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Asymptotic Approximation

The last big subject in probability theory is asymptotic approxi-
mation, also called asymptotics, also called large sample theory.

We have already seen a little bit.

• Convergence in probability,

• op and Op notation,

• and the Poisson approximation to the binomial distribution

are all large sample theory.
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Convergence in Distribution

If X1, X2, . . . is a sequence of random variables, and X is another

random variable, then we say Xn converges in distribution to X

if

E{g(Xn)} → E{g(X)},

for all bounded continuous functions g : R→ R, and we write

Xn
D−→ X

to indicate this.
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Convergence in Distribution (cont.)

The Helley-Bray theorem asserts that the following is an equiv-

alent characterization of convergence in distribution.

If Fn is the DF of Xn and F is the DF of X, then

Xn
D−→ X

if and only if

Fn(x)→ F (x), whenever F is continuous at x.
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Convergence in Distribution (cont.)

The Helley-Bray theorem is too difficult to prove in this course.

A simple example shows why convergence Fn(x) → F (x) is not

required at jumps of F .

Suppose each Xn is a constant random variable taking the value

xn and X is a constant random variable taking the value x, then

Xn
D−→ X if xn → x

because

xn → x implies g(xn)→ g(x)

whenever g is continuous.

5



Convergence in Distribution (cont.)

The DF of Xn is

Fn(s) =

0, s < xn

1, s ≥ xn

and similarly for the DF F of X.

We do indeed have

Fn(s)→ F (s), s 6= x

but do not necessarily have this convergence for s = x.
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Convergence in Distribution (cont.)

For a particular example where convergence does not occur at

s = x, consider the sequence

xn =
(−1)n

n

for which

xn → 0.

Then

Fn(x) = Fn(0) =

0, even n

1, odd n

and this sequence does not converge (to anything).
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Convergence in Distribution (cont.)

Suppose Xn and X are integer-valued random variables having

PMF’s fn and f , respectively, then

Xn
D−→ X

if and only if

fn(x)→ f(x), for all integers x

Obvious, because there are continuous functions that are nonzero

only at one integer.
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Convergence in Distribution (cont.)

A long time ago (slides 36–38, deck 3) we proved the Poisson

approximation to the binomial distribution. Now we formalize

that as a convergence in distribution result.

Suppose Xn has the Bin(n, pn) distribution, X has the Poi(µ)

distribution, and

npn → µ.

Then we showed (slides 36–38, deck 3) that

fn(x)→ f(x), x ∈ N

which we now know implies

Xn
D−→ X.
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Convergence in Distribution (cont.)

Convergence in distribution is about distributions not variables.

Xn
D−→ X

means the distribution of Xn converges to the distribution of X.

The actual random variables are irrelevant; only their distribu-

tions are relevant.

In the preceding example we could have written

Xn
D−→ Poi(µ)

or even

Bin(n, pn)
D−→ Poi(µ)

and the meaning would have been just as clear.
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Convergence in Distribution (cont.)

Our second discussion of the Poisson process was motivated

by the exponential distribution being an approximation for the

geometric distribution in some sense (slide 70, deck 5). Now we

formalize that as a convergence in distribution result.

Suppose Xn has the Geo(pn) distribution, Yn = Xn/n, Y has the

Exp(λ) distribution, and

npn → λ.

Then

Yn
D−→ Y.
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Convergence in Distribution (cont.)

Let Fn be the DF of Xn. Then for x ∈ N

Fn(x) = 1− Pr(Xn > x)

= 1−
∞∑

k=x+1

pn(1− pn)k

= 1− (1− pn)x+1
∞∑
j=0

pn(1− pn)j

= 1− (1− pn)x+1
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Convergence in Distribution (cont.)

So

Fn(x) =

0, x < 0

1− (1− pn)k+1, k ≤ x < k + 1, k ∈ N

Let Gn be the DF of Yn and G the DF of Y .

Gn(x) = Pr(Yn ≤ x)

= Pr(Xn ≤ nx)

= Fn(nx)

G(x) =

0, x < 0

1− e−λx, x ≥ 0

We are to show that

Gn(x)→ G(x), x ∈ R.
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Convergence in Distribution (cont.)

Obviously,

Gn(x)→ G(x), x < 0.

We show

log[1−Gn(x)]→ log[1−G(x)], x ≥ 0

which implies

Gn(x)→ G(x), x ≥ 0

by the continuity of addition and the exponential function.
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Convergence in Distribution (cont.)

