
Stat 8931 (Aster Models)
Lecture Slides Deck 3

Charles J. Geyer

School of Statistics
University of Minnesota

June 7, 2015

Example Two

Our second example comes from the second aster paper (Shaw,
Geyer, Wagenius, Hangelbroek and Etterson, American Naturalist,
2008).

There are three examples in the paper. This is the one involving
Echinacea angustifolia.

In that paper and the accompanying tech report this example was
held up as one where the model was too complicated to use the R
formula mini-language and model matrices for different submodels
had to be constructed “by hand” (using R but without any helpful
R functions).

The light dawned somewhat later that the R formula mini-language
can describe these models if one is sufficiently “tricky”, so we show
that here — at least that was the original intention — but if there
is a tricky way to do it without model matrices, we never found it.

Example Two (cont.)

Also this example illustrates some very important points about
aster models and hypothesis tests.

Example Two (cont.)

1
Ber−−−−→ y1yBer

y3
Ber←−−−− y2yBer

y4
Ber−−−−→ y5

Ber−−−−→ y6
Ber−−−−→ y7

Ber−−−−→ y8y0-Poi

y0-Poi

y0-Poi

y9 y10 y11

Sorry the graph is snakelike. Otherwise, it would be really small.

Example Two (cont.)

All of the conditionally Bernoulli variables are survival indicators,
but they are not all the same. This comes from an experiment in
which the individual plants are crosses with parents from different
ancestral populations.

The first three survival indicators (y1 though y3) are for survival in
the growth chamber. Individuals that survived these first three
time periods were transplanted into the experimental field. The
next five survival indicators (y5 though y8) are for annual survival
in the field (2001 through 2005). The conditionally zero-truncated
Poisson components of the response vector (y9 though y11) are for
rosette (basal leaf cluster) counts. These plants had not lived long
enough when these data were analyzed for the 2008 paper to have
flowers yet.

Example Two (cont.)

It is not completely clear (to me) why zero-truncated Poisson.

Perhaps the issue is that a plant with rosette count = 0 has no
leaves and is not long for this world if not dead already.

If it were possible to observe rosette count = 0 on surviving plants,
then the conditional distribution should have been Poisson rather
than zero-truncated Poisson.

We will stick with zero-truncated Poisson, following the paper.

Example Two (cont.)

We take the rosette count for 2005 (the last year in the data) for
an individual to be the best surrogate of observed fitness in these
data (hereafter just called “fitness”).

This is often done — use some measure of size as best surrogate of
fitness — when actual fecundity traits are not available. This is
justified by size being (in many species) positively correlated with
fitness.

Example Two (cont.)

The data for this example are in the dataset echin2 in the aster

package.

> library(aster)

> data(echin2)

> sapply(echin2, class)

crosstype yearcross flat row posi

"factor" "factor" "factor" "factor" "numeric"

varb resp id root

"factor" "integer" "integer" "numeric"

Since we already have varb, resp, and id as variables, it is clear
(as the help page for this dataset says) that this is a “long format”
data frame that does not need to be reshaped with the reshape

function.

Example Two (cont.)

All datasets in the aster package except the very first one (the
dataset echinacea used for example one in decks 1 and 2) are like
this: “long format” so that they do not need to be reshaped with
the reshape function.

The idea is we left one example of how to go from what we guess
is a more likely format for users to use (one row of the data for
each individual) to the format the aster and reaster functions
need (go from “wide” to “long”) with the reshape function.

After that one example, we don’t need more.

Example Two (cont.)

Set up the graphical model.

> levels(echin2$varb)

[1] "ld01" "ld02" "ld03" "ld04"

[5] "ld05" "lds1" "lds2" "lds3"

[9] "roct2003" "roct2004" "roct2005"

> vars <- unique(as.character(echin2$varb))

> vars

[1] "lds1" "lds2" "lds3" "ld01"

[5] "ld02" "ld03" "roct2003" "ld04"

[9] "roct2004" "ld05" "roct2005"

> pred <- c(0, 1, 2, 3, 4, 5, 6, 6, 8, 8, 10)

> fam <- c(1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3)

Example Two (cont.)

> foo <- rbind(vars, c("initial", vars)[pred + 1])

> rownames(foo) <- c("successor", "predecessor")

> t(foo)

successor predecessor

[1,] "lds1" "initial"

[2,] "lds2" "lds1"

[3,] "lds3" "lds2"

[4,] "ld01" "lds3"

[5,] "ld02" "ld01"

[6,] "ld03" "ld02"

[7,] "roct2003" "ld03"

[8,] "ld04" "ld03"

[9,] "roct2004" "ld04"

[10,] "ld05" "ld04"

[11,] "roct2005" "ld05"

Example Two (cont.)

> cbind(vars, fam)

vars fam

[1,] "lds1" "1"

[2,] "lds2" "1"

[3,] "lds3" "1"

[4,] "ld01" "1"

[5,] "ld02" "1"

[6,] "ld03" "1"

[7,] "roct2003" "3"

[8,] "ld04" "1"

[9,] "roct2004" "3"

[10,] "ld05" "1"

[11,] "roct2005" "3"

Caution

I have to admit the first time I did this slide deck I fouled this up.

I decided another order of the node names in vars would look
nicer.

Does not work. The R function aster is going to use the order in
the data frame it is given (we do not feed it the vars object, it
only has the varb variable in that data frame to work with).

vars must be defined as above, if we are using a pre-existing “long
format” data frame.

Example Two (cont.)

So that takes care of the graphical model, and we know what the
variables varb, resp, id, and root do.

How about covariates?

> sapply(echin2, class)

crosstype yearcross flat row posi

"factor" "factor" "factor" "factor" "numeric"

varb resp id root

"factor" "integer" "integer" "numeric"

Those are crosstype, yearcross, flat, row, and posi.

Example Two (cont.)

