
Stat 8931 (Aster Models)
Lecture Slides Deck 1

Charles J. Geyer

School of Statistics
University of Minnesota

June 7, 2015

Aster Models

Aster models are a kind of generalized generalized linear model
(that is, they generalize so-called “generalized linear models”)
explicitly designed for life history analysis.

They are special cases of regression models, of exponential
family models, and of graphical models.

Recently, aster models with random effects have been introduced.

Life History Analysis

Life history analysis (LHA) follows organisms over the course of
their lives collecting various data: survival through various time
periods and also various other data, which only makes sense
conditional on survival.

Thus LHA generalizes survival analysis, which only uses data on
survival.

The LHA of interest to my biological co-authors concerns
Darwinian fitness conceptualized as the lifetime number of
offspring an organism has. The various bits of data collected over
the course of the life that contribute to this are called
components of fitness.

Life History Analysis (cont.)

The fundamental statistical problem of LHA is that overall fitness,
considered as a random variable, fits (in the statistical sense) no
brand-name distribution. It has a large atom at zero (individuals
that died without producing offspring) as well as multiple modes
(one for each breeding season the organism survives). No
statistical methodology before aster deals with data like that.

This issue has long been well understood in the LHA literature. So
what was done instead was analyze components of fitness
separately conditional on survival, but this doesn’t address the
variable (overall fitness) of primary interest (an issue also well
understood, but you do what you can do).

Life History Analysis (cont.)

Also there is all the data on components of fitness. That is of
scientific interest too.

Aster models solve all the problems by modeling all the
components of fitness jointly.

Example One

The first published example (Geyer, et al., 2007, Biometrika) had
components of fitness for each individual in the data connected by
this graph

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

Example One (cont.)

The individuals are plants having scientific name Echinacea
angustifolia and common name narrow-leaved purple coneflower.

They are native to the middle of North America from from
Saskatchewan and Manitoba in the north to New Mexico, Texas,
and Louisiana in the south.

Example One (cont.)

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

The yi are the components of fitness

y1, y2, y3 are survival indicators (zero-or-one-valued)
indicating survival in each of three years.

y4, y5, y6 are flowering indicators (zero-or-one-valued)
indicating presence of any flowers in corresponding years.

y7, y8, y9 are flower counts in corresponding years.

A Technical Quibble

What I am calling flowers aren’t. This

is not a flower. It is a compound flower or composite flower or
flower head. In the picture the brown part comprises many
separate flowers (also called florets).

The Name of the Game

These plants are in the aster family (scientific name Asteraceae)
which used to be called Compositae (the family characterized by
composite flowers), which is a very large family including asters,
daisies, and sunflowers.

Aster models are named after these flowers.

Example One (cont.)

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

The arrows indicate conditional distributions (ber = Bernoulli,
0-Poi = zero-truncated Poisson).

The symbol 1 indicates the constant random variable always equal
to one. A conditional distribution conditional on a constant is the
same as an unconditional distribution.

Graphical Terminology

For one arrow in a graph

y2
Ber−−−−→ y3

we say y3 is the successor of y2 and (conversely) we say y2 is the
predecessor of y3.

A node of the graph (random variable) having no successors is
called a terminal node of the graph.

A node of the graph (random variable) having no predecessors is
called an initial node of the graph.

Graphical Terminology (cont.)

A node (random variable) can be both a successor and predecessor.

y1
Ber−−−−→ y2

Ber−−−−→ y3yBer

y5

Here y2 is the successor of y1 and the predecessor of y3 and y5.

A terminal node can also be a successor (but not a predecessor).

An initial node can also be a predecessor (but not a successor).

Graphical Terminology (cont.)

Graph theory also uses terminology of biological origin

child = successor

parent = predecessor

leaf = terminal

root = initial

but we avoid that to avoid confusion in biological applications.

Except the R package aster inconsistently uses “root” instead of
“initial” while using the other three non-biological terms.

We are trying to switch over to consistent terminology.

Graphical Terminology (cont.)

Graph theory terminology of biological origin has some terms that
have no analog in the other terminology

descendant = successor or successor of successor, or successor
of successor of successor, and so forth

ancestor = predecessor or predecessor of predecessor, or
predecessor of predecessor of predecessor, and so forth

Fortunately, we don’t need these concepts much. When we do
need them, we avoid the terminology of biological origin and use
the long-winded definitions instead.

Tree Graphs and Forest Graphs

Aster models have the property that every node has at most one
predecessor (initial nodes have none, other nodes have one).

Aster models have the property that they are acyclic (no node is
its own descendant or its own ancestor, using terminology on the
preceding slide that we said we would avoid and will after this).

A graph is connected if every node is connected to every other
node by a sequence of arrows (traversing the arrows either way).

A graph that is acyclic and in which every node has at most one
predecessor is called a forest.

A connected forest graph is called a tree.

But we won’t need this terminology of biological origin either. We
can just say all aster models have the first two properties in
boldface above.

Predecessor is Sample Size

All aster models have the predecessor is sample size property.

This is peculiar to aster models. No other graphical model theory
has used this property.

In the subgraph
yi −−−−→ yj

yj is the sum of yi independent and identically distributed (IID)
random variables having the distribution named by the arrow label.

By convention, a sum with zero terms is zero. So yi = 0 implies
yj = 0 with (conditional) probability one.

Predecessor is Sample Size (cont.)

yi −−−−→ yj

This takes care of what people formerly conceived of as a missing
data problem: when yi = 0 (for concreteness, say this means the
individual is dead), then you cannot “observe” yj .

Nevertheless we can infer yj = 0 (if yj is flower count, then we are
inferring that dead plants have no flowers).

So that is not a true missing data problem from the aster model
perspective. Researchers do need to be aware of the need to code
their data this way (dead individuals have 0 flowers not NA flowers,
NA being the R value for missing data).

Predecessor is Sample Size (cont.)

If we did have truly missing data (not observable and not
inferrable), then we would have a problem that aster models are
not equipped to solve.

Predecessor is Sample Size (cont.)

1
Ber−−−−→ y1

Ber−−−−→ y2

Here the unconditional distribution of y1 is Bernoulli (binomial
with sample size one, the only possible distribution of a
zero-or-one-valued random variable).

The conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Bernoulli if y1 = 1

Predecessor is Sample Size (cont.)

1
Ber−−−−→ y1

Whatever−−−−−→ y2

Again the unconditional distribution of y1 is Bernoulli, hence
zero-or-one-valued.

The conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Whatever if y1 = 1

We see that in the zero-or-one-valued predecessor case, the
interpretation is simple. Predecessor = 0 implies successor = 0.
Otherwise, the conditional distribution of the successor is the
named distribution.

Predecessor is Sample Size (cont.)

But predecessors do not have to be zero-or-one-valued.

1
Poi−−−−→ y1

Ber−−−−→ y2

Now y1 is nonnegative-integer-valued (Poi = Poisson).

Recall that the predecessor is sample size property says that the
conditional distribution of y2 given y1 is the sum of y1 IID random
variables having the named distribution (in this case, Bernoulli).

The sum of n IID Bernoulli random variables is binomial with
sample size n.

The conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Binomial with sample size y1 if y1 > 0

Predecessor is Sample Size (cont.)

1
Poi−−−−→ y1

Ber−−−−→ y2

If the conditional distribution of y2 given y1 = n such that n > 0 is
binomial with sample size n rather than Bernoulli, why don’t we
have the arrow label say that (especially since more users have
heard of binomial than Bernoulli)?

It wouldn’t work in general.

1
Poi−−−−→ y1

0-Poi−−−−→ y2

The conditional distribution of y2 given y1 = n such that n > 0 is
the sum of n IID zero-truncated Poisson random variables, but that
is not a brand-name distribution.

Predecessor is Sample Size (cont.)

What is zero-truncated Poisson anyway? And why do we want it?

Zero-truncated Poisson is a Poisson random variable conditioned
on not being zero. The probability mass function (PMF) is

f (x) =
µxe−µ

x!(1− e−µ)
, x = 1, 2, . . . ,

where µ > 0 is the mean of the untruncated Poisson variable, (just
the Poisson PMF divided by the probability the Poisson variable is
nonzero, which is 1− e−µ).

Predecessor is Sample Size (cont.)

The reason why we want it is that sometimes random variables are
zero for reasons other than Poisson variation.

If the variable is flower count, then sometimes there are no flowers
for reasons other than Poisson variation (maybe deer ate them all).

If we want to deal with this we need the so-called zero-inflated
Poisson distribution (about which there has been much recent
literature, nearly 5,000 hits in Google Scholar).

Predecessor is Sample Size (cont.)

For reasons that will be discussed later the aster model way to get
the zero-inflated Poisson distribution uses two arrows rather than
one

yi
Ber−−−−→ yj

0-Poi−−−−→ yk

The conditional distribution of yk given yi (both arrows) is

degenerate, concentrated at zero if yi = 0

zero-inflated Poisson, if yi = 1

the sum of yi IID zero-inflated Poisson random variables, if
yi > 1

A Technical Quibble

yi
Ber−−−−→ yj

0-Poi−−−−→ yk

Strictly speaking, the conditional distribution of yk given yi = 1 is
zero-inflated-or-deflated Poisson because it imposes no constraint
that

Pr(yk = 0 | yi = 1)

be greater than that under the Poisson distribution.

We will ignore this quibble because it is of little scientific interest.

Example One (cont.)

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

Now we can understand the graph for the example.

The top layer (survival indicators) are necessary to model survival
components of fitness.

The middle and bottom layers (flowering indicators and flower
counts) are necessary to model fecundity components of fitness
while accounting for zero-inflation of the Poisson distributions.

Example One (cont.)

Data for example one are found in the R dataset echinacea in the
R package aster.

> library(aster)

> data(echinacea)

> class(echinacea)

[1] "data.frame"

> dim(echinacea)

[1] 570 12

> names(echinacea)

[1] "hdct02" "hdct03" "hdct04" "pop" "ewloc"

[6] "nsloc" "ld02" "fl02" "ld03" "fl03"

[11] "ld04" "fl04"

R Data Import

How would you get your own data into R to make a similar data
frame?

Many, many different ways. R can read many data formats. There
is a whole book about it on the web.

R Data Import/Export
http://cran.r-project.org/doc/manuals/r-release/

R-data.html

We will just explain two ways.

http://cran.r-project.org/doc/manuals/r-release/R-data.html
http://cran.r-project.org/doc/manuals/r-release/R-data.html

R Data Import (cont.)

Put the data in a plain text file, data for a single individual in each
row, white-space-separated columns (if you have white space inside
individual items, they must be quoted strings like "foo bar"),
variable names are column headings in the first line of the file.

For example, the plain text file that R uses to read in the
echinacea dataset starts

"hdct02" "hdct03" "hdct04" "pop" "ewloc" "nsloc" "ld02" "fl02" "ld03" "fl03" "ld04" "fl04"

0 0 0 "NWLF" -8 -11 0 0 0 0 0 0

0 0 0 "Eriley" -8 -10 1 0 1 0 1 0

0 0 0 "NWLF" -8 -9 0 0 0 0 0 0

0 0 0 "SPP" -8 -8 0 0 0 0 0 0

(the first line runs off the screen but has all the variable names).

R Data Import (cont.)

If you want to get a copy of the whole file to look at

library(aster)

data(echinacea)

write.table(echinacea, file = "foo.txt",

row.names = FALSE)

does that. Then

foo <- read.table(file = "foo.txt", header = TRUE)

does the reverse operation, reading the table back and assigning it
the name foo.

R Data Import (cont.)

If you have put the data in Microsoft Excel or LibreOffice Calc,
write out the data as a CSV (comma separated values) file, then
read it with

foo <- read.csv(file = "foo.csv")

(assuming you wrote out the data into the file foo.csv).

R Data Import (cont.)

Cautions.
You cannot write a “plain text file” with Microsoft Word or other
“word processor” program. They put in lots of additional stuff
besides text. Microsoft Notepad does write plain text files.

You can put all kinds of stuff in a spreadsheet, but read.csv
wants one line per individual plus a header line (with variable
names) and nothing else! Use a text editor that can handle plain
text files to remove all other lines.

Example One (cont.)

The variables that correspond to nodes of the graph are, in the
order they are numbered in the graph

> vars <- c("ld02", "ld03", "ld04", "fl02", "fl03",

+ "fl04", "hdct02", "hdct03", "hdct04")

The graphical structure is specified by a vector that gives for each
node the index (not the name) of the predecessor node or zero if
the predecessor is an initial node.

> pred <- c(0, 1, 2, 1, 2, 3, 4, 5, 6)

This says the first node given by the vars vector is initial (because
pred[1] == 0), the predecessor of the second node given by the
vars vector is the first node given by the vars vector (because
pred[2] == 1), and so forth.