For x ≥ 0

log[1−Gn(x)] = (k + 1) log(1− pn), k ≤ nx < k + 1

= (bnxc+ 1) log(1− pn)

where byc, read “floor of y” is the largest integer less than or

equal to y. Since pn → 0 as n→∞

log(1− pn)

−pn
→ 1, n→∞,

(the limit being the derivative of ε 7→ log(1 + ε) at ε = 0).
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Convergence in Distribution (cont.)

Hence

(bnxc+ 1) log(1− pn)→
(

lim
n→∞(bnxc+ 1)pn

)(
lim
n→∞

log(1− pn)

pn

)
= λx · (−1)

= −λx

and that finishes the proof of

Yn
D−→ Y.
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Convergence in Probability to a Constant

(This reviews material in deck 2, slides 115–118).

If Y1, Y2, . . . is a sequence of random variables and a is a constant,

then Yn converges in probability to a if for every ε > 0

Pr(|Yn − a| > ε)→ 0, as n→∞.

We write either

Yn
P−→ a

or

Yn − a = op(1)

to denote this.
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Convergence in Probability and in Distribution

We now prove that convergence in probability to a constant and

convergence in distribution to a constant are the same concept

Xn
P−→ a

if and only if

Xn
D−→ a

It is not true that convergence in distribution to a random vari-

able is the same as convergence in probability to a random vari-

able (which we have not defined).
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Convergence in Probability and in Distribution (cont.)

Let Fn denote the DF of Xn. Suppose

Xn
D−→ a.

Then

Pr(|Xn − a| > ε) ≤ Fn(a− ε) + 1− Fn(a+ ε)→ 0

so

Xn
P−→ a.
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Convergence in Probability and in Distribution (cont.)

Conversely, suppose

Xn
P−→ a.

Then for x < a

Fn(x) ≤ Pr
(
|Xn − a| >

a− x
2

)
→ 0,

and for x > a

Fn(x) ≥ 1− Pr
(
|Xn − a| >

x− a
2

)
→ 1,

so

Xn
D−→ a.
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Convergence in Probability and in Distribution (cont.)

Thus there is no need (in this course) to have two concepts. We

could just write

Xn
D−→ a

everywhere instead of

Xn
P−→ a

the reason we don’t is tradition. The latter is preferred in almost

all of the literature when the limit is a constant. So we follow

tradition.
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Law of Large Numbers

(This reviews material in deck 2, slides 114–118).

If X1, X2, . . . is a sequence of IID random variables having mean
µ (no higher moments need exist) and

Xn =
1

n

n∑
i=1

Xi,

then

Xn
P−→ µ.

This is called the law of large numbers (LLN).

We saw long ago that this is an easy consequence of Chebyshev’s
inequality if second moments exist. Without second moments,
it is much harder to prove, and we will not prove it.
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Cauchy Distribution Addition Rule

The convolution formula gives the PDF of X+Y . If X has PDF
fX and Y has PDF fY , then Z = X + Y has PDF

fZ(z) =
∫ ∞
−∞

fX(x)fY (z − x) dx

This is derived by exactly the same argument as we used for
PMF (deck 3, slides 51–52); just replace sums by integrals.

If X1 and X2 are standard Cauchy random variables, and

Yi = µi + σiXi

are general Cauchy random variables, then

Y1 + Y2 = (µ1 + µ2) + (σ1X1 + σ2X2)

clearly has location parameter µ1 +µ2. So it is enough to figure
out the distribution of σ1X1 + σ2X2.
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Cauchy Distribution Addition Rule (cont.)

The convolution integral is a mess, so we use Mathematica.

In[1]:= f[x_, sigma_] = sigma / (Pi (sigma^2 + x^2))

sigma

Out[1]= ----------------

2 2

Pi (sigma + x )

In[2]:= g[x_, sigma1_, sigma2_] =

Integrate[ f[x, sigma1] f[y - x, sigma2], x ]
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Cauchy Distribution Addition Rule (cont.)

2 2 2 x

Out[2]= (sigma2 (-sigma1 + sigma2 + y ) ArcTan[------] +

sigma1

2 2 2 x - y

> sigma1 ((sigma1 - sigma2 + y ) ArcTan[------] +

sigma2

2 2 2 2

> sigma2 y (Log[sigma1 + x ] - Log[sigma2 + (x - y) ]))) /

2 4 2 2 2 2 2 2

> (Pi (sigma1 - 2 sigma1 (sigma2 - y ) + (sigma2 + y ) ))
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Cauchy Distribution Addition Rule (cont.)

In[3]:= Limit[ g[x, sigma1, sigma2], x -> Infinity ] -

Limit[ g[x, sigma1, sigma2], x -> -Infinity ]

Voluminous output omitted.