> levels(echin2$crosstype)

[1] "Br" "Wi" "Wr"

From the legend for Figure 2 in the paper

The experimentally imposed crossing treatments are
between remnant populations ("Br"), within remnant
populations ("Wr"), and inbred within remnants ("Wi")

This is the treatment of scientific interest. Does amount of
inbreeding affect fitness?

Example Two (cont.)

> levels(echin2$yearcross)

[1] "1999" "2000"

The year in which crosses were done.

> levels(echin2$flat)

[1] "1" "2" "3"

The planting tray the individual was in while in the growth
chamber.

Example Two (cont.)

> levels(echin2$row)

[1] "0" "10" "11" "12" "13"

The row of the experimental field in which the individual was
planted if the individual survived that long. Individuals that did not
survive to be transplanted have level "0" of this factor (the four
actual rows are levels "10", "11", "12", and "13")

> range(echin2$posi)

[1] -0.350 0.365

Position along the row. This is meaningless for individuals with
row == "0".

Example Two (cont.)

The predictor variables row and posi giving the outdoor spatial
location after transplantation cause all the difficulty in specifying
models. These variables are meaningless for individuals that did
not survive to be transplanted but R forces us to give them values.

Somehow our model formulas have to do the Right Thing (TRT)
despite this complication.

> unique(echin2$posi[as.character(echin2$row) == "0"])

[1] 0

At least we know we can ignore this complication for posi
(multiplying a beta by zero is the same as leaving that term out of
a regression equation).

Example Two (cont.)

We need to set up some more “predictor variables” which are
indicator variables for parts of the graph.

> indoors <- grepl("lds", as.character(echin2$varb))

> indoors <- as.numeric(indoors)

> outdoors <- 1 - indoors

> fit <- grepl("roct2005", as.character(echin2$varb))

> fit <- as.numeric(fit)

> echin2 <- data.frame(echin2, indoors = indoors,

+ outdoors = outdoors, fit = fit)

> names(echin2)

[1] "crosstype" "yearcross" "flat" "row"

[5] "posi" "varb" "resp" "id"

[9] "root" "indoors" "outdoors" "fit"

Example Two (cont.)

And we check that our understanding of row == "0" is correct.

> is.lds3 <- as.character(echin2$varb) == "lds3"

> is.dead <- is.lds3 & echin2$resp == 0

> is.norow <- as.character(echin2$row) == "0"

> with(echin2, identical(id[is.dead],

+ unique(id[is.norow])))

[1] TRUE

An individual has row == "0" if and only if that individual died in
the growth chamber (lds3 == 0).

Example Two (cont.)

Our formula starts (as always) with resp ~ varb.

The next term is fit : crosstype. This is the most important
term for scientific inference. What is the effect of inbreeding on
fitness?

Example Two (cont.)

The next term is just yearcross. At least that is what was done
in the paper.

But does it make sense that the year of crossing has the same
effect (numerically) on different kinds of variables? Our slogan no
naked predictors says this should be something like
layer : yearcross with layer defined as follows

> layer <- gsub("[0-9]", "", as.character(echin2$varb))

> layer <- as.factor(layer)

> levels(layer)

[1] "ld" "lds" "roct"

> echin2 <- data.frame(echin2, layer = layer)

(the two kinds of survival variables are for different lengths of time,
weeks or years, and so need to be distinguished).

Example Two (cont.)

As we shall see, yearcross isn’t statistically significant anyway, so
if we hadn’t fussed about this it wouldn’t have mattered for these
data.

An alternative way to deal with yearcross would be to have it
affect only the first survival node and no other (the term would be
lds01 : yearcross with the definition of lds01 left as an
exercise for the reader).

Exactly how yearcross should go in is a scientific question not a
statistical one.

Example Two (cont.)

The next term is indoors : flat because, presumably, what
flat an individual was in is no longer relevant after it has been
transplanted and is no longer in that flat.

The next term is outdoors : (row + posi) because,
presumably, the location where an individual will be transplanted
does not matter before the transplantation occurs.

It might be a problem that the interpreter for the R formula
mini-language is going to make a dummy variable named
outdoors:row0 that will just be the zero vector (every individual
who survives to be transplanted outdoors goes in a real row not in
the fake row "0"). Since such a predictor variable can never be in
a full rank matrix R will drop it (we hope, let’s see).

Example Two (cont.)

> aout <- aster(resp ~ varb + layer : yearcross + indoors : flat +

+ outdoors : (row + posi) + fit : crosstype,

+ pred, fam, varb, id, root, data = echin2)

> try(summary(aout), silent = TRUE)

apparent null eigenvectors of information matrix

directions of recession or constancy of log likelihood

[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

Example Two (cont.)

Well that’s annoying. What is that? What is a direction of
recession or constancy?

Too complicated to explain here (much more on this when we get
to the subject).

Example Two (cont.)

> names(aout$coefficients)

[1] "(Intercept)"

[2] "varbld02"

[3] "varbld03"

[4] "varbld04"

[5] "varbld05"

[6] "varblds1"

[7] "varblds2"

[8] "varblds3"

[9] "varbroct2003"

[10] "varbroct2004"

[11] "varbroct2005"

[12] "layerld:yearcross1999"

[13] "layerlds:yearcross1999"

[14] "layerroct:yearcross1999"

[15] "indoors:flat1"

[16] "indoors:flat2"

[17] "outdoors:row0"

[18] "outdoors:row10"

[19] "outdoors:row11"

[20] "outdoors:row12"

[21] "outdoors:posi"

[22] "fit:crosstypeBr"

[23] "fit:crosstypeWi"

Example Two (cont.)

So our reasoning about outdoors:row0 was wrong (isn’t it funny
how I say “our” reasoning as if the mistake was not entirely mine).

The individuals that died in the growth chamber are outdoors as
far as the aster function is concerned. They have values for all
the nodes. It’s just that those values are zero for node "lds3" and
all later nodes and perhaps some earlier nodes.

