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Exponential Families of Distributions

An exponential family of distributions is a statistical model
having a log likelihood of the form

〈y , θ〉 − c(θ),

where y is a vector statistic, θ is a vector parameter of the same
dimension (say d) and

〈y , θ〉 =
d∑

i=1

yiθi .

A statistic y and a parameter θ that give a log likelihood of this
form are called the canonical statistic and canonical parameter.

They are also called natural parameter and natural statistic, but, as
elsewhere, we avoid terms of biological origin in aster model theory.



Exponential Families of Distributions (cont.)

The function c in
〈y , θ〉 − c(θ),

is called the cumulant function of the family. It has many
important and amazing properties.



Exponential Families of Distributions (cont.)

We are using modern terminology about these models.

An older terminology would call the exponential family, the
collection of all of what we are calling exponential families.

Old terminology: this statistical model is in the exponential family.

New terminology: this statistical model is an exponential family.

The old terminology has nothing to recommend it. It makes the
primary term — “exponential family” — refer to a heterogeneous
collection of statistical models of no interest in any application.

The new terminology describes a property that, if a statistical
model has it, implies many other properties. It is a key concept of
theoretical statistics.



Notational Variation

Those who insist that all vectors are really matrices (so-called
column vectors and row vectors) would write the exponential
family log likelihood as either

yT θ − c(θ)

or
θT y − c(θ)

The 〈 · , · 〉 notation used here is more mathematical, treating
vectors as vectors. It may come as a surprise to those who have
not taken that many math courses, but most advanced math uses
this notion rather than “vectors are really matrices”.



Statistical Models

A statistical model is a family of probability distributions.

In many courses this concept is hidden behind sloppy terminology.

We often say “the binomial distribution” when we really mean the
family of binomial distributions (each different parameter value
gives a different binomial distribution).

And similarly for other distributions (“the normal distribution”
instead of the family of normal distributions, and so forth).



Statistical Models (cont.)

When you have a statistical model, all the techniques of
mathematical statistics are available. Any question that can be
phrased in terms of probabilities and expectations with respect to
distributions in the model can be answered.



Statistical Models (cont.)

In “master’s level” theoretical statistics (5101–5102 or 8101–8102
in our department) specifying a statistical model is simple. If the
data are discrete, then you just write down the probability mass
function (PMF) for the data. This is a function

fθ(y)

of the data y . It also depends on the parameter vector θ, but we
do not say θ is an argument of the PMF (parameters are not
arguments).

And this is the joint PMF (y is all the data).

And in case the data are continuous, everything is the same except
that fθ(y) is the probability density function (PDF) for the data.



Statistical Models (cont.)

In “master’s level” theoretical statistics, it may have been
mentioned that there are probability models that are neither
discrete or continuous, and in aster models we get them, but only
in a rather trivial way.

Although our first example had all components of the response
vector discrete (and in fact all published examples AFAIK), this is
not necessary.

The aster package has fam.normal.location, which specifies
normal with unknown mean and known variance as a family that
components of the response vector can have.

The aster2 package has fam.normal.location.scale, which
specifies normal with unknown mean and unknown variance as a
family that components of the response vector can have.



Statistical Models (cont.)

So if we have some continuous and some discrete components of
the response vector, then we do not have either a PMF or a PDF.
But we can still write down a function fθ(y) that has an obvious
interpretation as a probability mass-density function (PMDF).
(When calculating probabilities or expectations, you sum over the
discrete components of y and integrate over the continuous
components of y . As we shall see, we do not need to calculate
expectations this way for aster models. So this is purely a
theoretical quibble.)



Statistical Models (cont.)

But there is one more issue that makes the previous slide wrong
(oversimplified to the point of being wrong).

In aster models, even “continuous” families are partly discrete.

1
Poi−−−−→ y1

Nor−−−−→ y2

The sum of n IID Normal(µ, σ2) random variables is
Normal(nµ, nσ2).

The conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Normal(y1µ, y1σ
2), if y1 > 0

So the conditional distribution of y2 given y1 is discrete when
y1 = 0 and continuous when y1 > 0.



Statistical Models (cont.)

So to be technically correct, what two slides back should have said
is that we integrate over the continuous components of the
response, except when their predecessors are zero, in which case
they are discrete and we sum, but since in that case they are
degenerate, the sum has only one term.

As we shall see, all this pedantic quibble never gets in the way,
because the theory “just works” and we do not have to fuss this
way after we verify that it does the right thing in such cases.



Aster Model PMDF

In an aster model, we have a bunch of variables yj , where j ∈ N,
the index set N being the set of nodes of the graph. Since each
node has at most one predecessor, we can specify the graph by a
function, the predecessor function, that gives the predecessor for
each node that has a predecessor.

Let J denote the set of non-initial nodes of the graph. Then the
predecessor function is a function p : J → N such that p(j) is the
predecessor of j .



Aster Model PMDF (cont.)

In an aster model, the graph specifies the joint PMDF in factorized
form, each arrow in the graph corresponds to a conditional
distribution in the factorization

fθ(y) =
∏
j∈J

fj ,θ(yj |yp(j))

I claim this is a valid factorization, with what purports to be
conditional distributions actually being conditional distributions,
but to see that we need to work through some issues.

First issue. In aster models, variables at initial nodes are treated
as constants, so this is the joint distribution of the variables at
non-initial nodes. The vector y on the left-hand side has
components yj for j ∈ J.



Aster Model PMDF (cont.)

Second issue. Every aster graph has at least one terminal node.

Proof. Start at any node. If it is terminal, we are done. Otherwise,
follow any outgoing arrow (there is one by definition if the node is
nonterminal). If the node this arrow goes to is terminal, we are
done. Otherwise, follow any outgoing arrow from it. Since the
graph is finite, eventually we either get to a nonterminal node or
we get to a node previously visited, but the latter possibility is
forbidden by the assumption that the graph is acyclic. QED



Aster Model PMDF (cont.)

Let k be any node index, and let G = {k, p(k), p(p(k)), . . .},
where this notation indicates a finite set despite the “. . .”. (We just
don’t know how many times we can apply the predecessor function
before we get to an initial node.) G ∩ J is the set of non-initial
nodes in G , and G \ J is the set of initial nodes in G . The latter is
a singleton set (there is exactly one initial node in G ).

For any subset A of nodes of the graph, let yA denote the
“subvector” whose components are yj for j ∈ A.

We wish to calculate the joint distribution of yG∩J given yG\J . To
do that, we first have to calculate the marginal distribution of yG∩J
by summing-integrating out (sum for discrete, integrate for
continuous) all of the variables not in G .



Aster Model PMDF (cont.)

Third issue. If G is not the whole node set N of the graph, then
there is a terminal node not in G .

Proof. Start at any node in N \ G . If it is terminal, we are done.
Otherwise, follow any outgoing arrow. This must take us to a node
j not in G because (proof by contradiction) if j ∈ G , then p(j) ∈ G
and we must have started in G contrary to assumption. Now j is
terminal, or we can repeat the process. As in the “second issue”
proof, we eventually get to a terminal node, and each step takes us
to a node not in G by the same argument as above. QED



Aster Model PMDF (cont.)

Start summing-integrating out the variables in J \ G by choosing a
terminal node t ∈ J \ G (if there is one).

Since t is terminal, the only term in∏
j∈J

fj ,θ(yj |yp(j))

that contains yt is the term ft,θ(yt |yp(t)), and since this is a valid
conditional probability distribution, it sums or integrates (as the
case may be) to one. Thus this term just disappears from the
product and leaves us with the joint distribution for a new aster
model that has the same graph as before except the node t and
the arrow p(t) −→ t have been deleted.

Note that if yt is (partly) continuous, then we integrate if yp(t) > 0
and sum if yp(t) = 0, but the argument works in either case.



Aster Model PMDF (cont.)

By the “third issue” proof, we can keep repeating the process on
the previous slide until there are no nodes left that are not in G
and G is the whole remaining portion of the graph. Thus we have
computed

fθ(yG∩J |yG\J) =
∏

j∈G∩J
fj ,θ(yj |yp(j))



Aster Model PMDF (cont.)

Now we wish to compute the conditional distribution of yk given
yG\{k}. This is conditional = joint/marginal, where “joint” is the
distribution on the preceding slide, and “marginal” is the same with
yk summed-integrated out (summed or integrated, as the case may
be).

Since k is a terminal node of the subgraph with node set G (again
by the acyclicity property), when we sum-integrate out yk we just
get one and just delete the term fk,θ(yk |yp(k)) from the product.
Then dividing this result into the product leaves just this term.
Thus we have proved that, if

fθ(y) =
∏
j∈J

fj ,θ(yj |yp(j))

is the joint distribution of the aster model, then the conditional
distribution of yk given yG\{k} is

fk,θ(yk |yp(k))



Aster Model PMDF (cont.)

In summary,

fθ(y) =
∏
j∈J

fj ,θ(yj |yp(j))

is a valid factorization, in that what purport to be conditional
distributions on the right-hand side actually are conditional
distributions.



Exponential Families and IID

Suppose we have an exponential family with log likelihood

〈z , θ〉 − c(θ)

and we observe z1, . . ., zn independent and identically distributed
(IID) from this family.

Then, because of independence, the joint is the product of the
marginals, and because log of product is sum of logs, the log
likelihood is

n∑
i=1

[
〈zi , θ〉 − c(θ)

]
=

〈
n∑

i=1

zi , θ

〉
− nc(θ)

and we just get another exponential family with canonical statistic∑n
i=1 zi , canonical parameter θ, and cumulant function θ 7→ nc(θ).



Predecessor is Sample Size (cont.)

Recall from deck 1 the predecessor is sample size property

For any arrow
yp(j) −−−−→ yj

yj is the sum of yi independent and identically distributed (IID)
random variables having the distribution named by the arrow label
(by convention, a sum with zero terms is zero).

Now we make another assumption, the exponential family
assumption, that yj = z1 + · · ·+ zyp(j) , where the zi are IID
realizations of the canonical statistic of the one-dimensional
exponential family with cumulant function cj and canonical
parameter θj . (The random variable yj is a random sum of random
variables with yp(j) terms in the sum.)



Summary of Assumptions

Nodes have At Most One Predecessor Each node of the graph has
at most one predecessor. Initial nodes have none.
Non-initial nodes have one. If j is non-initial, p(j) is
its predecessor.

Acyclicity The graph is acyclic: a path that follows arrows in
the direction they point never returns to a node.

Predecessor is Sample Size If j is non-initial, then
yj = z1 + · · ·+ zp(j) (a random sum of random
variables). By convention, a sum with zero terms is
zero, so yp(j) = 0 implies yj = 0.

Exponential Family In yj = z1 + · · ·+ zp(j) the distribution of the
zk is one-parameter exponential family with canonical
statistic zk and canonical parameter θj .



Aster Log Likelihood

This means — using the rule that the sum of IID random variables
from an exponential family is another exponential family and the
cumulant function for the latter is n times the cumulant function
for the former, where n is the sample size — the conditional
distribution of yj given yp(j) is one-parameter exponential family
with canonical statistic yj , canonical parameter θj , and cumulant
function θj 7→ yp(j)cj(θj).

In yp(j)cj(θj) the sample size is yp(j) (predecessor is sample size)
and cj(θj) is the cumulant function for “the former”, that is, for
each of the yp(j) IID random variables whose sum is yj .



Aster Log Likelihood (cont.)

Hence the aster model log likelihood is

l(θ) = log

∏
j∈J

fj ,θ(yj |yp(j))

− constant

=
∑
j∈J

log fj ,θ(yj |yp(j))− constant

=
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
where the “minus a constant” (that does not depend on the
parameters) accounts for the fact that such constants can be
dropped in going from log PMDF to log likelihood.



Aster Log Likelihood (cont.)

Do we need to do anything special to handle cases where the
predecessor is zero (which implies the predecessor is also zero)?

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
No. Such terms do contribute zero to the log likelihood. But that
is exactly what they should do. The conditional distribution of yj
given yp(j) = 0 is degenerate and concentrated at zero. That is

Pr(yj = 0|yp(j) = 0) = 1

and log(1) = 0, so this arrow should contribute zero to the log
likelihood.

Probability theory “just works”. We don’t have to do contortions to
make it work.



Aster Log Likelihood (cont.)

Although each term in

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]
has exponential family form, the whole log likelihood does not
because both the yj and yp(j) in each term may be random.

However, because this is linear in the y ’s, this must be a joint
exponential family with canonical statistic vector yJ . We just don’t
(yet) know the canonical parameter vector and cumulant function.



Aster Log Likelihood (cont.)

Let ϕJ be the canonical parameter vector. Then the log likelihood
for this parameterization has the form

l(ϕ) =

∑
j∈J

yjϕj

− c(ϕ)

where c is the cumulant function for the joint exponential family.



Aster Log Likelihood (cont.)

To identify the joint canonical parameters, we must rewrite the log
likelihood collecting terms that multiply the same component of
the canonical statistic

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

=
∑
j∈J

yj

θj − ∑
k∈J

p(k)=j

ck(θk)

− ∑
k∈J

p(k)/∈J

yp(k)ck(θk)



Aster Log Likelihood (cont.)

Thus an aster model is (jointly) an exponential family with
canonical statistic vector yJ , canonical parameter vector ϕJ having
components

ϕj = θj −
∑
k∈J

p(k)=j

ck(θk), j ∈ J,

and cumulant function

c(ϕ) =
∑
k∈J

p(k)/∈J

yp(k)ck(θk)

(note that all of the p(k) in the later formula are initial nodes so
all of the yp(k) in this formula are constants, so this does define a
deterministic function rather than a random function).



The Aster Transform

I claim the change of parameter

ϕj = θj −
∑
k∈J

p(k)=j

ck(θk)

is invertible. To invert it, just isolate θj obtaining

θj = ϕj +
∑
k∈J

p(k)=j

ck(θk) (∗)

How is that an inversion? It still has thetas on the right-hand side!