Example One (cont.)

Let’s check this makes sense.

> foo <- rbind(vars, c("initial", vars)[pred + 1])

> rownames(foo) <- c("successor", "predecessor")

> foo

[,1] [,2] [,3] [,4] [,5]

successor "ld02" "ld03" "ld04" "fl02" "fl03"

predecessor "initial" "ld02" "ld03" "ld02" "ld03"

[,6] [,7] [,8] [,9]

successor "fl04" "hdct02" "hdct03" "hdct04"

predecessor "ld04" "fl02" "fl03" "fl04"

That’s right.

Example One (cont.)

The last part of the specification of the graph is given by a
corresponding vector of integers coding families (distributions).
The default is to use the codes: 1 = Bernoulli, 2 = Poisson, 3 =
zero-truncated Poisson. Optionally, the integer codes specify
families given by an optional argument famlist to functions in the
aster package, and this can specify other distributions besides
those in the default coding. (More on this later.)

> fam <- c(1, 1, 1, 1, 1, 1, 3, 3, 3)

> rbind(vars, fam)

[,1] [,2] [,3] [,4] [,5] [,6]

vars "ld02" "ld03" "ld04" "fl02" "fl03" "fl04"

fam "1" "1" "1" "1" "1" "1"

[,7] [,8] [,9]

vars "hdct02" "hdct03" "hdct04"

fam "3" "3" "3"

Example One (cont.)

There is one more step before we can fit models. The R function
aster which fits aster models wants the data in “long” rather than
“wide” format, the former having one line per node of the graph
rather than one per individual.

The magic incantation to do this is

> redata <- reshape(echinacea, varying = list(vars),

+ direction = "long", timevar = "varb",

+ times = as.factor(vars), v.names = "resp")

> redata <- data.frame(redata, root = 1)

If you forget this incantation, it and everything else we have done
in this example is on the help page for the R function aster

obtained by doing

help(aster)

Example One (cont.)

> class(redata)

[1] "data.frame"

> dim(redata)

[1] 5130 7

> sapply(redata, class)

pop ewloc nsloc varb resp

"factor" "integer" "integer" "factor" "integer"

id root

"integer" "numeric"

Example One (cont.)

> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id"

[7] "root"

All of the variables in echinacea that are named in vars are
gone. They are packed into the variable resp. Which components
of resp correspond to which components of vars is shown by the
new variable varb

> levels(redata$varb)

[1] "fl02" "fl03" "fl04" "hdct02" "hdct03"

[6] "hdct04" "ld02" "ld03" "ld04"

Example One (cont.)

Now we have all of the response variables (components of fitness)
collected into a single vector resp and we have learned what varb
is. What about the other variables?

root we defined ourselves. When the predecessor of a node is
initial, then the corresponding component of root gives the value
of the predecessor. Other components of root are ignored. We set
them all to one.

id is seldom (if ever) used. It tells what individual (what row of
the original data frame echinacea) a row of reshape came from.

nsloc (north-south location) and ewloc (east-west location) give
the position each individual was located in the experimental plot.

Example One (cont.)

pop gives the ancestral populations: each individual was grown
from seed taken from a surviving population in a prairie remnant in
western Minnesota near the Echinacea Project field site.

> levels(redata$pop)

[1] "AA" "Eriley" "Lf" "Nessman" "NWLF"

[6] "SPP" "Stevens"

The R Formula Mini-Language

In R, regression modeling functions (and other functions) use what
I call the “R formula mini-language” and everybody else (including
R itself) just calls “formulas”.

> foo <- as.formula("y ~ x")

> foo

y ~ x

> class(foo)

[1] "formula"

The R Formula Mini-Language (cont.)

I call it a mini-language because it is one.

The mini-language documentation (such as it is) is shown by

help(formula)

But the language isn’t really well documented. The language is
what its interpreter says it is. That “interpreter” is the R function
model.matrix, which turns formulas and data frames into model
matrices. Ordinary users never call this function directly.
Regression modeling functions like lm, glm, and aster call
model.matrix to do the job.

The R Formula Mini-Language (cont.)

An R formula “means” what model.matrix says it means.

If you are ever in doubt as to what a formula means, look at the
model matrix produced. That is definitive. The model matrix
determines the regression model.

The R Formula Mini-Language (cont.)

In the R formula mini-language the following characters are magic

~ twiddle (officially “tilde”)

+ plus

- minus

: colon

* star (officially “asterisk”)

^ hat (officially “caret”)

They do not mean in formulas what they mean elsewhere in R.

The R Formula Mini-Language (cont.)

For example, in the formula y ~ x + z the symbol + does not
mean to add the vectors x and z as it would in a non-formula R
expression.

The formula y ~ x + z means

ηi = β1 + β2xi + β3zi

where the βi are unknown parameters, xi are the components of
the vector x and similarly for zi , and ηi is another parameter being
specified in terms of these things.

The regression coefficients (the βi) don’t appear in the formula.
There isn’t a “term” in the formula corresponding to β1. R always
puts in an “intercept” term unless you ask it not to.

The R Formula Mini-Language (cont.)

So + in a formula does not mean what + means in a non-formula.

In a formula it means something like the thingummies connected
by + signs (“terms”) get multiplied by unknown parameters
(“regression coefficients”) before being added.

And this doesn’t take into account more complicated issues that
arise when the other magic characters are involved.

The R Formula Mini-Language (cont.)

In y ~ x + z meaning

ηi = β1 + β2xi + β3zi

The twiddle means the vector η having components ηi has
something to do with the vector y (“response” vector)

For linear models (fit by the R function lm) ηi = E (yi).

For generalized linear models (fit by the R function glm) ηi is some
monotone function of E (yi) (“link” function).

For aster models (fit by the R function aster) the vector η having
components ηi is a multivariate monotone function of the vector
E (y) having components E (yi).

The R Formula Mini-Language (cont.)

The R formula mini-language doesn’t care about the interpretation
of the ηi .

All it cares about is that ηi is some function (which its job is to
specify) of unknown parameters (“regression coefficients”) and
other thingummies (“predictor” variables or “covariates”).

This function is always linear in the regression coefficients. It need
not be linear in the predictors.

It’s called “linear regression” because it’s linear in the
regression coefficients, not because it is linear in x .

— Werner Stutzle

Categorical Predictors and Dummy Variables

If a covariate in a formula is categorical (the R object type for this
is factor — examples are varb and pop in our example data),
then the R formula mini-language interpreter (model.matrix)
turns them into a set of zero-or-one-valued variables (“indicator”
variables, also called “dummy” variables).