So now are we stuck? Do we have to construct model matrices by
hand?

Example Two (cont.)

Dealing with this example would be a lot easier if we could use
different graphs for different individuals. Don’t have “outdoors”
nodes for individuals that weren’t transplanted.

Actually, that would be possible. We would tell aster that there is
just one individual but the graph has a lot of nodes.

Nothing in the aster function requires that the graph be
connected. In our “big graph” every maximal connected component
(all the nodes downstream from one initial node) would correspond
to one real individual (which the aster function wouldn’t know
about or care). But it would be an enormous pain to specify a
model this way. (The aster2 packages makes this easier in some
cases, but isn’t ready for use yet.)

Example Two (cont.)

But there is an easier idea. We didn’t define outdoors correctly.
We should have excluded the “outdoors” nodes for individuals who
were not transplanted.

> id.transplant <- with(echin2,

+ id[as.character(varb) == "lds3" & resp > 0])

> transplant <- with(echin2, id %in% id.transplant)

> transplant <- as.numeric(transplant)

> echin2 <- data.frame(echin2, transplant = transplant)

Now does it work?

Example Two (cont.)

> aout <- aster(resp ~ varb + layer : yearcross + indoors : flat +

+ transplant : (row + posi) + fit : crosstype,

+ pred, fam, varb, id, root, data = echin2)

> try(summary(aout), silent = TRUE)

apparent null eigenvectors of information matrix

directions of recession or constancy of log likelihood

[,1] [,2]

[1,] 0.0675709 0.3718754

[2,] 0.0000000 0.0000000

[3,] 0.0000000 0.0000000

[4,] 0.0000000 0.0000000

[5,] 0.0000000 0.0000000

[6,] -0.0675709 -0.3718754

[7,] -0.0675709 -0.3718754

[8,] 0.9838898 -0.1787757

[9,] 0.0000000 0.0000000

[10,] 0.0000000 0.0000000

[11,] 0.0000000 0.0000000

[12,] 0.0000000 0.0000000

[13,] 0.0000000 0.0000000

[14,] 0.0000000 0.0000000

[15,] 0.0000000 0.0000000

[16,] 0.0000000 0.0000000

[17,] -0.0675709 -0.3718754

[18,] -0.0675709 -0.3718754

[19,] -0.0675709 -0.3718754

[20,] -0.0675709 -0.3718754

[21,] 0.0000000 0.0000000

[22,] 0.0000000 0.0000000

[23,] 0.0000000 0.0000000

Example Two (cont.)

> names(aout$coefficients)

[1] "(Intercept)"

[2] "varbld02"

[3] "varbld03"

[4] "varbld04"

[5] "varbld05"

[6] "varblds1"

[7] "varblds2"

[8] "varblds3"

[9] "varbroct2003"

[10] "varbroct2004"

[11] "varbroct2005"

[12] "layerld:yearcross1999"

[13] "layerlds:yearcross1999"

[14] "layerroct:yearcross1999"

[15] "indoors:flat1"

[16] "indoors:flat2"

[17] "transplant:row10"

[18] "transplant:row11"

[19] "transplant:row12"

[20] "transplant:row13"

[21] "transplant:posi"

[22] "fit:crosstypeBr"

[23] "fit:crosstypeWi"

Example Two (cont.)

We don’t have row0 any more, but we still have a problem.

It is still complaining about directions of recession (DOR) or
constancy (DOC).

And I will tell you that when there are a lot of zeros and repeated
values in the “apparent” DOR or DOC, they probably really are one
or the other.

That is, we appear to have a real problem. But we don’t want to
delve into that can of worms yet.

Example Two (cont.)

> aout.no.yearcross <- aster(resp ~ varb + indoors : flat +

+ transplant : (row + posi) + fit : crosstype,

+ pred, fam, varb, id, root, data = echin2)

> try(summary(aout), silent = TRUE)

apparent null eigenvectors of information matrix

directions of recession or constancy of log likelihood

[,1] [,2]

[1,] 0.0675709 0.3718754

[2,] 0.0000000 0.0000000

[3,] 0.0000000 0.0000000

[4,] 0.0000000 0.0000000

[5,] 0.0000000 0.0000000

[6,] -0.0675709 -0.3718754

[7,] -0.0675709 -0.3718754

[8,] 0.9838898 -0.1787757

[9,] 0.0000000 0.0000000

[10,] 0.0000000 0.0000000

[11,] 0.0000000 0.0000000

[12,] 0.0000000 0.0000000

[13,] 0.0000000 0.0000000

[14,] 0.0000000 0.0000000

[15,] 0.0000000 0.0000000

[16,] 0.0000000 0.0000000

[17,] -0.0675709 -0.3718754

[18,] -0.0675709 -0.3718754

[19,] -0.0675709 -0.3718754

[20,] -0.0675709 -0.3718754

[21,] 0.0000000 0.0000000

[22,] 0.0000000 0.0000000

[23,] 0.0000000 0.0000000

Example Two (cont.)

> names(aout.no.yearcross$coefficients)

[1] "(Intercept)" "varbld02"

[3] "varbld03" "varbld04"

[5] "varbld05" "varblds1"

[7] "varblds2" "varblds3"

[9] "varbroct2003" "varbroct2004"

[11] "varbroct2005" "indoors:flat1"

[13] "indoors:flat2" "transplant:row10"

[15] "transplant:row11" "transplant:row12"

[17] "transplant:row13" "transplant:posi"

[19] "fit:crosstypeBr" "fit:crosstypeWi"

Example Two (cont.)

Looks like we are stuck. We need at least a little bit of info about
DOR and DOC to get going.

A direction of constancy (DOC) is a direction in the parameter
space (where β lives) in which the log likelihood is constant
(moving along lines in that direction does not change the log
likelihood).

A direction of recession (DOR) is a direction in the parameter
space (where β lives) in which the log likelihood is nondecreasing
(moving along lines in that direction the log likelihood increases or
stays the same).