Use (∗) in an order that calculates θj for successors before θj for
predecessors. Then it works because when we use it to calculate θj
we have already calculated all of the θk such that p(k) = j .



The Aster Transform (cont.)

Is there such an order? Yes there is, again by the acyclicity
property (our “second issue” theorem says there are terminal nodes,
and after we remove them from the graph, we have a new graph
that again has terminal nodes. And so forth.)

Note that at terminal nodes we have θj = ϕj . But we do not have
this at non-terminal nodes.

We call this invertible change of parameter θ ←→ ϕ the aster
transform (pedantically, θ −→ ϕ is the aster transform and
ϕ −→ θ is the inverse aster transform).



The Aster Transform (cont.)

Are you lost? If so, no surprise.

The aster transform makes mathematical-statistical-theoretical
sense, but it doesn’t make common sense. It is not intuitive at all.

To understand it we must apply Zen and not try to understand it.

If that doesn’t make sense, wait a while. We hope you will
eventually achieve enlightenment.

The technical report A Philosophical Look at Aster Models goes
through one very simple example, but it only shows the algebraic
formulas are a big mess that no one can understand intuitively.
(The whole point of the example is to show you that you do not
want to try to understand the aster transform by staring at the
formulas.)



The Aster Transform (cont.)

A quote from my master’s level theory notes

Parameters are meaningless quantities. Only probabilities
and expectations are meaningful.

Of course, some parameters are probabilities and expectations, but
most exponential family canonical parameters are not.

A quote from Alice in Wonderland

‘If there’s no meaning in it,’ said the King, ‘that saves a
world of trouble, you know, as we needn’t try to find any.’

Realizing that canonical parameters are meaningless quantities
“saves a world of trouble”. We “needn’t try to find any”.



The Aster Transform (cont.)

How are we to distinguish θ and ϕ? They are both canonical
parameters of a sort.

We call θ the conditional canonical parameter vector and ϕ the
unconditional canonical parameter vector, despite this
suggesting more parallelism than is really there.

Pedantically, θ is the vector having components θj that are the
canonical parameters for the conditional distributions associated
with the arrows p(j) −→ j in the graph.

Pedantically, ϕ is the canonical parameter vector of the joint
distribution of the aster model (which is an exponential family).



The Aster Transform (cont.)

Each θj is the canonical parameter of a one-parameter exponential
family model (for one arrow). The vector θ is not a canonical
parameter vector of a multivariate exponential family.

The vector ϕ is the canonical parameter vector of a multivariate
exponential family. Each ϕj is not a canonical parameter of a
one-parameter exponential family.



The Magic of Cumulant Functions

If
l(ϕ) = 〈y , ϕ〉 − c(ϕ)

is the log likelihood of an exponential family, then we can write the
ratio of the PMDF for ϕ and another parameter value ϕ∗ as

e l(ϕ)−l(ϕ
∗)

because l(ϕ) is the log of the PMDF for ϕ except, perhaps, some
additive terms not containing ϕ that may have been dropped from
the log likelihood. But, since any dropped terms do not depend on
the parameter, they are the same for ϕ and ϕ∗ and cancel in
l(ϕ)− l(ϕ∗).



The Magic of Cumulant Functions (cont.)

Thus
Eϕ∗

{
e l(ϕ)−l(ϕ

∗)
}

= 1

(probabilities must sum-integrate to one). And this is

Eϕ∗

{
e〈Y ,ϕ−ϕ

∗〉−c(ϕ)+c(ϕ∗)
}

= 1

or
c(ϕ) = c(ϕ∗) + log Eϕ∗

{
e〈Y ,ϕ−ϕ

∗〉
}

If we think of ϕ as variable and ϕ∗ as fixed, then this determines
c(ϕ) for all ϕ up to an unknown additive constant c(ϕ∗), which
can be dropped from log likelihoods.



The Magic of Cumulant Functions (cont.)

More precisely,

c(ϕ) = c(ϕ∗) + log Eϕ∗

{
e〈Y ,ϕ−ϕ

∗〉
}

determines the cumulant function if the expectation exists. We say
the set Φ of ϕ such that the expectation exists is the canonical
parameter space of the full exponential family (containing the
originally given exponential family if it was not full).

Any new distributions added to the family have ratios of their
PMDF to the PMDF for parameter value ϕ∗

e〈y ,ϕ−ϕ
∗〉−c(ϕ)+c(ϕ∗)

just like the distributions in the originally given family.



Moment Generating Functions

The moment generating function (MGF) of a random vector Y is

Mϕ(t) = Eϕ
{

e〈Y ,t〉
}

(ϕ is the parameter vector for the distribution of Y ) provided that
this expectation is finite for all t in some neighborhood of zero
(otherwise, we say Y does not have an MGF).



Moment Generating Functions (cont.)

The reason for the name is because ordinary moments can be
computed by differentiating the MGF and evaluating the
derivatives at t = 0

Eϕ(Yi ) =
∂Mϕ(t)

∂ti

∣∣∣∣
t=0

Eϕ(YiYj) =
∂2Mϕ(t)

∂ti∂tj

∣∣∣∣
t=0

Eϕ(YiYjYk) =
∂2Mϕ(t)

∂ti∂tj∂tk

∣∣∣∣
t=0

and so forth.



Moment Generating Functions (cont.)

The reason why this works is “differentiation under the integral
sign”

∂Mϕ(t)

∂ti
=

∂

∂ti
Eϕ
{

e〈Y ,t〉
}

= Eϕ

{
∂

∂ti
e〈Y ,t〉

}
= Eϕ

{
Yie
〈Y ,t〉

}
(the middle equality being “differentiation under the integral sign”
although, of course, the expectation may be a combination of
summation and integration or even all summation). Setting t = 0
gives

∂Mϕ(t)

∂ti

∣∣∣∣
t=0

= Eϕ(Yi )



Moment Generating Functions (cont.)

Differentiation under the integral sign does not always work, but it
is a theorem of MGF theory that it always does work for MGF (this
is a theorem of measure-theoretic probability that uses the
so-called dominated convergence theorem).

And now we see the reason for requirement that Mϕ(t) be finite
for all t in some neighborhood of zero. We need it in order for
partial derivatives at zero to exist. And we don’t care about these
partial derivatives existing at any other point.



Cumulant Generating Functions

The log of an MGF is called a cumulant generating function
(CGF) and its partial derivatives evaluated at zero are called
cumulants

κi =
∂ log Mϕ(t)

∂ti

∣∣∣∣
t=0

κij =
∂2 log Mϕ(t)

∂ti∂tj

∣∣∣∣
t=0

κijk =
∂2 log Mϕ(t)

∂ti∂tj∂tk

∣∣∣∣
t=0

and so forth.

The cumulants of order m are polynomial functions of the ordinary
moments up to order m and vice versa. The actual formulas can
be found in comprehensive textbooks of mathematical statistics.



Cumulant Generating Functions (cont.)

We are only interested in the first two cumulants

E (Yi ) =
∂ log Mϕ(t)

∂ti

∣∣∣∣
t=0

cov(Yi ,Yj) =
∂2 log Mϕ(t)

∂ti∂tj

∣∣∣∣
t=0

or, rewriting these as vector and matrix equations

E (Y ) = ∇ log Mϕ(0)

var(Y ) = ∇2 log Mϕ(0)



Cumulant Generating Functions (cont.)

In
E (Y ) = ∇ log Mϕ(0)

the left-hand side denotes the mean vector, which has
components E (Yi ) and the right-hand side denotes the gradient
vector, which has components ∂logMϕ(t)/∂ti evaluated at t = 0.

In
var(Y ) = ∇2 log Mϕ(0)

the left-hand side denotes the variance matrix, which has
components cov(Yi ,Yj) and the right-hand side denotes the
hessian matrix, which has components ∂2logMϕ(t)/∂ti∂tj
evaluated at t = 0.

The variance matrix is also called the covariance matrix, the
variance-covariance matrix, or the dispersion matrix.



The Magic of Cumulant Functions (cont.)

What is the CGF of an exponential family?

The MGF is

Mϕ(t) = Eϕ
{

e〈Y ,t〉
}

= Eϕ∗

{
e〈Y ,t〉e〈Y ,ϕ−ϕ

∗〉−c(ϕ)+c(ϕ∗)
}

= ec(ϕ+t)−c(ϕ)

provided this satisfies the condition to be an MGF, that is,
provided that ϕ is an interior point of Φ.



The Magic of Cumulant Functions (cont.)

An exponential family is regular if its full canonical parameter
space Φ is an open set. For a regular exponential family

Mϕ(t) = ec(ϕ+t)−c(ϕ)

is an MGF for all ϕ ∈ Φ.

And the cumulant function is

Kϕ(t) = log Mϕ(t) = c(ϕ+ t)− c(ϕ)



The Magic of Cumulant Functions (cont.)

And the first two cumulants are

∇Kϕ(0) = ∇c(ϕ+ t)
∣∣
t=0

= ∇c(ϕ)

∇2Kϕ(0) = ∇2c(ϕ+ t)
∣∣
t=0

= ∇2c(ϕ)

derivatives of the CGF evaluated at zero are derivatives of the
cumulant function c evaluated at ϕ.

In short

Eϕ(Y ) = ∇c(ϕ)

varϕ(Y ) = ∇2c(ϕ)

This is tremendously important with lots of consequences.



The Magic of Cumulant Functions (cont.)

Do aster models have this magic? The only requirement we needed
is that the exponential family be regular. So the question becomes
are aster models regular?

The answer is yes, provided all the one-parameter exponential
families for the arrows are regular. But the proof is somewhat
complicated.

For each j , let Θj be the full canonical parameter space for the
one-parameter exponential family associated with the arrow
p(j)→ j , and define

Θ =
∏
j∈J

Θj

the set of all valid θ values. Then Θ is an open set if all of these
families are regular (meaning each Θj is open).



The Magic of Cumulant Functions (cont.)

Let h denote the aster transform, and define

Φ = h(Θ) = { h(θ) : θ ∈ Θ }.

Then Φ is also an open set because the aster transform is a
diffeomorphism (both it and its inverse are differentiable) and
hence maps open sets to open sets.

Then the question is whether Φ is the full canonical parameter
space of the joint exponential family. This seems“obvious”and it is
true. There is a theorem in the theory handout proving this (and
the proof is of the “follow your nose” variety), but we won’t put it
on these slides.



The Magic of Cumulant Functions (cont.)

That finishes the proof that the aster model is regular, provided all
of the one-parameter families associated with its arrows are regular.

And all of the one-parameter families that have been implemented
in aster models are regular. In fact, it is hard to find an
exponential family that is not regular.



Positive Definite Matrices

A symmetric matrix V is positive semi-definite if

〈w ,Vw〉 = wTVw ≥ 0, for all vectors w

A symmetric matrix V is positive definite if

〈w ,Vw〉 = wTVw > 0, for all nonzero vectors w



Positive Definite Matrices (cont.)

Every variance matrix V = var(Y ) is positive semi-definite because

var(〈Y ,w〉) = var

{
d∑

i=1

Yiwi

}

= cov


d∑

i=1

Yiwi ,

d∑
j=1

Yjwj


=

d∑
i=1

d∑
j=1

wiwj cov(Yi ,Yj)

= wTVw



Positive Definite Matrices (cont.)

Every variance matrix var(Y ) is positive definite unless there exists
a nonzero vector w such that var(〈Y ,w〉) = 0, which happens if
and only if 〈Y ,w〉 is almost surely constant, which happens if and
only if Y is concentrated on the hyperplane

{ y : 〈y ,w〉 = c }

for some constant c.

For short we will say the distribution of Y is degenerate if it is
concentrated on a hyperplane and non-degenerate otherwise.



Positive Definite Matrices (cont.)

In summary, every variance matrix is positive semi-definite, and a
variance matrix is positive definite if and only if the corresponding
distribution is non-degenerate.



Convex and Concave Functions

A convex set of vectors is a set S having the property that for any
two points x1 and x2 in the set, the entire line segment with these
points as end points is also in the set, that is,

tx1 + (1− t)x2 ∈ S , 0 < t < 1

A vector-to-scalar function f that is allowed to have the value +∞
(like cumulant functions) such that the set

dom f = { x : f (x) <∞}

is open and convex and the restriction of f to dom f is twice
differentiable is a convex function if the hessian matrix is positive
semi-definite everywhere on dom f . And f is strictly convex if the
hessian matrix is positive definite everywhere on dom f .



A Technical Quibble

This is the most general definition of “convex set”.

The most general definition of “convex function” allows the value
−∞ as well as +∞ and does not require differentiability, much less
twice differentiability. (Example: the absolute value function is
convex but not differentiable at zero.)

But we will not need the general definition.



Convex and Concave Functions (cont.)

A function f is concave if and only if −f is convex.

Stand on your head and convex becomes concave and vice versa.

A function f is strictly concave if and only if −f is strictly convex.

The main virtue of convex functions is in minimization.

The main virtue of concave functions is in maximization.



Local and Global Maximizers and Minimizers

A point x is a global minimizer of a function f if

f (x) ≤ f (y), for all y

A point x is a local minimizer of a function f if

f (x) ≤ f (y), for all y in some neighborhood of x



Convex and Concave Functions (cont.)

Theorem. If f is convex and dom f is not the empty set, then
every local minimizer of f is a global minimizer of f .

Proof. Suppose x is a local minimizer and y is any other point. If
y /∈ dom f , then f (y) =∞ and there is nothing to prove.

Otherwise, by assumption the entire line segment between x and y
lies in dom f and f is twice differentiable at every point of this line
segment. Define

g(t) = f
(
ty + (1− t)x

)
so

g ′(t) = (y − x)T∇f
(
ty + (1− t)x

)
g ′′(t) = (y − x)T∇2f

(
ty + (1− t)x

)
(y − x)



Convex and Concave Functions (cont.)