Non-numeric variables (such character variables) are automatically
turned into factors when stuffed into a data frame by read.table

or read.csv (unless the optional argument stringsAsFactors =

FALSE is supplied). If you want a numeric variable to be treated as
a factor, you have to explicitly say so

redata <- transform(redata, fred = as.factor(fred))

Categorical Predictors and Dummy Variables (cont.)

If we have a factor color with possible values (R calls them
“levels”) "red", "blue", and "green" and a quantitative variable
x, then

y ~ color + x

means
ηi = β1 + β2ui + β3vi + β4xi

where ui and vi are components of zero-or-one-valued vectors u
and v created by model.matrix, u indicating green individuals
and v indicating red individuals.

Regression Models

Now we are ready to fit some aster models to our example data.

But we still have to explain regression models in the aster context.

And really understanding that involves all of the theory of aster
models, most of which we have skipped, wanting to get to a real
concrete example.

So what we need to do next, we are not ready for.

So in order to get on to the example, we are going to have to
oversimplify (dumb down to the point of actually being wrong).

Everything until further notice should be taken cum grano salis.

Regression Models (cont.)

In ordinary regression models, components of the response vector
are

independent and

in the same family

In aster models, components of the response vector are

dependent (the dependence being specified by the graph) and

in different families

Regression Models (cont.)

Different families for different nodes of the graph means it makes
no sense to have terms of the regression formula applying to
different nodes.

In particular, it makes no sense to have one “intercept” for all
nodes.

To in effect get a different “intercept” for each node in the graph,
include varb in the formula

y ~ varb + . . .

The categorical variable varb gets turned into as many dummy
variables as there are nodes in the graph, one is dropped, and the
“intercept” dummy variable (all components = 1) is added; the
effect is to provide a different intercept for each node.

A Technical Quibble

Why is does the variable named varb have that name?

Because of the optional argument timevar = "varb" supplied to
the “magic incantation” (reshape function)

redata <- reshape(echinacea, varying = list(vars),

direction = "long", timevar = "varb",

times = as.factor(vars), v.names = "resp")

We could have given it the name fred or sally or whatever we
want. I picked varb (short for “variables”) without thinking about
it the first time I did this, and everyone (including me) has just
copied that ever since.

Similarly the name resp for the response is specified by the
optional argument v.names = "resp".

Regression Models (cont.)

Similar thinking says we want completely different regression
coefficients of all kinds of predictors for each node of the graph.
That would lead us to formulas like

y ~ varb + varb : (. . .)

where . . . is any other part of the formula.

The : operator in the R formula mini-language denotes
interactions without main effects. The * operator in the R formula
mini-language denotes interactions with main effects. That is,
a * b means the same thing as a + b + a : b

So the above formula says we want the “main effects” for varb,
and we want the “interaction” of varb with “everything else” (the
. . .), but we do not want the “main effects” for “everything else”.

Regression Models (cont.)

y ~ varb + varb : (. . .)

Having said that, we immediately want to take it back. The
language of “main effects” and “interactions” was never designed to
apply to aster models.

We should not think of this formula as specifying “main effects” for
varb (whatever that may mean) but rather as specifying a
separate “intercept” for each node of the graph.

Similarly, we should not think of this formula as specifying
“interaction” between varb and “everything else” (whatever that
may mean) but rather as specifying separate coefficients for
“everything else” for each node of the graph.

Regression Models (cont.)

Thus IMHO (in my humble opinion) you should always say “main
effects” and “interactions” with scare quotes, emphasizing that
these terms are at best highly misleading and confusing.

Regression Models (cont.)

y ~ varb + varb : (. . .)

But formulas like this would yield too many regression coefficients
to estimate well! We can do better!

Maybe we don’t really need different regression coefficients for
each node. Maybe different for each kind of node (whatever that
may mean) would be enough.

Regression Models (cont.)

> layer <- gsub("[0-9]", "", as.character(redata$varb))

> unique(layer)

[1] "ld" "fl" "hdct"

> redata <- data.frame(redata, layer = layer)

> with(redata, class(layer))

[1] "factor"

Maybe
y ~ varb + layer : (. . .)

good enough?

Regression Models (cont.)

y ~ varb + layer : (. . .)

But formulas like this would still yield too many regression
coefficients to estimate well! We can do better!

In aster models (and this is really where the explanation gets
dumbed down to the point of being wrong) regression coefficients
“for” a node of the graph also influence all “earlier” nodes of the
graph (predecessor, predecessor of predecessor, predecessor of
predecessor of predecessor, etc.)

So maybe it would be good enough to only have separate
coefficients for the “layer” of the graph consisting of terminal
nodes?

Regression Models (cont.)

> fit <- as.numeric(layer == "hdct")

> unique(fit)

[1] 0 1

> redata <- data.frame(redata, fit = fit)

> with(redata, class(fit))

[1] "numeric"

Maybe
y ~ varb + fit : (. . .)

good enough?

Regression Models (cont.)

We called this variable we just made up fit, short for Darwinian
fitness.

With formulas like

y ~ varb + fit : (. . .)

the regression coefficients in terms specified by . . . have a direct
relationship with expected Darwinian fitness. And that’s usually
what is wanted in LHA.

A Technical Quibble

We shouldn’t have said Darwinian fitness. Rather we shouldn’t
have said the best surrogate of Darwinian fitness in these data.

Flower counts are not “lifetime number of offspring”. Still less are
flower counts over three years (not the whole life span).

Other Echinacea data (Wagenius, et al., 2010, Evolution) have
more years and more components of fitness.

Other data on other species (Stanton-Geddes, et al., 2012, PLoS
One) have “best surrogate of fitness” pretty close to “fitness” (with
no qualifiers).

After we have emitted academic weasel-wording making clear that
we are aware of the difference between what we are calling fitness
and the Platonic ideal of fitness (Should we be essentialists about
fitness? Isn’t that an oxymoron?) we can just drop the fuss and go
on with the analysis and interpretation.

Regression Models (cont.)

In practice we use formulas like

y ~ varb + layer : (. . .) + fit : (. . .)

with the two . . . having different formula terms.

The formula terms in the second . . . are the ones that we want to
say have a direct effect on fitness (and want statistics to tell us
whether they do or not).

The formula terms in the first . . . are everything else (the terms
whose effect on fitness, if any, is not an issue of scientific interest
in this experiment).