Whenever there is a DOR that is not a DOC, the MLE does not
exist (the log likelihood goes up hill in that direction all the way to
infinity).

Example Two (cont.)

Theory of exponential families (which we will eventually get to, but
for now leave vague) says the MLE does not exist when the
canonical statistic vector MT y is on the boundary of its range.

In general, that is hard to check.

We can only hope it is easy in the case at hand.

Example Two (cont.)

If we look inside the R function summary.aster, here is how it
makes these “apparent” DOR or DOC.

> info.tol <- sqrt(.Machine$double.eps)

> info.tol

[1] 1.490116e-08

> infomat <- aout$fisher

> fred <- eigen(infomat, symmetric = TRUE)

> sally <- fred$values < max(fred$values) * info.tol

> apparent <- zapsmall(fred$vectors[, sally])

> rownames(apparent) <- names(aout$coefficients)

> apparent

[,1] [,2]

(Intercept) 0.0675709 0.3718754

varbld02 0.0000000 0.0000000

varbld03 0.0000000 0.0000000

varbld04 0.0000000 0.0000000

varbld05 0.0000000 0.0000000

varblds1 -0.0675709 -0.3718754

varblds2 -0.0675709 -0.3718754

varblds3 0.9838898 -0.1787757

varbroct2003 0.0000000 0.0000000

varbroct2004 0.0000000 0.0000000

varbroct2005 0.0000000 0.0000000

layerld:yearcross1999 0.0000000 0.0000000

layerlds:yearcross1999 0.0000000 0.0000000

layerroct:yearcross1999 0.0000000 0.0000000

indoors:flat1 0.0000000 0.0000000

indoors:flat2 0.0000000 0.0000000

transplant:row10 -0.0675709 -0.3718754

transplant:row11 -0.0675709 -0.3718754

transplant:row12 -0.0675709 -0.3718754

transplant:row13 -0.0675709 -0.3718754

transplant:posi 0.0000000 0.0000000

fit:crosstypeBr 0.0000000 0.0000000

fit:crosstypeWi 0.0000000 0.0000000

Example Two (cont.)

Computationally, these are apparent null eigenvectors of the Fisher
information matrix (and we don’t yet know what that is either).

Since lengths of direction vectors do not matter, we can try to
make them look nicer by changing the length.

We can also just drop all the zero rows. Those are the components
of the submodel canonical parameter and statistic that are not
involved in the DOR/DOC.

> zero.rows <- apply(apparent == 0, 1, all)

> apparent <- apparent[! zero.rows,]

Example Two (cont.)

> apparent

[,1] [,2]

(Intercept) 0.0675709 0.3718754

varblds1 -0.0675709 -0.3718754

varblds2 -0.0675709 -0.3718754

varblds3 0.9838898 -0.1787757

transplant:row10 -0.0675709 -0.3718754

transplant:row11 -0.0675709 -0.3718754

transplant:row12 -0.0675709 -0.3718754

transplant:row13 -0.0675709 -0.3718754

We see a pattern. Lots of the same numbers in each column.

Example Two (cont.)

> apparent <- sweep(apparent, 2, apparent[1,], "/")

> apparent

[,1] [,2]

(Intercept) 1.00000 1.0000000

varblds1 -1.00000 -1.0000000

varblds2 -1.00000 -1.0000000

varblds3 14.56085 -0.4807409

transplant:row10 -1.00000 -1.0000000

transplant:row11 -1.00000 -1.0000000

transplant:row12 -1.00000 -1.0000000

transplant:row13 -1.00000 -1.0000000

Example Two (cont.)

I think I see what’s happening.

The (pseudo) predictor transplant perfectly predicts the lds3

node of the graph. That’s DOR.

I am not clear why there are two DOR/DOC instead of one.

But I am out of ideas. Looks like we do have to do model matrices
“by hand” for this one.

Example Two (cont.)

> m <- model.matrix(resp ~ varb + layer : yearcross +

+ indoors : flat + outdoors : (row + posi) +

+ fit : crosstype, data = echin2)

> dim(m)

[1] 6127 29

> m <- m[, colnames(m) != "outdoors:row0"]

> dim(m)

[1] 6127 28

Example Two (cont.)

> aout <- aster(resp ~ 0 + m,

+ pred, fam, varb, id, root, data = echin2)

> try(summary(aout), silent = TRUE)

apparent null eigenvectors of information matrix

directions of recession or constancy of log likelihood

[1] 0.3535534 0.0000000 0.0000000 0.0000000

[5] 0.0000000 -0.3535534 -0.3535534 -0.3535534

[9] 0.0000000 0.0000000 0.0000000 0.0000000

[13] 0.0000000 0.0000000 0.0000000 0.0000000

[17] -0.3535534 -0.3535534 -0.3535534 -0.3535534

[21] 0.0000000 0.0000000 0.0000000

Example Two (cont.)

This is hard to see without extracting the eigenvectors as we did
before and putting labels on the components of the DOR or DOC.
If we do that (for once not shown) we see that it is a problem with
lds nodes and outdoors nodes.

And the answer is obvious if we add up all the outdoor:row1x
dummy variables we just get outdoor, which is the same as the
sum of the of the varbldsx dummy variables.

Have to drop something. R would have dropped the "row10" level
of the row factor if we hadn’t had the bogus "row0" level to
confuse it.

Example Two (cont.)

> dim(m)

[1] 6127 28

> grep("row", colnames(m), value = TRUE)

[1] "outdoors:row10" "outdoors:row11" "outdoors:row12"

[4] "outdoors:row13"

> m <- m[, ! grepl("row10", colnames(m))]

> dim(m)

[1] 6127 27

Example Two (cont.)