Because x is a local minimizer ∇f (x) = 0. Hence g ′(0) = 0.

Because f is convex, ∇2f (y) is positive semi-definite for all
y ∈ dom f . Hence g ′′(t) is nonnegative for all t.

By the fundamental theorem of calculus

g ′(t) = g ′(0) +

∫ t

0
g ′′(s) ds

Since g ′(0) = 0 and g ′′(s) ≥ 0 for all s, we have g ′(t) ≥ 0 for all t.



Convex and Concave Functions (cont.)

By another application of the fundamental theorem of calculus

g(1) = g(0) +

∫ 1

0
g ′(s) ds

And since g ′(s) ≥ 0 for all s, we have

g(1) ≥ g(0)

but g(1) = f (y) and g(0) = f (x), so this proves

f (y) ≥ f (x)

QED



Convex and Concave Functions (cont.)

Theorem. If f is strictly convex and dom f is not the empty set,
then every local minimizer of f is the unique global minimizer of f .

Proof. Follow the proof of the other theorem. Everything is the
same except for the following changes.

Because f is strictly convex, ∇2f (y) is positive definite for all
y ∈ dom f . Hence g ′′(t) is strictly positive for all t.

Since the integral of a strictly positive function is strictly positive,
we conclude g ′(t) > 0 for all t > 0 in our first application of the
fundamental theorem of calculus, and we conclude g(1) > g(0) in
our second application of the fundamental theorem of calculus.

That is, we conclude f (y) > f (x). So there can be no global
minimizer other than x . QED



Convex and Concave Functions (cont.)

Corollary. If f is strictly convex and dom f is not the empty set,
then every local minimizer of f is the unique zero of ∇f .

Proof. Follow the proof of the preceding theorem. In the middle
we conclude that g ′(t) > 0 for t > 0, and in particular

0 < g ′(1) = (y − x)T∇f (y)

This makes it impossible to have ∇f (y) = 0. QED



Convex and Concave Functions (cont.)

The proofs of the following are obvious. (Just stand the preceding
ones on their heads.)

Theorem. If f is concave and dom f is not the empty set, then
every local maximizer of f is a global maximizer of f .

Theorem. If f is strictly concave and dom f is not the empty set,
then every local maximizer of f is the unique global maximizer of f .

Corollary. If f is strictly concave and dom f is not the empty set,
then every local maximizer of f is the unique zero of ∇f .



Convex and Concave Functions (cont.)

The sum of convex functions is convex, and, if one is strictly
convex, then the sum is strictly convex.

The sum of concave functions is concave, and, if one is strictly
concave, then the sum is strictly concave.

Every linear function is both convex and concave.



The Magic of Cumulant Functions (cont.)

Theorem. Every cumulant function of a regular full exponential
family is convex. It is strictly convex if and only if the distribution
of the canonical statistic vector is non-degenerate.

Proof. This follows from

∇2c(ϕ) = varϕ(Y )

so this is a positive semidefinite matrix and is positive definite if
and only if the distribution of Y is non-degenerate, if (a fact that
remains to be proved) dom c is a convex set.



The Magic of Cumulant Functions (cont.)

So suppose ϕ∗ and ϕ∗∗ and ϕ∗∗∗ are in dom c and we calculate for
0 < t < 1

c
(
tϕ∗∗+(1− t)ϕ∗∗∗

)
= c(ϕ∗) + log Eϕ∗

{
e〈Y ,tϕ

∗∗+(1−t)ϕ∗∗∗−ϕ∗〉
}

= c(ϕ∗) + log Eϕ∗

{
et〈Y ,ϕ

∗∗−ϕ∗〉+(1−t)〈Y ,ϕ∗∗∗−ϕ∗〉
}

≤ c(ϕ∗) + log Eϕ∗

{
e〈Y ,ϕ

∗∗−ϕ∗〉 + e〈Y ,ϕ
∗∗∗−ϕ∗〉

}
= c(ϕ∗∗) + c(ϕ∗∗∗)− c(ϕ∗)

the inequality being the fact that the exponential function x 7→ ex

is increasing, so the maximum value of the integrand occurs at
t = 0 or at t = 1. QED



The Magic of Cumulant Functions (cont.)

An aster model has a non-degenerate joint distribution (hence
strictly convex cumulant function) if every one-parameter
exponential family associated with an arrow is non-degenerate and
no initial node has the constant zero. (There is a proof of this in
the theory handout that we won’t put on these slides.)

The log likelihood of an aster model with non-degenerate
distribution is strictly concave. Hence the maximum likelihood
estimator (MLE) of the unconditional canonical parameter is
unique if it exists. (It need not exist. Much more on this later.)



Mean Value Parameterizations

The map h defined by

h(ϕ) = ∇c(ϕ), ϕ ∈ Φ

maps the canonical parameter vector ϕ of a regular full exponential
family to the mean value parameter vector µ = h(ϕ).

In an aster model we say µ is the unconditional mean value
parameter vector because (1) it is an unconditional expectation
and (2) there are also the mean value parameters of the
one-parameter exponential families associated with the conditional
distributions for the arrows.



Mean Value Parameterizations (cont.)

Theorem. Assuming the aster model is non-degenerate, the
mapping ϕ←→ µ is invertible.

Proof. Suppose µ∗ is a possible value of the mean value
parameter vector, that is, µ∗ = h(ϕ∗) for some ϕ∗. Define

l(ϕ) = 〈µ∗, ϕ〉 − c(ϕ), ϕ ∈ Φ,

(this would be a log likelihood if µ∗ were a possible value y of the
canonical statistic vector). Then

∇l(ϕ) = µ∗ − h(ϕ)

so ∇l(ϕ∗) = 0. By assumption, l is a strictly concave function,
hence ϕ∗ is the unique point ϕ such that h(ϕ) = µ∗. Thus h is
one-to-one, hence invertible (considered as a function from its
domain to its range). QED



Mean Value Parameterizations (cont.)

A similar analysis applied to the one-parameter exponential families
associated with the arrows gives the following.

The map hj defined by

hj(θj) = c ′j (θj)

(where the prime denotes differentiation) maps the canonical
parameter vector θj of a regular full exponential family associated
with the j-th arrow to ξj = hj(θj).

The conditional mean value parameter vector is the vector ξ
having components ξj .



Mean Value Parameterizations (cont.)

So what expectations are the ξj?

Recall that yj = z1 + · · ·+ zyp(j) , where the zi are IID realizations
of the canonical statistic of the one-dimensional exponential family
with cumulant function cj and canonical parameter θj (yj is a
random sum of random variables with yp(j) terms).

Thus

E (yj |yp(j)) =

yp(j)∑
i=1

E (Zi ) = yp(j)ξj

(because E (Zi ) = ξj). And

E (yj |yp(j) = 1) = ξj (∗)

assuming this makes sense. Equation (∗) does not make sense
when the event yp(j) = 1 has probability zero.



Mean Value Parameterizations (cont.)

When equation (∗) does not make sense, we cannot use it as a
definition of ξj .

Then we have to use the circumlocution: ξj is the mean of each of
the yp(j) IID random variables the sum of which is yj . (This is the
general definition that works in all cases.)



A Confession

The first aster paper (Geyer, Wagenius, and Shaw, Biometrika,
2007) did not define conditional mean value parameters this way.
They said

ξj = E (yj |yp(j)) = yp(j)E (yj |yp(j) = 1)

rather than
ξj = E (yj |yp(j) = 1)

A referee said the former definition is dumb. It is a function of
random variables yp(j) and parameters E (yj |yp(j) = 1) and so
shouldn’t be called a parameter. The R package aster uses the
same dumb definition.

We didn’t listen then. But now we agree with the referee. The R
package aster2 and recent papers and technical reports use the
latter (non-dumb) definition (if they mention conditional mean
value parameters at all).



Mean Value Parameterizations (cont.)

It is useful to examine the direct change of parameter

µ←→ ξ

rather than the long way round

µ←→ ϕ←→ θ ←→ ξ

Applying the iterated expectation theorem to

E (yj |yp(j)) = yp(j)ξj

gives

µj = E (yj) = E{E (yj |yp(j))} = E (yp(j)ξj) = ξjE (yp(j)) = ξjµp(j)



Mean Value Parameterizations (cont.)

And iterating this gives

µj = ξjµp(j)

= ξjξp(j)µp(p(j))

= ξjξp(j)ξp(p(j))µp(p(p(j)))

= ξjξp(j)ξp(p(j))ξp(p(p(j)))µp(p(p(p(j))))

and so forth.

Keep going until the only µ is for an initial node, in which case,
since the expectation of a constant is a constant,

µp(p(p(p(j)))) = yp(p(p(p(j))))

(or perhaps with more p’s, whatever it takes to get to an initial
node).



Mean Value Parameterizations (cont.)

To find µk in terms of ξ, follow the arrows going backwards (in the
opposite direction the arrow points) back to the initial node,
multiplying by the ξj for each arrow and the yj for the initial node.

Recall our notation G = {k, p(k), p(p(k)), . . .}. Using this

µk =

 ∏
j∈G∩J

ξj

 ∏
j∈G\J

yj


(the second product always has exactly one term, because G \ J is
always a singleton set).



Mean Value Parameterizations (cont.)

Here is another way to write µ in terms of ξ. Let � denote the
transitive closure of the predecessor relation defined by j � k
if and only if one of the following holds

j = p(k)

j = p(p(k))

j = p(p(p(k)))

...

where the dots indicate arbitrarily many applications of p.

If we allowed ourselves to use the term “ancestor” like it is used in
graph theory, this would be the “ancestor relation”. But we avoid
biological terminology for describing graphs and so have to use the
more long-winded term in boldface above.



Mean Value Parameterizations (cont.)

But �, which is a strict partial order relation, is not as useful as �,
its corresponding partial order relation, defined by j � k if and only
if j � k or j = k.

� has the even more long-winded name: reflexive transitive
closure of the predecessor relation.

But it would have a clumsy name even if we used “ancestor”’ like it
is used in graph theory. What would you call it? Ancestor-or-self
relation? Reflexive closure of the ancestor relation?

Whatever one calls them, we now have the two useful symbols �
and � for these relations.



Mean Value Parameterizations (cont.)

Using this new notation

µk =

∏
j∈J
j�k

ξj


 ∏

j∈N\J
j�k

yj


(as before, the second product always has exactly one term).



Mean Value Parameterizations (cont.)

Going the other way is even easier

ξj =
µj
µp(j)

assuming we do not have divide by zero. Since we already know
that the mapping µ←→ ξ is invertible, it must be that we never
have divide by zero (this follows from the aster model distribution
being non-degenerate).



A Plethora of Parameterizations

Now we have four different parameterizations. All are equally
good, and any one can be mapped to any other.

θ ϕ

ξ µ
-

�

-
�

multiplication

division

aster transform

inverse aster transform

?

6

?

6

c ′j ∇c



A Plethora of Parameterizations (cont.)

Because of the moment generating function argument, we know
that cumulant functions are infinitely differentiable. This tells us
that the mappings θ ←→ ϕ and ϕ −→ µ and θ −→ ξ are infinitely
differentiable. Of course, multiplication and division are infinitely
differentiable, so the mappings ξ ←→ µ are infinitely differentiable.

This leaves the two red arrows in the diagram, which have, in
general, no closed form expression.

The inverse function theorem from real analysis says the inverse of
an infinitely differentiable function is also infinitely differentiable.
Thus all of these changes of parameter are infinitely differentiable.



A Plethora of Parameterizations (cont.)

We have closed form expressions for six of the eight
transformations represented by arrows in the picture. We do not
have closed form expressions for the two transformations
represented by red arrows in the picture. For these, in general, we
can only evaluate them by optimization for any given argument.

Formulas for their derivatives are given by the inverse function
theorem.



A Plethora of Parameterizations (cont.)

Recall that µ = h(ϕ), where h(ϕ) = ∇c(θ), and we proved that if
µ∗ = h(ϕ∗), then ϕ∗ is the unique global maximizer of the function

l(ϕ) = 〈µ∗, ϕ〉 − c(ϕ)

Hence given µ∗ we can find ϕ∗ by optimization and set

h−1(µ∗) = ϕ∗

Curiously, although we have no closed form expression for h−1 we
do have a closed form expression for its derivative. The inverse
function theorem says

∇h−1(µ∗) =
(
∇h(ϕ∗)

)−1
=
(
∇2c(ϕ∗)

)−1
when µ∗ = h(ϕ∗) and ϕ∗ = h−1(µ∗).



A Plethora of Parameterizations (cont.)

Similarly recall that ξj = hj(θj), where hj(θj) = c ′j (θj), and we
proved that if ξ∗j = hj(θ

∗
j ), then θ∗j is the unique global maximizer

of the function
l(θj) = ξ∗j θj − cj(θj)

Hence given ξ∗j we can find θ∗j by optimization and set

h−1j (ξ∗j ) = θ∗j

Curiously, although we have no closed form expression for h−1j we
do have a closed form expression for its derivative. The inverse
function theorem says

d

dξ∗j
h−1(ξ∗j ) =

1

h′j(θ
∗
j )

=
1

c ′′j (θ∗j )

when ξ∗j = hj(θ
∗
j ) and θ∗j = h−1j (ξ∗j ).



A Plethora of Parameterizations (cont.)

Higher order derivatives can be done by differentiating the formulas
for first derivatives that come from the inverse function theorem
and the rules for differentiating inverses: for scalars

∂

∂x

1

a
= − 1

a2
∂a

∂x

and for matrices
∂A−1

∂x
= −A−1

∂A

∂x
A−1



Some Distribution Theory

Let us do a little distribution theory to have some concrete
examples.