No Naked Predictors

We summarize our advice about formulas for aster models with the
slogan

No naked predictors!

or more precisely

No naked predictors except varb and factor or indicator
variables derived from it, like layer and fit

Our slogan means every predictor other than these must occur
“interacted with” one of these.

No Naked Predictors (cont.)

Instead of

y ~ varb + layer : (. . .) + fit : (. . .)

why not

y ~ varb + layer + fit + layer : (. . .) + fit : (. . .)

Because the dummy variables constructed from layer and the
dummy variable which is fit are linear combinations of the
dummy variables constructed from varb and so would be dropped
anyway. (The two formulas specify the same model.)

Regression Models (cont.)

And that ends the cum grano salis explanation of regression
models. We return to telling it like it is.

Example One (cont.)

> aout <- aster(resp ~ varb + layer : (nsloc + ewloc) +

+ fit : pop, pred, fam, varb, id, root, data = redata)

> summary(aout)

Call:

aster.formula(formula = resp ~ varb + layer:(nsloc + ewloc) +

fit:pop, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.050644 0.184332 -5.700 1.20e-08

varbfl03 -0.349096 0.267919 -1.303 0.1926

varbfl04 -0.344222 0.243899 -1.411 0.1581

varbhdct02 1.321414 0.261174 5.060 4.20e-07

varbhdct03 1.343374 0.214625 6.259 3.87e-10

varbhdct04 1.851328 0.199853 9.263 < 2e-16

varbld02 -0.029302 0.315703 -0.093 0.9260

varbld03 1.740051 0.396189 4.392 1.12e-05

varbld04 4.188577 0.334266 12.531 < 2e-16

layerfl:nsloc 0.070102 0.014652 4.785 1.71e-06

layerhdct:nsloc -0.005804 0.005550 -1.046 0.2956

layerld:nsloc 0.007165 0.005867 1.221 0.2220

layerfl:ewloc 0.017977 0.014413 1.247 0.2123

layerhdct:ewloc 0.007606 0.005561 1.368 0.1714

layerld:ewloc -0.004787 0.005919 -0.809 0.4186

fit:popAA 0.129238 0.089129 1.450 0.1471

fit:popEriley -0.049561 0.071279 -0.695 0.4869

fit:popLf -0.033279 0.079573 -0.418 0.6758

fit:popNessman -0.186269 0.127787 -1.458 0.1449

fit:popNWLF 0.021028 0.063600 0.331 0.7409

fit:popSPP 0.149179 0.067716 2.203 0.0276

(Intercept) ***

varbfl03

varbfl04

varbhdct02 ***

varbhdct03 ***

varbhdct04 ***

varbld02

varbld03 ***

varbld04 ***

layerfl:nsloc ***

layerhdct:nsloc

layerld:nsloc

layerfl:ewloc

layerhdct:ewloc

layerld:ewloc

fit:popAA

fit:popEriley

fit:popLf

fit:popNessman

fit:popNWLF

fit:popSPP *

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)

fit:popStevens

Example One (cont.)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0506435 0.1843320 -5.6997 1.200e-08

varbfl03 -0.3490958 0.2679185 -1.3030 0.19258

varbfl04 -0.3442222 0.2438992 -1.4113 0.15815

varbhdct02 1.3214136 0.2611741 5.0595 4.203e-07

varbhdct03 1.3433740 0.2146250 6.2592 3.870e-10

varbhdct04 1.8513276 0.1998528 9.2635 < 2.2e-16

varbld02 -0.0293022 0.3157033 -0.0928 0.92605

varbld03 1.7400507 0.3961890 4.3920 1.123e-05

varbld04 4.1885771 0.3342661 12.5307 < 2.2e-16

layerfl:nsloc 0.0701024 0.0146520 4.7845 1.714e-06

layerhdct:nsloc -0.0058043 0.0055499 -1.0458 0.29564

layerld:nsloc 0.0071652 0.0058667 1.2213 0.22196

layerfl:ewloc 0.0179769 0.0144128 1.2473 0.21229

layerhdct:ewloc 0.0076060 0.0055608 1.3678 0.17138

layerld:ewloc -0.0047874 0.0059191 -0.8088 0.41863

fit:popAA 0.1292377 0.0891292 1.4500 0.14706

fit:popEriley -0.0495612 0.0712789 -0.6953 0.48686

fit:popLf -0.0332786 0.0795727 -0.4182 0.67579

fit:popNessman -0.1862690 0.1277869 -1.4577 0.14494

fit:popNWLF 0.0210283 0.0635998 0.3306 0.74092

fit:popSPP 0.1491795 0.0677156 2.2030 0.02759

Example One (cont.)

The regression coefficients are of little interest. The main interest
is in what model among those that have a scientific interpretation
fits the best.

> aout.smaller <- aster(resp ~ varb +

+ fit : (nsloc + ewloc + pop),

+ pred, fam, varb, id, root, data = redata)

> aout.bigger <- aster(resp ~ varb +

+ layer : (nsloc + ewloc + pop),

+ pred, fam, varb, id, root, data = redata)

Example One (cont.)

> anova(aout.smaller, aout, aout.bigger)

Analysis of Deviance Table

Model 1: resp ~ varb + fit:(nsloc + ewloc + pop)

Model 2: resp ~ varb + layer:(nsloc + ewloc) + fit:pop

Model 3: resp ~ varb + layer:(nsloc + ewloc + pop)

Model Df Model Dev Df Deviance P(>|Chi|)

1 17 -2746.7

2 21 -2712.5 4 34.203 6.772e-07 ***

3 33 -2674.7 12 37.838 0.0001632 ***

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Example One (cont.)

Despite the largest model fitting the best, we choose the middle
model because that one tells us something about fitness directly
that the other one does not.

We haven’t covered enough aster model theory to explain this.
More on this later (end of Deck 4 of these slides).

Predicted Values

Now we come to a really hard subject for applied work. Hypothesis
tests using the R function anova are fairly straightforward.
Confidence intervals using the R function predict are anything
but straightforward (crooked as a dog’s hind leg).

Part of this is programmer brain damage (PBD), which is a
technical term (an entry in the Hacker’s Dictionary). The predict

function has some aspects of its user interface that are clumsy and
hard to use, even for the author of the function. Unfortunately,
they cannot be fixed without breaking a lot of working examples
(which would be much worse than just living with these issues).
The R package aster2 fixes these issues (and does lots more) but
is still incomplete.

Predicted Values (cont.)

But the other part of what makes confidence intervals is just the
inherent complexity of aster models.