> aout <- aster(resp ~ 0 + m,

+ pred, fam, varb, id, root, data = echin2)

> try(summary(aout))

Call:

aster.formula(formula = resp ~ 0 + m, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = echin2)

Estimate Std. Error z value

m(Intercept) 0.74649 0.27173 2.747

mvarbld02 0.18029 0.44949 0.401

mvarbld03 1.54701 0.46449 3.331

mvarbld04 1.44860 0.47435 3.054

mvarbld05 2.90222 0.38842 7.472

mvarblds1 -1.13189 0.50667 -2.234

mvarblds2 0.32434 0.57666 0.562

mvarblds3 1.21221 0.56491 2.146

mvarbroct2003 -3.01924 0.34267 -8.811

mvarbroct2004 -1.91066 0.29923 -6.385

mvarbroct2005 -1.14153 0.30945 -3.689

mlayerld:yearcross1999 0.02583 0.12832 0.201

mlayerlds:yearcross1999 0.31162 0.22664 1.375

mlayerroct:yearcross1999 -0.02895 0.12174 -0.238

mindoors:flat1 -0.24550 0.18699 -1.313

mindoors:flat2 -0.49112 0.17227 -2.851

moutdoors:row11 0.14566 0.03632 4.010

moutdoors:row12 0.12199 0.03530 3.456

moutdoors:row13 0.11866 0.03455 3.434

moutdoors:posi -0.32293 0.06992 -4.619

mfit:crosstypeBr 0.10169 0.13944 0.729

mfit:crosstypeWi -0.56284 0.18157 -3.100

Pr(>|z|)

m(Intercept) 0.006011 **

mvarbld02 0.688351

mvarbld03 0.000867 ***

mvarbld04 0.002259 **

mvarbld05 7.90e-14 ***

mvarblds1 0.025485 *

mvarblds2 0.573812

mvarblds3 0.031886 *

mvarbroct2003 < 2e-16 ***

mvarbroct2004 1.71e-10 ***

mvarbroct2005 0.000225 ***

mlayerld:yearcross1999 0.840486

mlayerlds:yearcross1999 0.169143

mlayerroct:yearcross1999 0.812010

mindoors:flat1 0.189220

mindoors:flat2 0.004359 **

moutdoors:row11 6.06e-05 ***

moutdoors:row12 0.000548 ***

moutdoors:row13 0.000595 ***

moutdoors:posi 3.86e-06 ***

mfit:crosstypeBr 0.465817

mfit:crosstypeWi 0.001936 **

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)

mlayerld:yearcross2000

mlayerlds:yearcross2000

mlayerroct:yearcross2000

mindoors:flat3

mfit:crosstypeWr

Example Two (cont.)

Estimate Std. Error z value Pr(>|z|)

m(Intercept) 0.746488 0.271726 2.7472 0.0060105

mvarbld02 0.180287 0.449488 0.4011 0.6883513

mvarbld03 1.547012 0.464487 3.3306 0.0008667

mvarbld04 1.448602 0.474349 3.0539 0.0022590

mvarbld05 2.902224 0.388415 7.4720 7.901e-14

mvarblds1 -1.131885 0.506668 -2.2340 0.0254845

mvarblds2 0.324339 0.576658 0.5624 0.5738117

mvarblds3 1.212208 0.564913 2.1458 0.0318863

mvarbroct2003 -3.019236 0.342669 -8.8109 < 2.2e-16

mvarbroct2004 -1.910658 0.299234 -6.3852 1.712e-10

mvarbroct2005 -1.141527 0.309447 -3.6889 0.0002252

mlayerld:yearcross1999 0.025827 0.128321 0.2013 0.8404856

mlayerlds:yearcross1999 0.311623 0.226641 1.3750 0.1691433

mlayerroct:yearcross1999 -0.028953 0.121738 -0.2378 0.8120099

mindoors:flat1 -0.245502 0.186994 -1.3129 0.1892203

mindoors:flat2 -0.491118 0.172267 -2.8509 0.0043594

moutdoors:row11 0.145657 0.036319 4.0105 6.060e-05

moutdoors:row12 0.121987 0.035296 3.4561 0.0005481

moutdoors:row13 0.118659 0.034554 3.4340 0.0005947

moutdoors:posi -0.322929 0.069919 -4.6186 3.863e-06

mfit:crosstypeBr 0.101693 0.139439 0.7293 0.4658167

mfit:crosstypeWi -0.562843 0.181571 -3.0999 0.0019361

Example Two (cont.)

Hooray! It worked!

What a struggle!

But maybe it will go faster now that we have a clue.

Example Two (cont.)

But another issue occurred to me while the struggle was going on.

We are not really following the dictum about “naked” predictors.

The row and posi predictors do not make sense for different kinds
of variables. As in example one, where we had nsloc and ewloc

“interacted with”layer, we should have the same for row and
posi here.

So we start over.

There will be a problem that any of these outside : layer :

row dummy variables that involve ldsx nodes are bogus, since
such nodes aren’t outside. We will have to remove them too.

Example Two (cont.)

> m <- model.matrix(resp ~ varb + layer : yearcross +

+ indoors : flat + outdoors : layer : (row + posi) +

+ fit : crosstype, data = echin2)

> outies <- grepl("row0|layerlds:outdoors|row10",

+ colnames(m))

Example Two (cont.)

> colnames(m)[outies]

[1] "layerld:outdoors:row0"

[2] "layerlds:outdoors:row0"

[3] "layerroct:outdoors:row0"

[4] "layerld:outdoors:row10"

[5] "layerlds:outdoors:row10"

[6] "layerroct:outdoors:row10"

[7] "layerlds:outdoors:row11"

[8] "layerlds:outdoors:row12"

[9] "layerlds:outdoors:row13"

[10] "layerlds:outdoors:posi"

Example Two (cont.)

> dim(m)

[1] 6127 41

> m <- m[, ! outies]

> dim(m)

[1] 6127 31

Example Two (cont.)