Some Distribution Theory: Bernoulli

The PMF of the Bernoulli distribution is

fp(x) =

{
1− p, x = 0

p, x = 1

where p is the “usual parameter” satisfying 0 < p < 1. We can
write this without case splitting

fp(x) = px(1− p)1−x

so the log likelihood is

l(p) = x log(p) + (1− x) log(1− p)

= x
[

log(p)− log(1− p)
]

+ log(1− p)



Some Distribution Theory: Bernoulli (cont.)

From this we see that the usual statistic x is the canonical
statistic. But the usual parameter is not the canonical parameter.
The canonical parameter must be the term in square brackets

θ = log(p)− log(1− p) = log

(
p

1− p

)
= logit(p)

We can solve for the usual parameter in terms of the canonical
parameter

eθ = p/(1− p)

(1− p)eθ = p

eθ = p + peθ

eθ = p + peθ

p = eθ/(1 + eθ)



Some Distribution Theory: Bernoulli (cont.)

Recall the log likelihood

l(p) = x logit(p) + log(1− p)

and the change of parameter

p =
eθ

1 + eθ

The term that does not contain x must be minus the cumulant
function, that is,

c(θ) = − log(1− p) = − log

(
1− eθ

1 + eθ

)
= − log

(
1

1 + eθ

)
or

c(θ) = log
(

1 + eθ
)



Some Distribution Theory: Bernoulli (cont.)

And

c(θ) = log
(

1 + eθ
)

c ′(θ) =
eθ

1 + eθ

Thus we see that the “usual” parameter p is also the mean value
parameter ξ, so we will use that notation from now on.

And

c ′(θ) =
1

e−θ + 1

c ′′(θ) =
e−θ

[e−θ + 1]2
=

eθ

[1 + eθ]2
= ξ(1− ξ)



Some Distribution Theory: Bernoulli (cont.)

Thus we recover the usual theory of the Bernoulli distribution

E (X ) = ξ

var(X ) = ξ(1− ξ)

But we obtain a lot more, everything we need to know to use
Bernoulli arrows in aster models.



Some Distribution Theory: Poisson

The PMF of the Poisson distribution is

fm(x) =
mxe−m

x!

where m is the “usual parameter” satisfying 0 < m <∞. So the
log likelihood is

l(m) = x log(m)−m

(we drop the term log(x!) that does not contain the parameter).



Some Distribution Theory: Poisson (cont.)

From this we see that the usual statistic x is the canonical
statistic. But the usual parameter is not the canonical parameter.
The canonical parameter is what multiplies x in the log likelihood,
that is,

θ = log(m)

which has inverse change of parameter

m = eθ

The term in the log likelihood that does not contain x must be
minus the cumulant function, that is,

c(θ) = m = eθ



Some Distribution Theory: Poisson (cont.)

And

c(θ) = eθ

c ′(θ) = eθ

c ′′(θ) = eθ

Thus we see that the “usual” parameter m is also the mean value
parameter ξ, so we will use that notation from now on.

And we recover the usual theory of the Poisson distribution

E (X ) = ξ

var(X ) = ξ

But we obtain a lot more, everything we need to know to use
Poisson arrows in aster models.



Some Distribution Theory: Zero-Truncated Poisson

The PMF of the zero-truncated Poisson distribution is

fm(x) =
mxe−m

x!(1− e−m)

where m is the “usual parameter” satisfying 0 < m <∞. So the
log likelihood is

l(m) = x log(m)−m − log(1− e−m)

(we drop the term log(x!) that does not contain the parameter).



Some Distribution Theory: Zero-Truncated Poisson (cont.)

From this we see that the usual statistic x is the canonical
statistic. But the usual parameter is not the canonical parameter.
The canonical parameter is what multiplies x in the log likelihood,
that is,

θ = log(m)

which has inverse change of parameter

m = eθ

The term in the log likelihood that does not contain x must be
minus the cumulant function, that is,

c(θ) = m + log(1− e−m) = eθ + log
(

1− e−e
θ
)



Some Distribution Theory: Zero-Truncated Poisson (cont.)

And

c(θ) = eθ + log
(

1− e−e
θ
)

c ′(θ) = eθ +
eθe−e

θ

1− e−eθ

= m +
me−m

1− e−m

=
m

1− e−m

Thus we see that the “usual” parameter m is not the mean value
parameter ξ either. In fact, m is the mean of the (untruncated)
Poisson random variable that we truncate to get X .

Although for the Bernoulli and Poisson distributions, there was a
simple closed form expression for the mapping ξ −→ θ, for this
distribution there is not.



Some Distribution Theory: Zero-Truncated Poisson (cont.)

And

c ′(θ) = eθ +
eθe−e

θ

1− e−eθ

c ′′(θ) = eθ +
eθe−e

θ

1− e−eθ
− e2θe−e

θ

1− e−eθ
− e2θe−2e

θ

(1− e−eθ)2

= eθ − eθ(eθ − 1)e−e
θ

1− e−eθ
−

[
eθe−e

θ

1− e−eθ

]2

= m − m(m − 1)e−m

1− e−m
−
[

me−m

1− e−m

]2



Some Distribution Theory: Zero-Truncated Poisson (cont.)

Thus we discover the theory of the zero-truncated Poisson
distribution

E (X ) =
m

1− e−m

var(X ) = m − m(m − 1)e−m

1− e−m
−
[

me−m

1− e−m

]2
And we obtain a lot more, everything we need to know to use
zero-truncated Poisson arrows in aster models.



A Plethora of Parameterizations (cont.)

But don’t we need to know a lot more distribution theory than
that?

No. We just need to teach the computer a bit about the basics of
differentiation: the rules for derivative of a sum, derivative of a
product, derivative of a quotient, and the chain rule.

Then the computer can combine cumulant functions for
one-parameter conditional distributions to obtain the cumulant
function for the whole aster model, the log likelihood, and the
gradient vector and hessian matrix of the log likelihood. These are
needed to do maximum likelihood estimation and likelihood-based
inference, which uses the Fisher information matrix and the
delta method (much more on these later).

The computer can also do all of the changes of parameter between
θ, ϕ, ξ, and µ and all the derivatives (Jacobian matrices) for these
changes of parameter, which are needed for the delta method.



Unconditional Canonical Affine Submodels

It may come as a shock, that all of this theory and all of these
parameterizations do not give us any useful models. Too many
parameters!

We call the models already presented saturated aster models.
They have one parameter per arrow in the graph, which is one
parameter per non-initial node of the graph, which is one
parameter per component of the response vector.

Useful models have to be submodels of these models .



Unconditional Canonical Affine Submodels (cont.)

We already know how to specify submodels, just like in linear
models (LM) and generalized linear models (GLM), we specify the
saturated model parameters as linear functions of other parameters.

As we learn from GLM theory, we do not want to specify means as
linear functions because linear functions do not respect constraints.
If we are doing Bernoulli GLM, then we know 0 < µi < 1, but
writing a linear function

µi = α + βxi

gives means outside the allowed range. Logistic regression specifies
the saturated model canonical parameter vector as a linear function

θi = logit(µi ) = α + βxi

And since the range of θi is −∞ to +∞, this works.



Unconditional Canonical Affine Submodels (cont.)

In order to get all canonical affine submodels at once, we adopt
matrix notation

ϕ = a + Mβ

where

ϕ is the saturated model unconditional canonical parameter,

a is a known vector (not a function of unknown parameters)
called the offset vector.

M is a known matrix (not a function of unknown parameters,
usually a function of covariate data) called the model matrix.

β is an unknown parameter vector.



Unconditional Canonical Affine Submodels (cont.)

“Offset vector” and “model matrix” is the terminology of the R
function glm.

The aster package says “origin” rather than “offset vector” (which
it probably shouldn’t).

Other people say “design matrix” rather than “model matrix” but
this doesn’t really make sense when some of the covariates are not
“designed”.



Unconditional Canonical Affine Submodels (cont.)

The offset vector is zero in most applications. This gives us
canonical linear submodels specified by

ϕ = Mβ

This is what we have seen over and over again in books on LM and
GLM.

The R package aster puts an offset vector in every model by
default (it probably shouldn’t, and the aster2 package does not,
more PBD).

However, as long as varb is in the model, the offset vector only
affects the betas for varb, and these are of no scientific interest.
So it doesn’t really matter (but is confusing).



Unconditional Canonical Affine Submodels (cont.)

Nevertheless, offset vectors are occasionally useful. How many
knew about and have used the offset optional argument of the R
function glm?

So we keep them.



Unconditional Canonical Affine Submodels (cont.)

When we plug ϕ = a + Mβ into the aster model log likelihood we
get

l(β) = 〈y , a〉+ 〈y ,Mβ〉+ c(a + Mβ)

for the submodel log likelihood. We may drop the additive term
that does not contain the parameter vector β obtaining

l(β) = 〈y ,Mβ〉+ c(a + Mβ)

and now we revert to matrix notation to see

〈y ,Mβ〉 = yTMβ = βTMT y = 〈MT y , β〉

so
l(β) = 〈MT y , β〉+ c(a + Mβ)



Unconditional Canonical Affine Submodels (cont.)

And we see that

l(β) = 〈MT y , β〉+ c(a + Mβ)

has the form of an exponential family log likelihood with

canonical statistic vector MT y

canonical parameter vector β

cumulant function

csub(β) = c(a + Mβ)

This is important: canonical affine submodels are themselves
regular full exponential families.



Unconditional Canonical Affine Submodels (cont.)

csub(β) = c(a + Mβ)

∇csub(β) = MT∇c(a + Mβ)

∇2csub(β) = MT∇2c(a + Mβ)M



Unconditional Canonical Affine Submodels (cont.)

To see these, use coordinates. The i-th component of Mβ is∑
k

mikβk

so
∂csub(β)

∂βk
=
∑

i

∂c(ϕ)

∂ϕi

∂ϕi

∂βk
=
∑

i

∂c(ϕ)

∂ϕi
mik

and
∂2csub(β)

∂βk∂βl
=
∑

i

∑
j

∂2c(ϕ)

∂ϕi∂ϕj
mikmjk



Unconditional Canonical Affine Submodels (cont.)

This gives us everything we need for maximum likelihood
estimation and likelihood inference for canonical affine submodels.

Because these submodels are regular full exponential families with
non-degenerate distributions, maximum likelihood estimates are
unique if they exist and can be found by any algorithm that goes
uphill on the log likelihood and doesn’t stop until it finds a point
where the gradient vector is zero.



Unconditional Canonical Affine Submodels (cont.)

By the theory of exponential families, the submodel mean value
parameter is

τ = ∇csub(β) = E (MT y) = MTE (y) = MTµ



A Plethora of Parameterizations (cont.)

Now we have six parameterizations:

saturated model conditional canonical parameter vector θ,

saturated model unconditional canonical parameter vector ϕ,

saturated model conditional mean value parameter vector ξ,

saturated model unconditional mean value parameter vector µ,

unconditional canonical affine submodel canonical parameter
vector β,

unconditional canonical affine submodel mean value parameter
vector τ ,



A Plethora of Parameterizations (cont.)

All six parameterizations are important.

All six parameterizations play roles in scientific inference (not all on
stage at the same time).



A Plethora of Parameterizations (cont.)

In GLM because components of the response vector are
independent (conditional on covariates), there is no distinction
between conditional and unconditional so we have ϕ = θ and
µ = ξ and thus only four parameterizations.

In LM because mean value parameters are canonical for normal
location models, we have θ = ϕ = µ = ξ and thus only three
parameterizations

µ = Mβ

τ = MTµ



A Plethora of Parameterizations (cont.)

That we still have multiple parameterizations for LM and GLM
(though not so many as aster) is hidden by the usual way
textbooks and teachers woof about them.

Policy in all statistics courses (not policy enforced by anybody, just
part of the culture) says that we only call β a parameter vector.

The parameter vector µ we do not mention at all. Its estimates are
denoted ŷ in LM rather than µ̂ and are called “predicted values”
even though they are “predicting” the expectation of data already
observed rather than any future data. And τ̂ = MT ŷ are not
mentioned at all or computed by any R function (although you can
of course compute this matrix multiplication yourself).



A Plethora of Parameterizations (cont.)

I guess (who can really say where bits of culture come from) that
this policy is an attempt to not confuse students with multiple
parameterizations. The betas are the parameters; that’s all you
need to know.

But then what is

ŷi ± t critical value× standard error of ŷi

It is a confidence interval, but for what? A confidence interval is
an interval estimate of a parameter! What parameter? The
parameter who must not be named!

IMHO this causes as much confusion as it avoids.



A Plethora of Parameterizations (cont.)

GLM teachers and textbooks again say β is the only parameter
vector. They call ϕ the “linear predictor”, a term not used in
general statistical theory. And µ and µ̂ are not called anything.

But there is a function to compute them in R. If gout is the result
of a call to the glm function, then ϕ̂ is computed by

phi.hat <- predict(gout)

and µ̂ is computed by

mu.hat <- predict(gout, type = response)



A Plethora of Parameterizations (cont.)

If the glm function was called with optional argument x = TRUE so
its result (gout) has a component gout$x which is the model
matrix, then

tau.hat <- t(gout$x) %*% mu.hat

computes the submodel canonical statistic τ̂ .



A Plethora of Parameterizations (cont.)

Whether or not you think these parameterizations must not be
named, they exist and are important for scientific inference.

IMHO the names and the symbols help. It’s hard to talk about
something that must not be named.

And ŷ is (again, just IMHO) silly. Nowhere else in statistics to we
put a hat on a symbol for a statistic to symbolize a parameter
estimate. That is confusing all by itself.



Invariance of Maximum Likelihood

Maximum likelihood estimates transform by invariance.

Suppose θ is a parameter vector (not necessarily having anything
to do with aster models or even exponential families) and ψ = h(θ)
is an invertible transformation θ = h−1(ψ).