Whatever you personally are trying to do with aster models is a
very special case of what aster models can do. As we shall see,
they can do many things that look radically different and have no
obvious connection with each other. (They don’t have any obvious
similarities in their data or scientific interpretations of their data.
The only connection is aster model theory applies to both.)

Among other issues, aster models have six (!) different
parameterizations, all of which can be of scientific interest in some
application, not necessarily in your application, not necessarily all
in any one application.

A Technical Quibble

The R generic function named predict does not do prediction
except for linear models. What it does do is parameter estimation
and confidence intervals for parameters.

So it is misnamed. But that doesn’t have anything to do with
aster models. predict is misnamed even when applied to
generalized linear models (GLM).

A referee for the first aster paper complained about this, but we
replied that that is just the way R is. The name made some sense
when the function was introduced into S in 1988 (before R even
existed – S was proprietary software from AT&T that defined the
statistical computing language that R is a free software
implementation of) because it was mostly just for linear models
(although for generalized linear models too, so it was a misnomer
even then, but not such an obvious one).

R Generic Functions

Warning: We are now going to wade into some messy gory details
of R that do not have anything special to do with aster models
(although the R package aster uses them just like most other R
packages). You may zone out if you wish.

IMHO it would be best if you have at least a vague understanding
of this stuff (there is some “magic” going on here). Users rarely
need to know this much detail (but it is hard to know how little
users can get by with and I don’t really want to dumb this down to
the point of being wrong).

R Generic Functions (cont.)

R has object oriented programming (OOP) which was the
bandwagon of the 1990’s in computing languages (C++, Java, and
that ilk).

But OOP in R is very different from OOP in mainstream languages
like those.

In fact, OOP in R is a mess with 3 different OOP systems in the R
core (the part that is installed in every installation) and at least
two more in well known CRAN packages.

We are only going to explain a little bit about the first (rather
primitive) OOP system called S3 (for S version 3 — it was first
introduced into S and then copied into R).

R Generic Functions (cont.)

When you type an R expression that is not an assignment, R prints
the value of the expression. It calls the R function print even
though you didn’t type it.

> 2 + 2

[1] 4

R Generic Functions (cont.)

R functions are R objects just like any other object. They are
created by the function named function.

> fred <- function(x) x + 2

> class(fred)

[1] "function"

> fred(2)

[1] 4

> fred(3)

[1] 5

R Generic Functions (cont.)

So what is the value of the expression fred?

> fred

function(x) x + 2

It shows you the definition of the function. For most functions, it
is a lot longer than this.

A Technical Quibble

In an R expression, the token function is not a “name” like fred

on the previous slide, rather it is a “reserved word”.

Hence typing help(function) is a syntax error. Instead, you
must type help("function").

And typing function as a whole statement does not work. When
you hit the enter key, you get a continuation prompt (R saying you
have not finished a complete statement). To see the function
named function you have to say one of

> `function`

.Primitive("function")

> get("function")

.Primitive("function")

R Generic Functions (cont.)

> predict

function (object, ...)

UseMethod("predict")

<bytecode: 0x3613820>

<environment: namespace:stats>

Clear as mud.

What this indicates is that the R function predict is an S3
generic function.

R Generic Functions (cont.)

The way S3 generic functions work is that, when invoked, they
look at the class of the first argument, which is what the R
function class returns. And then it calls another function
predict.classname, where classname is the name of the actual
class (without quotation marks) with exactly the same arguments
as the first call.

> class(aout)

[1] "aster.formula" "aster" "asterOrReaster"

So when you say predict(aout), this is really exactly the same as
saying one of

predict.aster.formula(aout)

predict.aster(aout)

predict.asterOrReaster(aout)

predict.default(aout)

R Generic Functions (cont.)

When an object has more than one class (like aout), then it looks
for functions in order, first predict.aster.formula and second
predict.aster and calls the first function it finds. There are a
lot of these predict functions in R

> methods(predict)

[1] predict.ar*

[2] predict.Arima*

[3] predict.arima0*

[4] predict.aster

[5] predict.aster.formula*

[6] predict.glm

[7] predict.HoltWinters*

[8] predict.lm

[9] predict.loess*

[10] predict.mlm*

[11] predict.nls*

[12] predict.poly*

[13] predict.ppr*

[14] predict.prcomp*

[15] predict.princomp*

[16] predict.smooth.spline*

[17] predict.smooth.spline.fit*

[18] predict.StructTS*

Non-visible functions are asterisked

R Generic Functions (cont.)

Too many to fit on a slide. Your mileage may vary (what you see
depends on what packages are loaded). If you said
methods(predict) before saying library(aster) you would not
see predict.aster.formula or predict.aster.

So know we know that

predict(aout)

means the same thing as

predict.aster.formula(aout)

R Generic Functions (cont.)

And the main reason users have to know any of this is that in order
to see the documentation for this function you have to say

help(predict.aster.formula)

or

help(predict.aster)

(both of these happen to take you to the same help page). Just
saying

help(predict)

will not show you what you want.

R Generic Functions (cont.)

If there is no method of the form predict.classname, where
classname is the one of the classes of the first argument of the
function call, then predict.default gets called (it if exists).

And similarly for any other generic function
genericfunctionname.classname is called if such a function exists
and otherwise genericfunctionname.default is called if it exists.

R Generic Functions (cont.)

Many frequently used R functions are generic: print, plot, hist,
summary, anova, predict, confint, and many more.

Mostly they “just work” but you do have to know the name of the
method (like summary.aster or anova.aster or
predict.aster) to look up the documentation.

So that ends our digression about R generic functions.

Predicted Values (cont.)

> pout <- predict(aout)

> class(pout)

[1] "numeric"

> length(pout)

[1] 5130

> nrow(redata)

[1] 5130

Predicted Values (cont.)

predict.aster and predict.aster.formula have many
complicated options. When invoked with no optional arguments
(as just shown), it produces a numeric vector of the same length as
the response vector.

The result of predict(aout) is the maximum likelihood estimate
(MLE) of the saturated model mean value parameter vector µ.

If y denotes the response vector, then

E (y) = µ

meaning
E (yi) = µi

(the components of µ are the unconditional expectations of the
corresponding components of y).

Predicted Values (cont.)

As everywhere else in statistics we distinguish parameters like µ
from their estimates µ̂. We say µ is the unknown true parameter
(vector) value that determined the distribution of the data, and µ̂
is only an estimator of µ.

If we want to say how bad or good our estimators are, then we
need confidence intervals (or perhaps just standard errors).

