 (Deck 3), we were interested in the effect of
pop on the different components of fitness, then the P-value
P = 0.00016 does indicate that the model aout.bigger, which
has different pop effects in different “layers” of the graph, does
show a statistically significant difference in the way the
components of fitness combine to make up fitness in the various
population of origin groups.

But if we are only interested in overall fitness rather than the
separate components, then there is hardly any difference in the
models.