Theorem. If θ̂ is the MLE for θ, then ψ̂ = h(θ̂) is the MLE for ψ.

Proof. Think geometrically. The graph of the log likelihood is a
hypersurface over the domain. The maximum occurs at one point
(let us assume). θ and ψ are different coordinatizations of the
domain. The point where the maximum occurs is called θ̂ in one
coordinatization and ψ̂ in the other. The relationship between the
coordinatizations is ψ = h(θ). QED



Invariance of Maximum Likelihood (cont.)

So if we know the MLE for any parameter, we know the MLE for
every parameter (transform by invariance).



Observed Equals Expected

The log likelihood for an exponential family (not necessarily an
aster model) is

l(ϕ) = 〈y , ϕ〉 − c(ϕ)

and the gradient vector is

∇l(ϕ) = y −∇c(ϕ)

Assuming the distribution of the canonical statistic y is
non-degenerate so the MLE is unique if it exists, the unique MLE
is given by

y = ∇c(ϕ̂)

but
µ = h(ϕ) = ∇c(ϕ)

is the change of parameter from canonical to mean value.



Observed Equals Expected (cont.)

So the relation between the MLE for ϕ and µ is

µ̂ = h(ϕ̂) and ϕ̂ = h−1(µ̂)

and
y = µ̂

This is called the observed equals expected property of
maximum likelihood in a regular full exponential family: the
observed value of the canonical statistic y is equal to the MLE of
its expected value µ̂.

This is true for any regular full exponential family. It is a large part
of the traditional woof about log-linear models for categorical data
analysis. It is entirely absent from the traditional woof about GLM.
There is no reason for this absence (other than tradition).



Observed Equals Expected (cont.)

When we apply the observed equals expected property to aster
canonical affine submodels, we get

MT y = τ̂

We cannot use this directly to find MLE of other parameters
because we have no closed form expression for the transformation
β = h−1(τ) that gives

β̂ = h−1(MT y)

We have to find β̂ using optimization software to maximize the log
likelihood l(β), and then use the transformations

ϕ̂ = a + Mβ̂

µ̂ = ∇c(ϕ̂)

τ̂ = MT µ̂



Observed Equals Expected (cont.)

Although
MT y = τ̂

does not allow us to determine the MLE for any other
parameterization except by doing maximum likelihood to find β̂, it
is extremely important because it is the only simple algebraic fact
about maximum likelihood: maximum likelihood in a regular
full exponential family has the observed equals expected
property. This is an important part of interpretation of MLE.



Sufficient Dimension Reduction

Almost all statistical inference does dimension reduction. It
replaces the whole of the data (dimension n) with a smaller vector
of statistics (dimension p).

For example, when you reduce a vector of n numbers to its mean,
p = 1. When you reduce it to its mean and variance, p = 2.

When you reduce the data to the MLE β̂ for a statistical model, p
is its dimension.



Sufficient Dimension Reduction (cont.)

Fisher (1922), the paper that introduced many of the ideas of
mathematical statistics (statistical models, the idea that inference
estimates parameters, maximum likelihood, Fisher information,
asymptotics of maximum likelihood, efficiency, and sufficiency),
asked and answered the question: how much information does a
dimension reduction throw away?

A dimension reduction is sufficient if it throws away no
information about the parameters. That is the ideal situation.



Sufficient Dimension Reduction (cont.)

A statistic (singular) is a random variable or random vector that is
a function of the data and is not a function of the parameters of
the statistical model. (This means it can actually be calculated
even though the values of the parameters are unknown.)

A statistic is sufficient if the conditional distribution of the whole
data given this statistic does not depend on the parameters of the
statistical model.



Sufficient Dimension Reduction (cont.)

When we factorize the distribution of the data into marginal times
conditional we get

fθ(whole data)

= f (whole data|sufficient statistic)fθ(sufficient statistic)

and we can drop the multiplicative term that does not contain the
parameter from the likelihood

L(θ) = fθ(sufficient statistic)

and log likelihood

l(θ) = log fθ(sufficient statistic)



Sufficient Dimension Reduction (cont.)

Thus MLE depend on the whole data only through the sufficient
statistic.

There is a converse to this. The Neyman-Fisher factorization
criterion (which we do not prove) says that if the likelihood or log
likelihood depends on the whole data only through some
statistic, then that statistic is sufficient.

In particular, the canonical statistic vector for an exponential
family is always sufficient.



Sufficient Dimension Reduction (cont.)

Some people (like my thesis adviser) always say canonical
sufficient statistic rather than canonical statistic even though
this is redundant (because the canonical statistic is always
sufficient).

Just a reminder. Don’t want anyone to forget how important
sufficiency is.



Sufficient Dimension Reduction (cont.)

Any one-to-one function of a sufficient statistic is sufficient.

For a canonical affine submodel of an aster model, if τ = h(β) is
the mapping from submodel canonical parameter to submodel
mean value parameter, then

β̂ = h−1(MT y)

is a one-to-one function of the submodel canonical sufficient
statistic vector MT y , hence β̂ is sufficient.

Since every other parameter is a one-to-one function of β, the
MLE for all other parameters θ̂, ϕ̂, ξ̂, and µ̂ are also sufficient
statistic vectors.



Sufficient Dimension Reduction (cont.)

In short, maximum likelihood for an unconditional aster model
does sufficient dimension reduction.

(We haven’t yet talked about so-called conditional aster models.
They do not do sufficient dimension reduction.)



Maximum Entropy

Edwin Jaynes introduced the “maximum entropy formalism” that
describes exponential families in terms of entropy.

Entropy comes from physics, in particular, from thermodynamics
and statistical physics.

Negative entropy (also called negentropy) is also called Shannon
information in information theory and Kullback-Leibler information
in statistics.



Maximum Entropy (cont.)

The second law of thermodynamics says entropy increases in
any isolated physical process.

A physical system that has maximum entropy is at thermodynamic
equilibrium.

A glass of water with ice cubes in it is not at thermodynamic
equilibrium. As the ice melts and the surrounding water becomes
colder, entropy increases. After the ice melts and we have a glass
of water at uniform temperature throughout, we are at
thermodynamic equilibrium and at maximum entropy.



Maximum Entropy (cont.)

Ludwig Boltzmann and Josiah Willard Gibbs figured out the
connection between entropy and probability and between the
thermodynamic properties of bulk matter and the motions and
interactions of atoms and molecules.

In this theory entropy is not certain to increase to its maximum
possible value. It is only overwhelmingly probable to do so in any
large system.

In a very small system, such as a cubic micrometer of air, it is less
probable that entropy will be near its maximum value. In such a
small system the statistical fluctuations are large.

This is the physical manifestation of the law of large numbers. The
larger the sample size (the more molecules involved) the less
stochastic variation.



Maximum Entropy (cont.)

For reasons that will become apparent later, suppose we have a
probability model given by PMF f on a finite state space S .

The entropy of the whole system is the expectation

E{− log f (X )} = −
∑
x∈S

f (x) log f (x)

This can be generalized to the case where S is a countably infinite
set or to a continuous probability model where the sum is replaced
by an integral, but the math becomes more complicated.



Maximum Entropy (cont.)

To the extent that our statistics models real-world physics (and
chemistry and biology), it should also maximize entropy.

This is a weak spot in the argument. How well do our models
model? Should imperfect models, which leave out a lot of physics
and chemistry and biology, still maximize their entropy?

Nevertheless, Jaynes considered maximizing entropy.



Maximum Entropy (cont.)

Thus our problem is

maximize −
∑
x∈S

f (x) log f (x)

subject to
∑
x∈S

f (x) = 1

We might think we also need inequality constraints f (x) ≥ 0,
x ∈ S , but it turns out that the solution to the problem above
satisfies them too.

It is hard to maximize with respect to a general function, but since
we are assuming a finite state space, we can consider f a
finite-dimensional vector with components f (x), x ∈ S .



Maximum Entropy (cont.)

To solve this we use the method of Lagrange multipliers.

Multiply the constraint function by a new parameter (Lagrange
multiplier) and add to the objective function. This gives the
Lagrangian function

L(f ) = −
∑
x∈S

f (x) log f (x) + ψ
∑
x∈S

f (x)

= −
∑
x∈S

f (x)
[
log f (x)− ψ

]
ψ is the Lagrange multiplier.



Maximum Entropy (cont.)

The method of Lagrange multipliers maximizes the Lagrangian.

The unknown in our problem is not x , it is the function f .
However, in our setup (finite state space), we can think of f as just
a vector specifying its values f (x) for x in the finite set S .

Thus we differentiate the Lagrangian with respect to f (x) not x .

∂L(f )

∂f (x)
= − log f (x) + ψ − 1

setting this equal to zero and solving for f (x) gives

f (x) = eψ−1



Maximum Entropy (cont.)

Then we have to find the value of the Lagrange multiplier that
makes the constraint satisfied.

Here we see that since f (x) does not depend on x , it must be the
uniform distribution on the state space.

But that isn’t the problem we wanted to do.

That was just a warm-up exercise.



Maximum Entropy (cont.)

In order to get a non-trivial answer, we add more constraints.

Suppose we “know” the value of some expectations

µj = E{tj(X )} =
∑
x∈S

tj(x)f (x), j ∈ J

and we want f to maximize entropy subject to these constraints
too.



Maximum Entropy (cont.)

Thus our problem is

maximize −
∑
x∈S

f (x) log f (x)

subject to
∑
x∈S

tj(x)f (x) = µj , j ∈ J∑
x∈S

f (x) = 1

We might think we also need inequality constraints f (x) ≥ 0,
x ∈ S , but it turns out that the solution to the problem above
satisfies them too (as we saw in the warm-up exercise).



Maximum Entropy (cont.)

To solve this we use the method of Lagrange multipliers. Multiply
each constraint function by a new parameter (Lagrange multiplier)
and add to the objective function. This gives the Lagrangian
function

L(f ) = −
∑
x∈S

f (x) log f (x) +
∑
j∈J

ϕj

∑
x∈S

tj(x)f (x) + ψ
∑
x∈S

f (x)

= −
∑
x∈S

f (x)

log f (x)−
∑
j∈J

ϕj tj(x)− ψ


ϕj , j ∈ J, and ψ are the Lagrange multipliers.



Maximum Entropy (cont.)

As before, we differentiate with respect to f (x) not x .

∂L(f )

∂f (x)
= − log f (x) +

∑
j∈J

ϕj tj(x) + ψ − 1

setting this equal to zero and solving for f (x) gives

f (x) = exp

∑
j∈J

ϕj tj(x) + ψ − 1





Maximum Entropy (cont.)

Then we have to find the value of the Lagrange multipliers that
make all the constraints satisfied. In aid of this, define ϕ to be the
vector having components ϕj and t(x) to be the vector having
components tj(x), so we can write

f (x) = e〈t(x),ϕ〉+ψ−1

In order to satisfy the constraint that the probabilities sum to one
we must have

eψ−1
∑
x∈S

e〈t(x),ϕ〉 = 1

or

1− ψ = log

(∑
x∈S

e〈t(x),ϕ〉

)



Maximum Entropy (cont.)

Define

c(ϕ) = log

(∑
x∈S

e〈t(x),ϕ〉

)
Then

f (x) = e〈t(x),ϕ〉−c(ϕ)

That looks familiar!

If we think of the Lagrange multipliers ϕj as unknown parameters
rather than constants we still have to adjust, then we see that we
have an exponential family with canonical statistic vector t(x),
canonical parameter vector ϕ, and cumulant function c.



Maximum Entropy (cont.)

Define µ to be the vector with components µj . Then we know
from exponential family theory that

µ = ∇c(ϕ) = h(ϕ)

and h is a one-to-one function, so the Lagrange multiplier is

ϕ = h−1(µ)

and although we do not have a closed form expression for h−1 we
can evaluate h−1(µ) for any µ that is a possible value of the mean
value parameter vector by doing an optimization.



Maximum Entropy (cont.)

But that isn’t quite the problem we wanted to do.

We didn’t get all exponential families on S .

For example if S = {0, 1, . . . , n}. The binomial distribution has the
form

f (x) =

(
n

x

)
exϕ−c(ϕ), x ∈ S ,

and what we got from the maximum entropy formalism only has
the second term but is missing the binomial coefficient.

So we need yet another complication.



Maximum Entropy (cont.)

Let m be a strictly positive function on S , which we think of as a
positive measure (it does not have to be a PMF, it can be
unnormalized). The relative entropy of f with respect to m is

−
∑
x∈S

f (x) log

(
f (x)

m(x)

)
(it is the negative of this quantity that is Kullback-Leibler
information of f with respect to m).



Maximum Entropy (cont.)

If we repeat the argument with this as the definition of entropy
(for once we omit the details), we now get the solution

f (x) = m(x)e〈t(x),ϕ〉−c(ϕ), x ∈ S ,

where

c(ϕ) = log

(∑
x∈S

m(x)e〈t(x),ϕ〉

)
Now we have all exponential families on S .

But the measure m seems rather arbitrary. Some people think of it
as a Bayesian prior distribution. We call it the base measure of
the exponential family.



Maximum Entropy (cont.)

The base measure can always be chosen to be a probability
distribution in the exponential family, but doesn’t have to be.

For example, we can use

m(x) =

(
n

x

)
to get the binomial distribution for sample size n.



Maximum Entropy (cont.)

Our use of the maximum entropy argument is a bit peculiar.

First we said that we “knew” the expectations

µ = E{t(X )}

and wanted to pick out one probability distribution that maximizes
entropy and satisfies this constraint.

Then we forgot about “knowing” this constraint and said as µ
ranges over all possible values we get an exponential family of
probability distributions.

Also we have to choose a base measure.



Maximum Entropy (cont.)

In the context of aster models, we choose the base measure to be
any distribution in the saturated aster model. We choose t(y) to
be the submodel canonical statistic vector MT y .