> pout <- predict(aout, se.fit = TRUE)

> class(pout)

[1] "list"

> sapply(pout, class)

fit se.fit gradient

"numeric" "numeric" "matrix"

Predicted Values (cont.)

Annoyingly, the gradient component of the return is an
“undocumented feature” (PBD). It was originally intended to be
used only for testing and debugging the code. It was not intended
for ordinary users. Unfortunately, it is the simplest way to do some
things with the predict function. And it has been used in some
technical reports. But for now, you should ignore it.

The component fit gives the estimators (the same vector that was
returned when predict was invoked with no optional arguments).
The component se.fit gives the corresponding standard errors.

These are asymptotic (large sample size, approximate) estimated
standard deviations of the components of µ̂ derived using the
“usual” theory of maximum likelihood estimation (more on that
later).

Predicted Values (cont.)

> low <- pout$fit - qnorm(0.975) * pout$se.fit

> hig <- pout$fit + qnorm(0.975) * pout$se.fit

> length(hig)

[1] 5130

gives us vector containing confidence bounds for approximate 95%
confidence intervals (not corrected for simultaneous coverage!) for
each of the components of the response vector.

These are of no scientific interest whatsoever.

Predicted Values (cont.)

The question of scientific interest addressed by confidence intervals
in the first aster paper was about (best surrogate of) fitness of a
typical individual in each population. Thus we only want

> nlevels(redata$pop)

[1] 7

confidence intervals, one for each population.

What do we mean by “typical” individuals? Those that are directly
comparable. Those that the same in all respects except for
population.

In particular, they should be planted at exactly the same place
(have the same values of nsloc and ewloc). Clearly, real
individuals are not comparable in this way. (Two different plants
cannot have the same location.)

Predicted Values (cont.)

Thus we have to make up covariate data for hypothetical
individuals that are comparable like this and get estimated mean
values for them.

> fred <- data.frame(nsloc = 0, ewloc = 0,

+ pop = levels(redata$pop), root = 1,

+ ld02 = 1, ld03 = 1, ld04 = 1,

+ fl02 = 1, fl03 = 1, fl04 = 1,

+ hdct02 = 1, hdct03 = 1, hdct04 = 1)

> fred

nsloc ewloc pop root ld02 ld03 ld04 fl02 fl03

1 0 0 AA 1 1 1 1 1 1

2 0 0 Eriley 1 1 1 1 1 1

3 0 0 Lf 1 1 1 1 1 1

4 0 0 Nessman 1 1 1 1 1 1

5 0 0 NWLF 1 1 1 1 1 1

6 0 0 SPP 1 1 1 1 1 1

7 0 0 Stevens 1 1 1 1 1 1

fl04 hdct02 hdct03 hdct04

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

7 1 1 1 1

Predicted Values (cont.)

Seems to work. The components of the response vector are
ignored in prediction so we can give them arbitrary values.
Somewhat annoyingly, they have to be possible values because
predict.aster.formula will check.

> renewdata <- reshape(fred, varying = list(vars),

+ direction = "long", timevar = "varb",

+ times = as.factor(vars), v.names = "resp")

> layer <- gsub("[0-9]", "", as.character(renewdata$varb))

> renewdata <- data.frame(renewdata, layer = layer)

> fit <- as.numeric(layer == "hdct")

> renewdata <- data.frame(renewdata, fit = fit)

We did exactly the same things we did to make redata in making
renewdata changing what had to be changed (mutatis mutandis
as the economists say).

Predicted Values (cont.)

Now we have predictions for these guys

> names(renewdata)

[1] "nsloc" "ewloc" "pop" "root" "varb" "resp"

[7] "id" "layer" "fit"

> pout <- predict(aout, newdata = renewdata, varvar = varb,

+ idvar = id, root = root, se.fit = TRUE)

> sapply(pout, class)

fit se.fit gradient modmat

"numeric" "numeric" "matrix" "array"

> sapply(pout, length)

fit se.fit gradient modmat

63 63 1323 1323

Predicted Values (cont.)

Why do we need the arguments varvar, idvar, and root when
we didn’t before? Dunno. More PBD. But help(predict.aster)
says we need them (especially look at the examples, which is
always good advice).

So now we can make 63 not corrected for simultaneous coverage
confidence intervals, one for each of the 9 nodes of the graph for
each of these 7 individuals (one per population).

These too are of no scientific interest whatsoever. But we are
getting closer.

Predicted Values (cont.)

What is of scientific interest is confidence intervals for Darwinian
fitness for these 7 individuals.

Fitness (best surrogate of) in these data is the lifetime headcount
which is

hdct02 + hdct03 + hdct04

where the variable names here are meant to indicate the actual
variables.

What? Wait!

hdct02 + hdct03 + hdct04

is fitness? What about the other components of fitness? Don’t
they contribute too?

Yes, they do. But their effect is already counted in the head count.
You can’t have nonzero head count if you are dead or if you had no
flowers, so that is already accounted for.

What? Wait! (cont.)

We distinguish between observed (Darwinian) fitness and expected
(Darwinian) fitness.

Observed fitness is a random variable, ideally the lifetime number
of offspring an individual has. This is highly variable and mostly the
result of environmental accident rather than underlying genetics.

Expected fitness is a constant (not a random variable — every
expectation is a constant not a random variable). Expected fitness
is the (unconditional) expectation of observed fitness.

Expected fitness is what we are trying to do confidence intervals
for here.

What? Wait! (cont.)

When we say the effect of other components of fitness (ld0x and
fl0x is already counted in head count (hdct0x), what we mean is
that the unconditional expectation of head count incorporates
the effect of these earlier components of fitness.

This will become obvious when we do the theory in the next deck
of slides.

Predicted Values (cont.)

Getting the predicted values is no problem if we know the order the
nodes of the graph are arranged in, which is shown by

> renewdata$id

[1] 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4

[26] 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1

[51] 2 3 4 5 6 7 1 2 3 4 5 6 7

> as.character(renewdata$varb)

[1] "ld02" "ld02" "ld02" "ld02" "ld02"

[6] "ld02" "ld02" "ld03" "ld03" "ld03"

[11] "ld03" "ld03" "ld03" "ld03" "ld04"

[16] "ld04" "ld04" "ld04" "ld04" "ld04"

[21] "ld04" "fl02" "fl02" "fl02" "fl02"

[26] "fl02" "fl02" "fl02" "fl03" "fl03"

[31] "fl03" "fl03" "fl03" "fl03" "fl03"

[36] "fl04" "fl04" "fl04" "fl04" "fl04"

[41] "fl04" "fl04" "hdct02" "hdct02" "hdct02"

[46] "hdct02" "hdct02" "hdct02" "hdct02" "hdct03"

[51] "hdct03" "hdct03" "hdct03" "hdct03" "hdct03"

[56] "hdct03" "hdct04" "hdct04" "hdct04" "hdct04"

[61] "hdct04" "hdct04" "hdct04"

Predicted Values (cont.)