> aout <- aster(resp ~ 0 + m,

+ pred, fam, varb, id, root, data = echin2)

> try(summary(aout))

Call:

aster.formula(formula = resp ~ 0 + m, pred = pred, fam = fam,

varvar = varb, idvar = id, root = root, data = echin2)

Estimate Std. Error z value

m(Intercept) 0.56195 0.27577 2.038

mvarbld02 0.08454 0.45061 0.188

mvarbld03 1.63006 0.46838 3.480

mvarbld04 1.54872 0.47826 3.238

mvarbld05 3.00295 0.39238 7.653

mvarblds1 -0.94874 0.50882 -1.865

mvarblds2 0.51148 0.57856 0.884

mvarblds3 1.40328 0.56666 2.476

mvarbroct2003 -2.67680 0.36469 -7.340

mvarbroct2004 -1.57664 0.32429 -4.862

mvarbroct2005 -0.80002 0.33482 -2.389

mlayerld:yearcross1999 0.06951 0.12834 0.542

mlayerlds:yearcross1999 0.28712 0.22641 1.268

mlayerroct:yearcross1999 -0.08113 0.12242 -0.663

mindoors:flat1 -0.25874 0.18739 -1.381

mindoors:flat2 -0.47603 0.17259 -2.758

mfit:crosstypeBr 0.08644 0.14041 0.616

mfit:crosstypeWi -0.58879 0.18163 -3.242

mlayerld:outdoors:row11 0.15809 0.12873 1.228

mlayerroct:outdoors:row11 0.10306 0.13735 0.750

mlayerld:outdoors:row12 0.70491 0.14824 4.755

mlayerroct:outdoors:row12 -0.52337 0.16079 -3.255

mlayerld:outdoors:row13 0.37455 0.13267 2.823

mlayerroct:outdoors:row13 -0.17959 0.14416 -1.246

mlayerld:outdoors:posi 0.91692 0.26584 3.449

mlayerroct:outdoors:posi -1.67168 0.29153 -5.734

Pr(>|z|)

m(Intercept) 0.041575 *

mvarbld02 0.851185

mvarbld03 0.000501 ***

mvarbld04 0.001203 **

mvarbld05 1.96e-14 ***

mvarblds1 0.062242 .

mvarblds2 0.376672

mvarblds3 0.013272 *

mvarbroct2003 2.14e-13 ***

mvarbroct2004 1.16e-06 ***

mvarbroct2005 0.016876 *

mlayerld:yearcross1999 0.588116

mlayerlds:yearcross1999 0.204743

mlayerroct:yearcross1999 0.507503

mindoors:flat1 0.167367

mindoors:flat2 0.005812 **

mfit:crosstypeBr 0.538158

mfit:crosstypeWi 0.001188 **

mlayerld:outdoors:row11 0.219410

mlayerroct:outdoors:row11 0.453042

mlayerld:outdoors:row12 1.98e-06 ***

mlayerroct:outdoors:row12 0.001134 **

mlayerld:outdoors:row13 0.004756 **

mlayerroct:outdoors:row13 0.212847

mlayerld:outdoors:posi 0.000562 ***

mlayerroct:outdoors:posi 9.80e-09 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)

mlayerld:yearcross2000

mlayerlds:yearcross2000

mlayerroct:yearcross2000

mindoors:flat3

mfit:crosstypeWr

Example Two (cont.)

Estimate Std. Error z value Pr(>|z|)

m(Intercept) 0.561948 0.275769 2.0378 0.0415747

mvarbld02 0.084537 0.450606 0.1876 0.8511847

mvarbld03 1.630055 0.468384 3.4802 0.0005011

mvarbld04 1.548720 0.478261 3.2382 0.0012027

mvarbld05 3.002947 0.392378 7.6532 1.960e-14

mvarblds1 -0.948737 0.508824 -1.8646 0.0622421

mvarblds2 0.511475 0.578562 0.8840 0.3766717

mvarblds3 1.403275 0.566664 2.4764 0.0132723

mvarbroct2003 -2.676800 0.364688 -7.3400 2.136e-13

mvarbroct2004 -1.576635 0.324294 -4.8617 1.164e-06

mvarbroct2005 -0.800018 0.334819 -2.3894 0.0168756

mlayerld:yearcross1999 0.069508 0.128345 0.5416 0.5881161

mlayerlds:yearcross1999 0.287124 0.226411 1.2682 0.2047433

mlayerroct:yearcross1999 -0.081130 0.122418 -0.6627 0.5075034

mindoors:flat1 -0.258737 0.187393 -1.3807 0.1673669

mindoors:flat2 -0.476028 0.172587 -2.7582 0.0058123

mfit:crosstypeBr 0.086439 0.140414 0.6156 0.5381578

mfit:crosstypeWi -0.588787 0.181631 -3.2417 0.0011883

mlayerld:outdoors:row11 0.158092 0.128729 1.2281 0.2194098

mlayerroct:outdoors:row11 0.103061 0.137350 0.7504 0.4530415

mlayerld:outdoors:row12 0.704913 0.148235 4.7554 1.981e-06

mlayerroct:outdoors:row12 -0.523367 0.160789 -3.2550 0.0011339

mlayerld:outdoors:row13 0.374546 0.132670 2.8231 0.0047555

mlayerroct:outdoors:row13 -0.179594 0.144162 -1.2458 0.2128475

mlayerld:outdoors:posi 0.916922 0.265841 3.4491 0.0005624

mlayerroct:outdoors:posi -1.671683 0.291531 -5.7342 9.800e-09

Example Two (cont.)

Doesn’t all fit on a slide, but it can be looked at outside of the
slides.

Anyway, we aren’t primarily or even secondarily interested in these
“meaningless” parameter estimates.

Example Two (cont.)

Now what about yearcross?

> outies <- grepl("yearcross", colnames(m))

> colnames(m)[outies]

[1] "layerld:yearcross1999" "layerlds:yearcross1999"

[3] "layerroct:yearcross1999" "layerld:yearcross2000"

[5] "layerlds:yearcross2000" "layerroct:yearcross2000"

> m2 <- m[, ! outies]

> dim(m)

[1] 6127 31

> dim(m2)

[1] 6127 25

Example Two (cont.)