Then the maximum entropy model is the canonical linear model
with model matrix M.

If we want an offset vector, we can get that too by modifying the
base measure.



Maximum Entropy (cont.)

So now the other shoe drops on interpretation of exponential
families in general and aster models in particular.

Subject to being in the saturated aster model determined by the
aster graph, the maximum entropy model that constrains the
vector expectation

τ = E (MT y) (∗)

is the canonical linear model with model matrix M.

This submodel leaves all other aspects of the distribution of the
response as random as possible (in the sense of maximum entropy)
given (∗) holds.



Maximum Entropy (cont.)

The maximum entropy argument and the sufficient dimension
reduction argument work together.

An unconditional aster model (or any exponential family model)
has the sufficient dimension reduction property that makes the
canonical affine submodel canonical statistic vector MT y and the
MLE of all the parameters sufficient statistics.

Subject to having that property, every other aspect of the
distributions in the model is as random as possible (maximizes
entropy) subject to MT y having the expectation τ = E (MT y)
that it does, which is the submodel mean value parameter.



Maximum Entropy (cont.)

If you haven’t seen it before, this is a new and different way to
justify statistical models

Choose the “correct” submodel sufficient statistic vector MT y ,
where “correct” means its components include the scientifically
important and interpretable quantities.

Make the model the exponential family having MT y as the
submodel canonical statistic vector.

Then we get the sufficient dimension reduction and maximum
entropy properties.



Multivariate Monotonicity

A function h from a convex open subset Φ of a finite-dimensional
vector space to the same finite-dimensional vector space is
multivariate monotone if

〈h(ϕ∗∗)− h(ϕ∗), ϕ∗∗ − ϕ∗〉 ≥ 0, for all ϕ∗ and ϕ∗∗ in Φ

and is strictly multivariate monotone if

〈h(ϕ∗∗)− h(ϕ∗), ϕ∗∗ − ϕ∗〉 > 0, whenever ϕ∗ 6= ϕ∗∗



Multivariate Monotonicity (cont.)

Multivariate monotonicity generalizes univariate monotonicity. If
the space is one dimensional so ϕ∗, ϕ∗∗, h(ϕ∗), and h(ϕ∗∗) are
scalars, we have

〈h(ϕ∗∗)− h(ϕ∗), ϕ∗∗ − ϕ∗〉 =
[
h(ϕ∗∗)− h(ϕ∗)

]
·
[
ϕ∗∗ − ϕ∗

]
≥ 0

and the only way this can hold is if

ϕ∗ < ϕ∗∗ implies h(ϕ∗) ≤ h(ϕ∗∗)

that is, h is nondecreasing.

Similarly, strict multivariate monotonicity of h and one-dimensional
implies h is increasing.



Multivariate Monotonicity (cont.)

Theorem. The gradient function of a convex function is
multivariate monotone.

Proof. Let c be a convex function and h its gradient function,
which is defined by

h(ϕ) = ∇c(ϕ), ϕ ∈ dom f

Suppose ϕ∗ and ϕ∗∗ are in dom c, and define a univariate function

g(t) = 〈h
(
tϕ∗∗ + (1− t)ϕ∗

)
− h(ϕ∗), ϕ∗∗ − ϕ∗〉, 0 ≤ t ≤ 1.

Its derivative is

g ′(t) = (ϕ∗∗ − ϕ∗)T∇h
(
tϕ∗∗ + (1− t)ϕ∗

)
(ϕ∗∗ − ϕ∗)



Multivariate Monotonicity (cont.)

Because
∇h(ϕ) = ∇2c(ϕ)

is positive semi-definite by convexity, we have g ′(t) ≥ 0 for all t
and by the fundamental theorem of calculus

g(1) = g(0) +

∫ 1

0
g ′(t) dt ≥ g(0)

Now observe that g(0) = 0 and

g(1) = 〈h(ϕ∗∗)− h(ϕ∗), ϕ∗∗ − ϕ∗〉

QED



Multivariate Monotonicity (cont.)

Theorem. The gradient function of a strictly convex function is
strictly multivariate monotone.

(The proof is almost the same.)

Corollary. The mapping from canonical parameter vector to mean
value parameter vector for a non-degenerate exponential family is
strictly multivariate monotone.

Corollary. The mapping from unconditional canonical parameter
vector to unconditional mean value parameter vector for a
non-degenerate aster model is strictly multivariate monotone.



Multivariate Monotonicity (cont.)

Multivariate monotonicity is a hard concept to wrap your mind
around, especially if you never heard of it before.

Here is a dumbed-down version. Suppose we increase one
component of the unconditional canonical parameter vector ϕ,
holding all other components of ϕ fixed. Then the corresponding
component of the unconditional mean value parameter vector µ
also increases (other components of µ can go any which way).

The dumbed-down version is not equivalent. It is implied by, but
does not imply, strict multivariate monotonicity.



Multivariate Monotonicity (cont.)

Multivariate monotonicity is equivalent to the following. For every
nonzero vector δ and every ϕ ∈ dom h, the scalar function

g(t) = 〈h(ϕ+ tδ), δ〉

is nondecreasing for t in any interval I where ϕ+ tδ ∈ dom h.

Proof. Take t∗ and t∗∗ in I , with t∗ < t∗∗. Then

g(t∗∗)− g(t∗) = 〈h(ϕ+ t∗∗δ)− h(ϕ+ t∗δ), δ〉 (∗)

and
(ϕ+ t∗∗δ)− (ϕ+ t∗δ) = (t∗∗ − t∗)δ

so (∗) is nonnegative if and only if (∗∗) is too.

〈h(ϕ+ t∗∗δ)− h(ϕ+ t∗δ), (ϕ+ t∗∗δ)− (ϕ+ t∗δ)〉 (∗∗)

QED



Multivariate Monotonicity (cont.)

Similarly, strict multivariate monotonicity is equivalent to the
following. For every nonzero vector δ and every ϕ ∈ dom h, the
scalar function

g(t) = 〈h(ϕ+ tδ), δ〉

is increasing for t in any interval where ϕ+ tδ ∈ dom h.

The dumbed-down version only considers direction vectors δ that
point along coordinate axes. That is not enough for equivalence.

The first aster paper (Geyer, Wagenius, and Shaw, Biometrika,
2007) only presented the dumbed-down version (in the discussion).
In a later paper (Shaw and Geyer, Evolution, 2010) we found we
needed the real definition of multivariate monotonicity (in an
appendix) to explain why the aster models under discussion worked.



Multivariate Monotonicity (cont.)

A more symmetric way to talk about multivariate monotonicity is
the following. Let ϕ∗ and ϕ∗∗ be two distinct valid values of the
saturated model unconditional canonical parameter vector. And let
µ∗ and µ∗∗ be the corresponding values of the saturated model
unconditional mean value parameter vector. Then

〈µ∗∗ − µ∗, ϕ∗∗ − ϕ∗〉 ≥ 0

and this inequality is strict (> 0) if the aster model is
non-degenerate.

This formulation makes it clear that the inverse of a multivariate
monotone relationship is also multivariate monotone, and similarly
with strictly multivariate monotone in both places.



Multivariate Monotonicity (cont.)

Since an unconditional canonical affine submodel of an aster model
is itself a regular full exponential family, we have the same
properties for its canonical and mean value parameters as for the
saturated model.

Let β∗ and β∗∗ be two distinct valid values of an unconditional
canonical affine model canonical parameter vector. And let τ∗ and
τ∗∗ be the corresponding values of an unconditional canonical
affine model mean value parameter vector. Then

〈τ∗∗ − τ∗, β∗∗ − β∗〉 ≥ 0

and this inequality is strict (> 0) if the aster model is
non-degenerate.



Multivariate Monotonicity (cont.)

Not only are the map ϕ −→ µ and its inverse strictly multivariate
monotone, so are the map β −→ τ and its inverse.



Multivariate Monotonicity (cont.)

Applying what we know about monotonicity to the one-parameter
aster models for arrows of the graph, we see that

θj 7→ c ′j (θj)

is an increasing function for each j .

Thus there is a componentwise univariate strictly monotone
relationship between the saturated model conditional canonical
vector θ and the saturated model conditional mean value
parameter ξ.



Multivariate Monotonicity (cont.)

Let θ∗ and θ∗∗ be two distinct valid values of the saturated model
conditional canonical parameter vector. And let ξ∗ and ξ∗∗ be the
corresponding values of the saturated model conditional mean
value parameter vector. Then

〈ξ∗∗ − ξ∗, θ∗∗ − θ∗〉 ≥ 0

and this inequality is strict (> 0) if the aster model is
non-degenerate.

But more is true. Actually,[
ξ∗∗j − ξ∗j

]
·
[
θ∗∗j − θ∗j

]
≥ 0, j ∈ J



Multivariate Monotonicity (cont.)

Not only are the map θ −→ ξ and its inverse strictly multivariate
monotone, but also the map θj −→ ξj and its inverse are strictly
univariate monotone, for each j ∈ J.



The Story So Far

We started off with two assumptions: acyclic graph and nodes
have at most one predecessor. This implies a statistical model
with a valid factorization joint = product of conditionals.

The additional assumption predecessor is sample size yields the
simple transformation between conditional and unconditional
mean value parameters (multiplication and division).

The additional assumption distributions for arrows are
one-parameter exponential family yields exponential family
saturated model and aster transform.

Then unconditional canonical affine submodels yield
exponential family submodels.



The Story So Far (cont.)

Exponential families have many important properties.

Strictly concave log likelihood assures MLE are unique if
they exist and well-behaved optimization.

Derivatives of cumulant function give mean and variance
of canonical statistic makes statistical inference easy.

Observed = expected.

Sufficient dimension reduction.

Maximum entropy.

Multivariate monotone relationship between canonical and
mean value parameters.

First two for the computer, the rest for people.



Interpretation of Aster Models

Observed Equals Expected Maximum likelihood matches the MLE
of the submodel mean value parameter τ̂ to the
observed value of the submodel canonical statistic
MT y . This determines MLE of all other parameters.

Sufficiency The submodel canonical statistic MT y and MLE of
all parameters are sufficient statistic vectors.

Maximum Entropy Subject to having the expectations of MT y
that they do and having the aster graph that they do,
the distributions in the submodel are as random as
possible (maximize entropy).

Multivariate Monotonicity To the extent that canonical parameters
can be interpreted, their interpretation involves their
multivariate monotone relationship with mean value
parameters.



Interpretation of Aster Models (cont.)

When one first sees interpretation of regression-like models in intro
statistics, one starts with “simple” linear regression. The data are
independent (Xi ,Yi ) pairs and the regression equation is

E (Yi |Xi ) = α + βXi

and this magically corresponds to the R formula mini-language
formula y ~ x

One also learns to parrot that β is the slope of the regression line.
Slope is rise over run, so β is the change in the (conditional) mean
of the response Y corresponding to unit change in the predictor X .



Interpretation of Aster Models (cont.)

One may also learn that

Correlation is not causation. And regression isn’t either.

(because simple linear regression is just another view of
correlation).

So the regression equation is only good for prediction for new
data from the same population from which the (Xi ,Yi ) pairs are a
random sample. It is not good for explanation, and does not
necessarily have anything to do with the causal relationship (if
any) between the response and predictor.



Interpretation of Aster Models (cont.)

One may also learn that in a designed experiment with the levels
of certain factors (call them treatments) controlled by the
experimenters and randomized assignment of individuals to
treatments, that one can make causal inferences about treatment
effects.

But even in this setting any covariates that are not controlled by
the experimenters are still subject to correlation is not causation.



Interpretation of Aster Models (cont.)

All of the this elementary material about model interpretation
except for the interpretation of “slope” applies to any LM, GLM, or
aster model (or other regression-like statistical models).

In a GLM the interpretation of regression coefficients gets more
complicated. Even in the “simple” (just one predictor case) we have
for logistic regression

ϕi = α + βxi

but there is a complicated nonlinear relationship between this and

µi = E (Yi |Xi )

which are canonical parameter and mean value parameter,
respectively.



Interpretation of Aster Models (cont.)

∂µi
∂β

=
∂

∂β

1

1 + e−α−βxi

=
xie
−α−βxi

(1 + e−α−βxi )2

= xiµi (1− µi )

And this changes as α and β change. So the simple “rise over run”
interpretation does not transfer from LM to GLM.



Interpretation of Aster Models (cont.)

Some textbooks, wanting to keep the simple “rise over run”
interpretation say it still holds but for

ϕi = log

(
µi

1− µi

)
But why be interested that function of µi? The question cannot be
answered without a lot of exponential family theory.

No matter which way you try to go, interpretation of GLM is not
as simple as interpretation of LM.



Interpretation of Aster Models (cont.)

At least in GLM we have independence of components of the
response vector (conditional on covariates).

This means the nonlinear relationship between canonical and mean
value parameters is a componentwise univariate monotone
relationship. So we only have to deal with univariate functions and
univariate monotonicity.



Interpretation of Aster Models (cont.)

In aster models we have dependence of components of the
response vector (conditional on covariates).

This means the nonlinear relationship between unconditional
canonical and mean value (either for saturated models or for
canonical affine submodels) parameters is an inherently
multivariate monotone relationship.

We cannot escape or simplify multivariate monotonicity. We just
have to deal with it.



Interpretation of Aster Models (cont.)

Somewhere after an intro statistics course — in a real regression or
theory course — one gets introduced to multiple regression and
model matrices.

There may be more than one predictor vector and the mean value
parameter vector (for LM) or the canonical parameter vector (for
GLM and aster) may be a function of any or all of the predictor
vectors.

Furthermore, even if one is only given one predictor to start with
say x , then one can make up other predictors, for example, x2, x3,
. . . (polynomial regression) or sin(x), cos(x), sin(2x), cos(2x), . . .
(trigonometric series regression, a. k. a., Fourier series regression).