We see it runs through all individuals for each node before going
on to the next node. So

> nnode <- length(vars)

> sally <- matrix(pout$fit, ncol = nnode)

> dim(sally)

[1] 7 9

> rownames(sally) <- unique(as.character(renewdata$pop))

> colnames(sally) <- unique(as.character(renewdata$varb))

stuffs the parameter estimates into a matrix with individuals along
rows and nodes along columns.

By default R uses FORTRAN order when stuffing a vector into a
matrix, filling a column before going on to the next (this can be
changed by the optional argument byrow = TRUE).

Predicted Values (cont.)

> round(sally, 4)

ld02 ld03 ld04 fl02 fl03 fl04

AA 0.7834 0.7521 0.7285 0.3229 0.2560 0.4561

Eriley 0.6954 0.6565 0.6299 0.2334 0.1774 0.3237

Lf 0.7029 0.6646 0.6382 0.2404 0.1834 0.3342

Nessman 0.6377 0.5946 0.5669 0.1824 0.1348 0.2469

NWLF 0.7289 0.6926 0.6670 0.2655 0.2051 0.3716

SPP 0.7937 0.7634 0.7402 0.3346 0.2666 0.4729

Stevens 0.7187 0.6816 0.6557 0.2555 0.1964 0.3567

hdct02 hdct03 hdct04

AA 0.6215 0.4990 1.2555

Eriley 0.4085 0.3140 0.7796

Lf 0.4242 0.3273 0.8144

Nessman 0.2993 0.2233 0.5418

NWLF 0.4817 0.3764 0.9422

SPP 0.6514 0.5257 1.3224

Stevens 0.4585 0.3565 0.8905

Predicted Values (cont.)

> herman <- sally[, grepl("hdct", colnames(sally))]

> herman

hdct02 hdct03 hdct04

AA 0.6215239 0.4990070 1.2554533

Eriley 0.4084934 0.3139651 0.7796097

Lf 0.4242352 0.3272954 0.8144317

Nessman 0.2993480 0.2233300 0.5418002

NWLF 0.4816654 0.3764236 0.9421609

SPP 0.6513874 0.5256736 1.3224073

Stevens 0.4584965 0.3565129 0.8905197

> rowSums(herman)

AA Eriley Lf Nessman NWLF SPP

2.375984 1.502068 1.565962 1.064478 1.800250 2.499468

Stevens

1.705529

Predicted Values (cont.)

These are the desired estimates of expected fitness, but they don’t
come with standard errors because there is no simple way to get
the standard errors for sums from the standard errors for the
summands (when the summands are not independent, which is the
case here).

So we have to proceed indirectly. We have to tell
predict.aster.formula what functions of mean values we want
and let it figure out the standard errors (which it can do).

It only figures out for linear functions. We can handle non-linear
functions using the delta method“by hand”(using R as a calculator
but doing derivatives ourselves), but that is much more
complicated. Since addition is a linear operation, we do not need
that complication for this example.

Predicted Values (cont.)

If µ̂ is the result of predict.aster.formula without the optional
argument amat, then when the optional argument amat is given it
does parameter estimates with standard errors for a new parameter

ζ̂ = AT µ̂,

where A is a known matrix (the amat argument).

Since we want 7 confidence intervals AT has 7 rows, and since µ is
length 63, AT has 63 columns. Thus A is a 63× 7 matrix.

Fairly simple, except now comes some serious PBD.

Predicted Values (cont.)

Quoted from help(predict.aster)

For predict.aster, a three-dimensional array with
dim(amat)[1:2] == dim(modmat)[1:2].

For predict.aster.formula, a three-dimensional array
of the same dimensions as required for predict.aster
(even though modmat is not provided). First dimension is
number of individuals in newdata, if provided, otherwise
number of individuals in object$data. Second
dimension is number of variables
(length(object$pred)).

Also clear as mud.

Predicted Values (cont.)

So here is another description. The argument amat is a three
dimensional array.

The first dimension is the number of individuals in newdata (if
provided) and otherwise in the data argument in the call to aster

produced the object provided as the first argument to
predict.aster.formula.

The second dimension is the number of nodes in the graph.

The third dimension is the number parameters we want point
estimates and standard errors for.

Predicted Values (cont.)

Let aijk denote the elements of this array, and let µij denote the
elements of the result of calling predict.aster.formula without
the amat argument, these elements being stuffed into a matrix
columnwise as we showed back on slide 106. Then we are trying to
estimate the parameter vector having components

ζk =

nind∑
i=1

nnode∑
j=1

aijkµij

Predicted Values (cont.)

> npop <- nrow(fred)

> nnode <- length(vars)

> amat <- array(0, c(npop, nnode, npop))

> dim(amat)

[1] 7 9 7

We want only the means for the k-th individual to contribute to
ζk . And we want to add only the headcount entries.

> foo <- grepl("hdct", vars)

> for (k in 1:npop)

+ amat[k, foo, k] <- 1

This three-way array is too big to print on a slide. We’ll just try it
out.

Predicted Values (cont.)

> pout.amat <- predict(aout, newdata = renewdata, varvar = varb,

+ idvar = id, root = root, se.fit = TRUE, amat = amat)

> pout.amat$fit

[1] 2.375984 1.502068 1.565962 1.064478 1.800250

[6] 2.499468 1.705529

> rowSums(herman)

AA Eriley Lf Nessman NWLF SPP

2.375984 1.502068 1.565962 1.064478 1.800250 2.499468

Stevens

1.705529

Hooray! They’re the same!

Predicted Values (cont.)

> foo <- cbind(pout.amat$fit, pout.amat$se.fit)

> rownames(foo) <- as.character(fred$pop)

> colnames(foo) <- c("estimates", "std. err.")

> round(foo, 3)

estimates std. err.

AA 2.376 0.446

Eriley 1.502 0.196

Lf 1.566 0.249

Nessman 1.064 0.309

NWLF 1.800 0.182

SPP 2.499 0.289

Stevens 1.706 0.222