> aout2 <- aster(resp ~ 0 + m2,

+ pred, fam, varb, id, root, data = echin2)

> anova(aout2, aout)

Analysis of Deviance Table

Model 1: resp ~ 0 + m2

Model 2: resp ~ 0 + m

Model Df Model Dev Df Deviance P(>|Chi|)

1 23 -2082.5

2 26 -2079.0 3 3.4784 0.3236

Example Two (cont.)

yearcross is not statistically significant. Not even close.

Why only 3 degrees of freedom, when we dropped 6 variables?

> ncol(m)

[1] 31

> length(aout$coefficients)

[1] 26

> aout$dropped

[1] "mlayerld:yearcross2000"

[2] "mlayerlds:yearcross2000"

[3] "mlayerroct:yearcross2000"

[4] "mindoors:flat3"

[5] "mfit:crosstypeWr"

Example Two (cont.)

> ncol(m2)

[1] 25

> length(aout2$coefficients)

[1] 23

> aout2$dropped

[1] "m2indoors:flat3" "m2fit:crosstypeWr"

Example Two (cont.)

Now what about crosstype?

> outies <- grepl("crosstype", colnames(m2))

> colnames(m2)[outies]

[1] "fit:crosstypeBr" "fit:crosstypeWi"

[3] "fit:crosstypeWr"

> m3 <- m2[, ! outies]

> dim(m2)

[1] 6127 25

> dim(m3)

[1] 6127 22

Example Two (cont.)

> aout3 <- aster(resp ~ 0 + m3,

+ pred, fam, varb, id, root, data = echin2)

> anova(aout3, aout2)

Analysis of Deviance Table

Model 1: resp ~ 0 + m3

Model 2: resp ~ 0 + m2

Model Df Model Dev Df Deviance P(>|Chi|)

1 21 -2108.7

2 23 -2082.5 2 26.197 2.048e-06 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example Two (cont.)

crosstype is highly statistically significant.

Summary: aout2 is the best model (looked at so far).

Once we got on the right track, it wasn’t too hard.

However, we have not yet addressed another issue of scientific
interest. Now that we are on the right track, perhaps it will be
straightforward. (Actually, it is far from straightforward because
there are interesting theoretical issues, more than one of them.)

Example Two (cont.)

One of the authors on the paper asked the question about whether
differential survival in the growth chamber or differential survival
and growth (fecundity wasn’t really measured) outdoors was more
responsible for the statistical significance of crosstype.

To examine that, we have to add a term indoors : crosstype

Example Two (cont.)

> m4 <- model.matrix(resp ~ varb +

+ indoors : flat + outdoors : layer : (row + posi) +

+ fit : crosstype + indoors : crosstype, data = echin2)

> outies <- grepl("row0|layerlds:outdoors|row10", colnames(m4))

> colnames(m4)[outies]

[1] "outdoors:layerld:row0"

[2] "outdoors:layerlds:row0"

[3] "outdoors:layerroct:row0"

[4] "outdoors:layerld:row10"

[5] "outdoors:layerlds:row10"

[6] "outdoors:layerroct:row10"

Example Two (cont.)

> dim(m4)

[1] 6127 37

> m4 <- m4[, ! outies]

> dim(m4)

[1] 6127 31

Example Two (cont.)

> aout4 <- aster(resp ~ 0 + m4,

+ pred, fam, varb, id, root, data = echin2)

> anova(aout3, aout2, aout4)

Analysis of Deviance Table

Model 1: resp ~ 0 + m3

Model 2: resp ~ 0 + m2

Model 3: resp ~ 0 + m4

Model Df Model Dev Df Deviance P(>|Chi|)

1 21 -2108.7

2 23 -2082.5 2 26.1971 2.048e-06 ***

3 25 -2082.1 2 0.3571 0.8365

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example Two (cont.)

One of these P-values we have seen before (aout3 versus aout2).
The other is new.

Since the new one is not statistically significant (not even close), it
is clear that model aout4 fits no better than aout2. There is no
evidence that we need the indoors : crosstype term in the
model.

Example Two (cont.)

But there is another way to ask this question. Might it not be that
a model with just indoors : crosstype instead of fit :

crosstype would also fit the data?

But we cannot compare those models directly because they are not
nested (and nested models are required for validity of the tests
done by the anova function).

So we have to compare them indirectly by comparing each directly
to aout3 and aout4

Example Two (cont.)

> outies <- grepl("fit:crosstype", colnames(m4))

> colnames(m4)[outies]

[1] "fit:crosstypeBr" "fit:crosstypeWi"

[3] "fit:crosstypeWr"

> m5 <- m4[, ! outies]

> dim(m4)

[1] 6127 31

> dim(m5)

[1] 6127 28

Example Two (cont.)

> aout5 <- aster(resp ~ 0 + m5,

+ pred, fam, varb, id, root, data = echin2)

> anova(aout3, aout5, aout4)

Analysis of Deviance Table

Model 1: resp ~ 0 + m3

Model 2: resp ~ 0 + m5

Model 3: resp ~ 0 + m4

Model Df Model Dev Df Deviance P(>|Chi|)

1 21 -2108.7

2 23 -2103.4 2 5.2469 0.07255 .

3 25 -2082.1 2 21.3073 2.361e-05 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example Two (cont.)

The comparison of aout5 with aout2 is not statistically significant
(although there is some weak indication).

The comparison of aout5 with aout4 is highly statistically
significant.

Thus aout5 fits no better than the smallest model under
consideration (aout2) and much worse than the largest (aout4).
Thus there is no (or very, very weak) evidence in favor of aout5.

This is just the opposite of the situation with aout2. Since aout2

fits as well as aout4 and is the smaller, more parsimonious model,
we choose it.