There is always a potentially infinite number of predictor vectors,
no matter how few were “given”.



Interpretation of Aster Models (cont.)

Nevertheless, one is still trained to write out the regression
equation

µi = α + β1xi1 + β2xi2 + · · ·+ βkxik

where the xij are elements of the j-th predictor vector. These can
be “given” or “made up”. For example,

µi = α + β1xi + β2x2
i + · · ·+ βkxk

i

(polynomial regression) or

µi = α+β1 sin(xi ) +β2 cos(xi ) + · · ·+β2k−1 sin(kxi ) +β2k cos(kxi )

(trigonometric series regression).



Interpretation of Aster Models (cont.)

Then one learns that there is no good reason to treat the
“intercept”α specially. It is just a regression coefficient like the
rest. The predictor vector it goes with is the constant predictor
vector having all components equal to one, for example,

µi = β1 · 1 + β2xi1 + β3xi2 + · · ·+ βk+1xik

µi = β1 · 1 + β2xi + β3x2
i + · · ·+ βk+1xk

i

µi = β1 · 1 + β2 sin(xi ) + β3 cos(xi ) + · · ·
+ β2k sin(kxi ) + β2k+1 cos(kxi )



Interpretation of Aster Models (cont.)

Then one learns that the preceding slide still treated the intercept
(now called β1 specially). Just write

µi =

p∑
j=1

xijβj (∗)

so now we are writing xi1 instead of 1 and have bumped the
indices of the other predictor vectors to correspond to their
regression coefficients.

And we recognize (∗) as the matrix equation

µ = Mβ

where M, the model matrix, is the matrix with components xij .



Interpretation of Aster Models (cont.)

The triumph of this matrix notation in LM theory is that we can
write an explicit formula for the MLE

β̂ = (MTM)−1MT y (∗)

Note that this goes together with what we know about
parameterizations for LM; µ = Mβ and τ = MTµ, so τ = MTMβ.
By the observed equals expected property, we have τ̂ = MT y . And
by the invertibilty of the mapping β −→ τ , we have

β̂ = (MTM)−1τ̂

which is the same as (∗).



Interpretation of Aster Models (cont.)

In GLM and aster model theory, we no longer have a closed-form
expression for MLE as a function of data. All we can do is run
optimization software to find out the value of β̂ corresponding to
each value of MT y .

Also there is a difference between the unconditional mean value
parameter vector µ and the unconditional canonical parameter
vector ϕ and it is the latter that is linearly

ϕ = Mβ

or affinely
ϕ = a + Mβ

related to the regression coefficient parameter vector β.



Interpretation of Aster Models (cont.)

Still, both teachers and students are tempted by the carryover from
LM theory to make regression equations like

ϕi = β1xi1 + β2xi2 + β3xi3 + · · ·+ βpxip

ϕi = β1 + β2xi + β3x2
i + · · ·+ βpxp−1

i

ϕi = β1 · 1 + β2 sin(xi ) + β3 cos(xi ) + · · ·

+ βp−1 sin
(
p−1
2 xi

)
+ βp cos

(
p−1
2 xi

)
and use them as the basis of one’s “interpretation” of the model.



Interpretation of Aster Models (cont.)

I am here to tell you this is (IMHO) all wrong.

Remember that canonical parameters are meaningless quantities,
and if there’s no meaning in them, that saves a world of trouble as
we needn’t try to find any.

Consider the two linear transformations

β 7→ Mβ

µ 7→ MTµ

Since M determines MT and vice versa, if you understand one of
these transformations, then you also “understand” the other, but
you “understand” it implicitly without clearly seeing it.



Interpretation of Aster Models (cont.)

Staring at ϕ = Mβ written out with explicit sum and indices

ϕi = β1xi1 + β2xi2 + β3xi3 + · · ·+ βpxip (∗)

doesn’t tell you much about τ = MTµ written out with explicit
sum and indices

τi = µ1x1i + µ2x2i + µ3x3i + · · ·+ µnxni (∗∗)

These sums do not have the same number of terms: p is the
submodel dimension and n is the saturated model dimension.
Moreover, (∗) contains xij in the i-th row of M and (∗) contains xij
in the j-th column of M, the former covariate values pertaining to
one node of the graph, the latter pertaining to one regression
coefficient.



Interpretation of Aster Models (cont.)

The mapping
ϕ = Mβ

relates unconditional canonical parameter vectors (submodel to
saturated model).

The mapping
τ = MTµ

relates unconditional mean value parameter vectors (saturated
model to submodel).

Remember which kind of parameters is meaningless and which kind
is meaningful?



Interpretation of Aster Models (cont.)

The mapping
ϕ = Mβ

doesn’t become meaningful without the very messy, highly
nonlinear (but multivariate monotone) mapping

µ = h(ϕ) = ∇c(ϕ)



Interpretation of Aster Models (cont.)

The mapping
τ = MTµ

is directly related to the observed equals expected property

τ̂ = MT y (∗)

Also (∗) is the sufficient dimension reduction from whole data y to
sufficient statistic vector τ̂ (since all MLE are one-to-one functions
of each other, all other MLE are one-to-one functions of τ̂ , hence
themselves sufficient statistic vectors).



Interpretation of Aster Models (cont.)

Thus (IMHO) the mapping µ 7→ MTµ (which can also be written
y 7→ MT y) is more important than the mapping β 7→ Mβ and
deserves to be woofed about at least as much if not more when
one is “interpreting” aster models (or GLM or LM).

The first submission of the first aster paper (Geyer, Wagenius, and
Shaw, Biometrika, 2007) made an attempt in this direction only
discussing models in terms of y 7→ MT y and not at all in terms of
β 7→ Mβ. But the referees didn’t get it, and we were forced to
interpret both ways in the published version.



Interpretation of Aster Models (cont.)

This wasn’t really our fault or the referees’ fault. It’s embedded in
the culture.

The R generic function summary prints out the components of β̂
and a lot of information about them.

No function prints out the submodel canonical sufficient statistic
vector τ̂ or any information about it. At least, no generic function
with a glm method will do this job. The aster and
aster.formula methods of the generic function predict will do
this job, as we shall presently see, but not in a user-friendly fashion.



Interpretation of Aster Models (cont.)

This wasn’t really R’s fault either. SAS or SPSS or Stata or
whatever is no better. Nor are thousands of intro stats and
regression and linear models textbooks any better.



Example One Revisited

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0506435 0.1843320 -5.6997 1.200e-08

varbfl03 -0.3490958 0.2679185 -1.3030 0.19258

varbfl04 -0.3442222 0.2438992 -1.4113 0.15815

varbhdct02 1.3214136 0.2611741 5.0595 4.203e-07

varbhdct03 1.3433740 0.2146250 6.2592 3.870e-10

varbhdct04 1.8513276 0.1998528 9.2635 < 2.2e-16

varbld02 -0.0293022 0.3157033 -0.0928 0.92605

varbld03 1.7400507 0.3961890 4.3920 1.123e-05

varbld04 4.1885771 0.3342661 12.5307 < 2.2e-16

layerfl:nsloc 0.0701024 0.0146520 4.7845 1.714e-06

layerhdct:nsloc -0.0058043 0.0055499 -1.0458 0.29564

layerld:nsloc 0.0071652 0.0058667 1.2213 0.22196

layerfl:ewloc 0.0179769 0.0144128 1.2473 0.21229

layerhdct:ewloc 0.0076060 0.0055608 1.3678 0.17138

layerld:ewloc -0.0047874 0.0059191 -0.8088 0.41863

fit:popAA 0.1292377 0.0891292 1.4500 0.14706

fit:popEriley -0.0495612 0.0712789 -0.6953 0.48686

fit:popLf -0.0332786 0.0795727 -0.4182 0.67579

fit:popNessman -0.1862690 0.1277869 -1.4577 0.14494

fit:popNWLF 0.0210283 0.0635998 0.3306 0.74092

fit:popSPP 0.1491795 0.0677156 2.2030 0.02759



Example One Revisited (cont.)

So back to example one. It is actually easier to figure out the
components of the unconditional canonical affine submodel
canonical sufficient statistic vector MT y from looking at the names
of the regression coefficients than from looking at the formula

> aout$formula

resp ~ varb + layer:(nsloc + ewloc) + fit:pop

For one thing, there is one component of the submodel canonical
sufficient statistic vector for each regression coefficient. But there
is no such correspondence with terms in the formula. There is
some correspondence, but it is not one-to-one.

Let’s go through the regression coefficient names one by one.



Example One Revisited (cont.)

A component of MT y has the form xT y where x is a column of M
(a predictor vector, either “given” or “made-up”). So we need to
figure out what the columns of the model matrix are.

Simplest first, the predictor vector named "(Intercept)". All its
components are equal to one, so the corresponding submodel
canonical sufficient statistic is

xT y =
n∑

i=1

yi

This may not seem to make much sense, because the components
of y are different kinds of variables, so this is like adding apples
and oranges, but it will presently.



Example One Revisited (cont.)

Next come the predictor vectors with "varb" in the name:
varbfl03, varbfl04, varbhdct02, varbhdct03, varbhdct04,
varbld02, varbld03, and varbld04.

Recall that the variable varb in the data frame redata is a factor

> class(redata$varb)

[1] "factor"

> levels(redata$varb)

[1] "fl02" "fl03" "fl04" "hdct02" "hdct03"

[6] "hdct04" "ld02" "ld03" "ld04"



Example One Revisited (cont.)

Recall that factors (categorical variables) get turned into dummy
variables, which are zero-or-one-valued, zero indicating not in a
particular category and one indicating in that category.

That gives nine dummy variables (for the nine levels of varb
corresponding to the nine nodes of the aster graph). But these
nine dummy variables add up to the "(Intercept)" dummy
variable. So if we kept them all, we would not have a full rank
model. R drops the first one in alphabetical order, which would
have been named varbfl02 if it hadn’t been dropped.



Example One Revisited (cont.)

For a zero-or-one-valued predictor variable x the corresponding
submodel canonical sufficient statistic is

xT y =
n∑

i=1

xiyi =
∑

i∈{1,...,n}
xi=1

yi

Each of these submodel canonical sufficient statistics is a sum of
the components of the response vector corresponding to a
particular node of the aster graph.



Example One Revisited (cont.)

Thus we have one submodel canonical sufficient statistic for each
node of the graph, except for the one ("fl02") that R dropped.

But if we know the sum for all nodes (the "(Intercept)"

statistic) and we know the sum for each node except "fl02" then
we also know the sum for "fl02" (subtract the sums for each of
the other nodes from the total).

In short, if we replaced the "(Intercept)" component of the
submodel canonical sufficient statistic vector with the "varbfl02"

component (what that component would have been if it hadn’t
been dropped) we would still have a sufficient statistic vector.

R would actually do this for us if we specified no intercept by
putting 0 + at the beginning of the formula.



Example One Revisited (cont.)

Next come the predictor vectors with "nsloc" or "ewloc" in the
name: layerfl:nsloc, layerhdct:nsloc, layerld:nsloc,
layerfl:ewloc, layerhdct:ewloc, and layerld:ewloc.

Recall that the variable layer is a factor and the variables nsloc
and ewloc are quantitative

> sapply(redata, class)

pop ewloc nsloc varb resp

"factor" "integer" "integer" "factor" "integer"

id root layer fit

"integer" "numeric" "factor" "numeric"

> levels(redata$layer)

[1] "fl" "hdct" "ld"



Example One Revisited (cont.)

The factor gets turned into three dummy variables (one for each of
its levels). Nothing gets done to the quantitative variables.

Then the “interaction” operator (:) says take each of the former
and multiply it componentwise by each of the latter making
3× 2 = 6 new predictor variables. The colon in the regression
coefficient name shows the corresponding predictor variable arose
this way and also shows what variables were multiplied to make it.



Example One Revisited (cont.)

Now we have predictor vectors having components

xi = dizi

where di is the corresponding component of a dummy
(zero-or-one-valued) variable (named layerfl, layerhdct, or
layerld) and zi is the corresponding component of a quantitative
variable (nsloc or ewloc).

The corresponding submodel canonical sufficient statistic is

xT y =
n∑

i=1

xiyi =
∑

i∈{1,...,n}
di=1

yizi



Example One Revisited (cont.)

In short, this set of components of the sufficient statistic vector is
sums of products of components of the response vector and
corresponding components of a quantitative variable (nsloc or
ewloc), the sums running over each “layer” of the graph (either the
three "ld" nodes or the three "fl" nodes, or the three "hdct"

nodes).

Why would we want something like that? Does that have a clear
scientific interpretation?



Example One Revisited (cont.)

Again recall that any one-to-one function of a sufficient statistic
vector is another sufficient statistic vector.

This means we can combine these sufficient statistics with others
we already know about to make new sufficient statistics.



Example One Revisited (cont.)

Here we know ∑
i∈{1,...,n}

di=1

yizi and
∑

i∈{1,...,n}
di=1

yi

are functions of the submodel canonical statistic, the former we
just calculated and the latter is a sum of components with names
containing varb, for example the sum over the "ld" layer is the
sum of the sums over the "ld02", "ld03", and "ld04" nodes.

We also “know” ∑
i∈{1,...,n}

di=1

zi

because z (either nsloc or ewloc) is not considered random (it is
a predictor, not the response).



Example One Revisited (cont.)

Any sums like these can be considered as n times expectations with
respect to the conditional distribution

Ê (YZ |layer) =
1

n

∑
i∈{1,...,n}

di=1

yizi

Ê (Y |layer) =
1

n

∑
i∈{1,...,n}

di=1

yi

Ê (Z |layer) =
1

n

∑
i∈{1,...,n}

di=1

zi

where di are the components of the dummy variable for one of the
levels of the factor layer.



Example One Revisited (cont.)