Example Two (cont.)

So our scientific conclusion is that differential survival in the
growth chamber has no effect on fitness. Right? Wrong!

That forgets the aster transform. Recall that its inverse is given by

θk = ϕk +
∑
j∈J

p(j)=k

cj(θj)

where we calculate successors before predecessors.

This implies that the components of ϕ for all successors, successors
of successors, and so forth influence the component of θ for that
node and consequently the component of ξ for that node.

Said another way, changing the component of ϕ for one node
changes the components of θ and ξ for all predecessors,
predecessors of predecessors, and so forth of that node.

Example Two (cont.)

So the term fit : crosstype propagates backwards in the
graph to influence conditional mean values for survival in the
growth chamber.

How much does it influence it? What the maximum entropy
principle makes it do.

Which way does it influence it?

Differentiating the Aster Transform

The derivative of the aster transform is given by

∆ϕk = ∆θk −
∑
j∈J

p(j)=k

c ′j (θj)∆θj

= ∆θk −
∑
j∈J

p(j)=k

ξj∆θj

and the derivative of the inverse aster transform is given by

∆θk = ∆ϕk +
∑
j∈J

p(j)=k

ξj∆θj

which calculates components of ∆θ from components of ∆ϕ in
any order that does successors before predecessors.

Example Two (cont.)

Using

∆θk = ∆ϕk +
∑
j∈J

p(j)=k

ξj∆θj

on our example or on any aster model in which the ξj are always
nonnegative (because the corresponding components of the
response vector are always nonnegative), we see that increasing
one component of ∆ϕ also increases the corresponding component
of ∆θ and then also increases the the components of ∆θ for
predecessor nodes and predecessor of predecessor nodes and so
forth.

In short, increasing fitness at terminal nodes (“fitness nodes”) of
the graph also increases survival at earlier nodes of the graph, and
in particular survival in the growth chamber.

Example Two (cont.)

But exactly how much? For that we need numbers.

Again we need to use the newdata argument to the
predict.aster function, but we do not need to use the amat,
because we are only interested in one node (lds3) rather than a
sum of nodes.

Since we are using formulas but useless ones we will have to use
the function predict.aster.default rather than
predict.aster.formula.

Example Two (cont.)

First we subset m2 to have one individual for each cross type.

> inies <- match(levels(echin2$crosstype),

+ as.character(echin2$crosstype))

> inies <- echin2$id[inies]

> inies

[1] 5 21 1

> newmodmat <- m2[echin2$id %in% inies,]

> dim(newmodmat)

[1] 33 25

Example Two (cont.)

And then we “fix it up”

> grep("flat", colnames(newmodmat), value = TRUE)

[1] "indoors:flat1" "indoors:flat2" "indoors:flat3"

> newmodmat[, "indoors:flat1"] <-

+ as.numeric(grepl("lds", rownames(newmodmat)))

> newmodmat[, "indoors:flat2"] <- 0

> newmodmat[, "indoors:flat3"] <- 0

Example Two (cont.)

> grep("row", colnames(newmodmat), value = TRUE)

[1] "layerld:outdoors:row11"

[2] "layerroct:outdoors:row11"

[3] "layerld:outdoors:row12"

[4] "layerroct:outdoors:row12"

[5] "layerld:outdoors:row13"

[6] "layerroct:outdoors:row13"

Put everyone in row 10.

> newmodmat[, grep("row", colnames(newmodmat))] <- 0

Example Two (cont.)

> grep("posi", colnames(newmodmat), value = TRUE)

[1] "layerld:outdoors:posi" "layerroct:outdoors:posi"

Put everyone at position zero.

> newmodmat[, grep("posi", colnames(newmodmat))] <- 0

Example Two (cont.)

Now more PBD. We have to make newmodmat a 3-way array and
supply root as a 2-way array.

> nind <- nlevels(echin2$crosstype)

> nparm <- ncol(newmodmat)

> nnode <- length(newmodmat) / (nind * nparm)

> all.equal(nnode, as.integer(nnode))

[1] TRUE

> newmodmat <- array(as.vector(newmodmat),

+ c(nind, nnode, nparm))

> newroot <- array(1, c(nind, nnode))

Example Two (cont.)

> try(pout <- predict(aout2, root = newroot,

+ modmat = newmodmat, se.fit = TRUE), silent = TRUE)

> dim(newmodmat)

[1] 3 11 25

> dim(aout2$modmat)

[1] 557 11 23

> aout2$dropped

[1] "m2indoors:flat3" "m2fit:crosstypeWr"

doesn’t work. We have to remove the “dropped columns” from
newmodmat.

Example Two (cont.)

> droppies <- gsub("m2", "", aout2$dropped)

> droppies

[1] "indoors:flat3" "fit:crosstypeWr"

> outies <- match(droppies, colnames(m2))

> outies

[1] 14 17

> newmodmat <- newmodmat[, , - outies]

> dim(newmodmat)

[1] 3 11 23

Example Two (cont.)

Try 2.

> pout <- predict(aout2, root = newroot,

+ modmat = newmodmat, se.fit = TRUE)

> pout.fit <- matrix(pout$fit, nrow = nind)

> pout.se <- matrix(pout$se.fit, nrow = nind)

> rownames(pout.fit) <- levels(echin2$crosstype)

> rownames(pout.se) <- levels(echin2$crosstype)

> colnames(pout.fit) <- vars

> colnames(pout.se) <- vars

Example Two (cont.)

> foo <- cbind(pout.fit[, "lds3"],

+ pout.se[, "lds3"])

> colnames(foo) <- c("fit", "se")

> foo

fit se

Br 0.8592819 0.03802385

Wi 0.8694220 0.03340710

Wr 0.7920395 0.04824145

Example Two (cont.)

At this point we give up (even though the paper had more
confidence intervals).

Enough has been done to show that

aster modeling when the R formula mini-language is
inadequate to express the models is very difficult,

but not impossible.