For any random variables Y , Z , and L in any probability model
(not necessarily having anything to do with aster or even
regression) the identity

cov(Y ,Z |L) = E (YZ |L)− E (Y |L)E (Z |L)

holds. And this holds, in particular, for empirical distributions

ĉov(Y ,Z |L) = Ê (YZ |L)− Ê (Y |L)Ê (Z |L)

holds.



Example One Revisited (cont.)

And this means components of MT y having the form

n · Ê (YZ |layer)

can be replaced by
n · ĉov(Y ,Z |layer)

and we get another sufficient statistic vector.

The latter seem to have more obvious scientific significance.



Example One Revisited (cont.)

Finally come the predictor vectors with "fit" in the name:
fit:popAA, fit:popEriley, fit:popLf, fit:popNessman,
fit:popNWLF, and fit:popSPP.

The variable fit is numeric and zero-or-one-valued and the
variable pop is a factor.

> class(redata$pop)

[1] "factor"

> class(redata$fit)

[1] "numeric"

> unique(redata$fit)

[1] 0 1



Example One Revisited (cont.)

So pop, being categorical, gets turned into 7 dummy variables one
for each level of the factor

> levels(redata$pop)

[1] "AA" "Eriley" "Lf" "Nessman" "NWLF"

[6] "SPP" "Stevens"

Then each of these dummy variables are multiplied componentwise
by fit because that is what the “interaction” (:) operator
indicates.



Example One Revisited (cont.)

We seem to have lost one. That makes 7 dummy variable times
fit combinations, but we only got six. Where did the other one
go?

> aout$dropped

[1] "fit:popStevens"

It was dropped because, if it hadn’t been, then the model matrix
wouldn’t have been full rank. Why is that?



Example One Revisited (cont.)

Recall the definition of fit. It indicates the “layer” of nodes of the
graph having hdct in their names.

> identical(redata$fit == 1, grepl("hdct", redata$varb))

[1] TRUE

If we kept fit:popStevens, then all of these components of the
submodel canonical sufficient statistic would add up to fit

(because every individual is in exactly one ancestral population).
And fit is the sum of the dummy variables for varbhdct02,
varbhdct03, and varbhdct04. So that is the collinearity that
fit:popStevens was dropped to avoid.



Example One Revisited (cont.)

In short, the last set of components of the sufficient statistic vector
is sums of components of the response vector for each ancestral
population over the “fitness layer” of the graph (nodes with hdct in
their names).



Example One Revisited (cont.)

That was exhausting. Does interpretation of aster models have to
be that hard?

But notice that it was only hard because (1) it is unfamiliar (have
you done anything like this before?) and (2) there is no computer
support, nothing like the R function summary that prints out a lot
of stuff you think you understand (even though we argue it is really
“meaningless”).

And it was only hard because we (being unfamiliar with the ideas)
had to go through everything in gory detail.

The summary is not that complicated.



Example One Revisited (cont.)

The components of the unconditional canonical affine submodel
canonical sufficient statistic are

sums of response over each node of the graph,

sums of response-location crossproducts over each layer of the
graph, and

sums of response over the fitness layer of the graph for each
population.

These are what the observed equals expected property matches
(observed values to MLE expected values).

The last group of sufficient statistics are scientifically crucial. They
are observed fitness for each population.



Example One Revisited (cont.)

So what maximum likelihood is really doing in this model is what
the preceding slide described: making MLE expected values of
components of the submodel canonical sufficient statistic equal to
their observed values.

And the maximum entropy property says every other aspect of the
maximum likelihood model is as random as possible (maximizes
entropy) subject to the constraints that the components of the
submodel canonical sufficient statistic have the MLE expectations
that they do and subject to the model having the structure
described by the aster graphical model.

Notice this description of what maximum likelihood is really doing
does not even mention the regression coefficients (betas).



Example One Revisited (cont.)

This is why we claim that understanding an aster model means
understanding the submodel canonical sufficient vector MT y .

If its components determine all scientifically important quantities,
then the model has straightforward scientific interpretation.
Otherwise it doesn’t.



Interpretation Revisited

Did you notice that the word “interaction” only appeared in our
interpretation in scare quotes as a name for the colon (:) operator?

Do you now see why the word “interaction” is not really helpful in
interpreting aster models?

You may think that is because we are using the R formula
mini-language in tricky ways, not as it was intended to be used.
But it was never designed to be used with aster models or any
models with dependence among components of the response
vector. So we have to be “tricky” if we are going to use formulas at
all.



A Technical Quibble

We have been saying the canonical statistic, the canonical
parameter, and the cumulant function, but this is technically
incorrect.

Suppose we have a general full exponential family (not necessarily
an aster model) with log likelihood

l(ϕ) = 〈y , ϕ〉 − c(ϕ)

and we do a one-to-one change of statistic

y = a + Mz

where a is a known vector and M is a known matrix (not an offset
vector and model matrix, despite using the same letters — those
names are reserved for submodel changes of parameter).



A Technical Quibble (cont.)

Then

l(ϕ) = 〈a, ϕ〉+ 〈Mz , ϕ〉 − c(ϕ)

= 〈z ,MTϕ〉 − c(ϕ) + 〈a, ϕ〉

and we see we again have the exponential family form with

canonical statistic vector z ,

canonical parameter vector MTϕ, and

cumulant function

cnew(ϕ) = c(ϕ)− 〈a, ϕ〉



A Technical Quibble (cont.)

Or suppose we do a one-to-one change of parameter

ϕ = a + Mβ

where a is a known vector and M is a known matrix (still not an
offset vector and model matrix, despite using the same letters —
those names are reserved for submodel changes of parameter —
and this isn’t a submodel because the mapping is one-to-one, and
M is full rank).

Then
l(β) = 〈y , a〉+ 〈y ,Mβ〉 − c(a + Mβ)

and we can drop the term 〈y , a〉 that does not contain the
parameter.



A Technical Quibble (cont.)

Then

l(β) = 〈y ,Mβ〉 − c(a + Mβ)

= 〈MT y , β〉 − c(a + Mβ)

and we see we again have the exponential family form with

canonical statistic vector MT y ,

canonical parameter vector β, and

cumulant function

cnew(β) = c(a + Mβ)

(this is the same as we had for canonical affine submodels of aster
models).



A Technical Quibble (cont.)

Finally, in addition to the changes in cumulant functions that
accompany changes of canonical statistic or canonical parameter, a
cumulant function is only determined up to an unknown additive
constant, so we can always change the cumulant function to

cnew(ϕ) = a + c(ϕ)

where a is a known scalar, without changing the canonical statistic
or canonical parameter.



A Technical Quibble (cont.)

Summary.

Any one-to-one linear function of a canonical statistic is
another canonical statistic (this also changes the canonical
parameter and cumulant function).

Any one-to-one linear function of a canonical parameter is
another canonical parameter (this also changes the canonical
statistic and cumulant function).

An arbitrary constant can be added to a cumulant function
(this does not change the canonical statistic or canonical
parameter).



Meaningless Quantities Revisited

In aster models, we have little interest in changing the saturated
model canonical statistic vector. We want its components to be the
components of the data for the nodes of the aster graphical model.

But we do change parameters in going from saturated models to
submodels.

And there is no one right offset vector and model matrix that
determine a submodel. Let V denote the affine subspace of the
saturated model canonical parameter space that corresponds to the
submodel

V = { a + Mβ : β ∈ Rp }

If the saturated model unconditional canonical parameter space Φ
is a full vector space, then V ∩Φ is the set of submodel values of ϕ.



Meaningless Quantities Revisited (cont.)

If the offset vector a and the model matrix M change but the set
V ∩ Φ does not. Then the submodel does not change.

Nor do the sets of allowed values of µ and ξ because these are
defined by unconditional and conditional expectations of the
saturated model canonical sufficient statistic, which has not been
changed.

In short, the canonical “meaningless” parameters can change while
the mean value “meaningful” parameters do not.

And the statistical model (the family of probability distributions)
has not changed either.



Meaningless Quantities Revisited (cont.)

In practice, you get arbitrariness of the model matrix when you
decide (or R decides) which dummy variables to drop to obtain full
rank.

Does this arbitrariness matter? No! It is still the same statistical
model, and it still has the same sets of saturated model mean
value parameters.

In practice, you get arbitrariness of the model matrix when you
decide (or R decides) how to parameterize polynomial functions of
predictors (this comes up in the aster model competitor to
Lande-Arnold analysis).

Does this arbitrariness matter? No! It is still the same statistical
model, and it still has the same sets of saturated model mean
value parameters.



Meaningless Quantities Revisited (cont.)

There may be other kinds of arbitrariness that arise in practice but
I can’t think of right now.

Would that arbitrariness matter? No! It would still be the same
statistical model, and it would still have the same sets of saturated
model mean value parameters.



A Technical Quibble (cont.)

In practice we don’t quibble about arbitrariness of canonical
statistics, canonical parameters, and cumulant functions. We keep
to the definitions of the saturated model parameters (all four
parameterizations) presented above.

And we recognize the arbitrariness of model matrices but don’t
fuss about it. Any choice of model matrix that results in the
desired model is o. k. It doesn’t matter to us that some other
model matrix would do the same job.

We just have to be aware of the issue in case someone asks, why
not some other model matrix?



Predecessor is Sample Size Revisited

Recall from deck 1, for the graph,

1
Ber−−−−→ y1

Ber−−−−→ y2

the conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Bernoulli(ξ2) if y1 = 1

Recognizing that y2 is zero-or-one-valued and any
zero-or-one-valued random variable is Bernoulli, the unconditional
distribution of y2 is Bernoulli(µ2), which denotes Bernoulli with
mean µ2.



Predecessor is Sample Size Revisited (cont.)

And, for this graph,

1
Poi−−−−→ y1

Ber−−−−→ y2

the conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Binomial(y1, ξ2), which denotes binomial with sample size y1
and mean µ2, if y1 > 0

Those that know that a “thinned Poisson” is again Poisson
recognize that the unconditional distribution of y2 is Poisson(µ2),
which denotes Poisson with mean µ2 = ξ2ξ1.



Predecessor is Sample Size Revisited (cont.)

And, for this graph,

1
Ber−−−−→ y1

Ber−−−−→ y2
0-Poi−−−−→ y3

the conditional distribution of y3 given y1 (two arrows) is

degenerate, concentrated at zero if y1 = 0

zero-inflated Poisson with mean ξ3ξ2, if y1 = 1



Predecessor is Sample Size Revisited (cont.)

And, for this graph,

1
Poi−−−−→ y1

Ber−−−−→ y2
0-Poi−−−−→ y3

the conditional distribution of y3 given y1 (two arrows) is

degenerate, concentrated at zero if y1 = 0

zero-inflated Poisson with mean ξ3ξ2, if y1 = 1

not a brand-name distribution if y1 > 1, but it can be
described as the sum of y1 IID zero-inflated Poisson random
variables with mean ξ3ξ2.



Predecessor is Sample Size Revisited (cont.)

Although the usual value of the constant at an initial node i is
yi = 1, this is not necessary.

This value plays the role of sample size, so it must be a positive
integer, but it can be any positive integer.

If yi = 2, then the graph describes 2 individuals rather than 1, and
all components of the response are the total for these two
individuals.

If we look at our preceding examples, everything is almost the
same if we take what was y1 to be an initial node.



Predecessor is Sample Size Revisited (cont.)

For this graph,

n
Ber−−−−→ y1

The unconditional distribution of y1 is Binomial(n, ξ1), and
µ1 = nξ1.



Predecessor is Sample Size Revisited (cont.)

And, for this graph,

n
Poi−−−−→ y1

Recalling that the sum of IID Poisson is Poisson, the unconditional
distribution of y1 is Poisson(nξ1), and µ1 = nξ1.



Predecessor is Sample Size Revisited (cont.)

And, for this graph,

n
Ber−−−−→ y1

0-Poi−−−−→ y2

the unconditional distribution of y2 (two arrows) is

zero-inflated Poisson with mean ξ3ξ2, if n = 1

not a brand-name distribution if n > 1, but it can be
described as the sum of n IID zero-inflated Poisson random
variables with mean ξ2ξ1, and µ2 = ξ2ξ1n.



Predecessor is Sample Size Revisited (cont.)

And, for this graph,

2
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

which is just like the graph for example 1 except the initial node
has the value 2 rather than 1, suppose we have the same
interpretation of all the variables as in example 1 except for the
differences entailed by the change of value at the initial node.



Predecessor is Sample Size Revisited (cont.)

y1 is survival in the first year of the experiment. It has the value
zero, one, or two. It is the number of the original two individuals
that survive.

y2 is survival in the second year of the experiment. It has integer
values ranging from zero to y1. It is the number of the original two
individuals that survive to this point.

y3 is survival in the third year of the experiment. It has integer
values ranging from zero to y2. It is the number of the original two
individuals that survive to this point.



Predecessor is Sample Size Revisited (cont.)

y4 is the number of individuals that flowered in the first year of the
experiment. It has integer values ranging from zero to y1.

Similarly, y5 is the number of individuals that flowered in the
second year. It has integer values ranging from zero to y2.

And so forth.



Predecessor is Sample Size Revisited (cont.)

y7 is the (compound) flower count of the y1 individuals were
surviving in the first year. It is the total number of flowers on up to
two individuals (depending on how many of the 2 individuals at the
initial node were still surviving when censused in the first year).

The conditional distribution of y7 given y4 is the sum of y4
zero-truncated Poisson random variables, and E (y7|y4) = ξ7y4.

The conditional distribution of y7 given y1 is the sum of y1
zero-inflated Poisson random variables, and E (y7|y1) = ξ7ξ4y1.

And so forth.



Predecessor is Sample Size Revisited (cont.)

Setting the initial node to more than one isn’t used very much, but
it has been used (researchers had experimental designs where they
only collected data on groups of individuals rather than single
individuals).

It’s a nice feature of aster models, that they “just work” in this case
too.