In[4]:= Simplify[%, sigma1 > 0 && sigma2 > 0]

sigma1 + sigma2

Out[4]= ---------------------------------------------

2 2 2

Pi (sigma1 + 2 sigma1 sigma2 + sigma2 + y )

We recognize the result as the PDF of a Cauchy(0, σ1 + σ2)
distribution.
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Cauchy Distribution Addition Rule (cont.)

Conclusion: if X1, . . ., Xn are independent random variables, Xi
having the Cauchy(µi, σi) distribution, then X1 + · · ·+Xn has the

Cauchy(µ1 + · · ·+ µn, σ1 + · · ·+ σn)

distribution.
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Cauchy Distribution Violates the LLN

If X1, X2, . . . are IID Cauchy(µ, σ), then

Y = X1 + · · ·+Xn

is Cauchy(nµ, nσ), which means it has the form nµ+nσZ where

Z is standard Cauchy. And this means

Xn =
1

n

n∑
i=1

Xi

which is Y/n has the form µ + σZ where Z is standard Cauchy,

that is, Xn has the Cauchy(µ, σ) distribution.
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Cauchy Distribution Violates the LLN (cont.)

This gives the trivial convergence in distribution result

Xn
D−→ Cauchy(µ, σ)

“trivial” because the left-hand side has the Cauchy(µ, σ) distri-

bution for all n.

When thought of as being about distributions rather than vari-

ables (which it is), this is a constant sequence which has a trivial

limit (limit of a constant sequence is that constant).
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Cauchy Distribution Violates the LLN (cont.)

The result

Xn
D−→ Cauchy(µ, σ)

is not convergence in distribution to a constant, the right-hand

side not being a constant random variable.

It is not surprising that the LLN which specifies

Xn
P−→ E(X1)

does not hold because the mean E(X1) does not exist in this

case.
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Cauchy Distribution Violates the LLN (cont.)

What is surprising is that Xn does not get closer to µ as n

increases. We saw (deck 2, slides 113–123) that when second

moments exist we actually have

Xn − µ = Op(n
−1/2)

When only first moments exist, we only have the weaker state-

ment (the LLN)

Xn − µ = op(1)

But here in the Cauchy case, where not even first moments exist,

we have only the even weaker statement

Xn − µ = Op(1)

which doesn’t say Xn − µ decreases in any sense.
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The Central Limit Theorem

When we second moments exist, we actually have something

much stronger than

Xn − µ = Op(n
−1/2).

If X1, X2, . . . are IID random variables having mean µ and vari-

ance σ2, then
√
n(Xn − µ)

D−→ N (0, σ2)

This fact is called the central limit theorem (CLT). The CLT is

much too hard to prove in this course.
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The Central Limit Theorem (cont.)

When
√
n(Xn − µ)

D−→ N (0, σ2)

holds, the jargon says one has “asymptotic normality”. When

Xn − µ = Op(n
−1/2)

holds, the jargon says one has “root n rate”.

It is not necessary to have independence or identical distribution

to get asymptotic normality. It also holds in many examples,

such as the ones we looked at in deck 2 where one has root n

rate. But precise conditions when asymptotic normality obtains

without IID are beyond the scope of this course.
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The Central Limit Theorem (cont.)

The CLT also has a “sloppy version”. If
√
n(Xn − µ)

actually had exactly the N (0, σ2) distribution, then Xn itself
would have the N (µ, σ2/n) distribution. This leads to the state-
ment

Xn ≈ N
(
µ,
σ2

n

)
where the ≈ means something like approximately distributed as,
although it doesn’t precisely mean anything. The correct math-
ematical statement is given on the preceding slide.

The “sloppy” version cannot be a correct mathematical state-
ment because a limit as n→∞ cannot have an n in the putative
limit.
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The CLT and Addition Rules

Any distribution that has second moments and appears as the

distribution of the sum of IID random variables (an “addition

rule”) is approximately normal when the number of terms in the

sum is large.

Bin(n, p) is approximately normal when n is large and neither np

or n(1 − p) is near zero. NegBin(r, p) is approximately normal

when r is large and neither rp or r(1 − p) is near zero. Poi(µ)

is approximately normal when µ is large. Gam(α, λ) is approxi-

mately normal when α is large.
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The CLT and Addition Rules (cont.)

Suppose X1, X2, . . . are IID Ber(p) and Y = X1 + · · ·+Xn, so Y

is Bin(n, p). Then the CLT says

Xn ≈ N
(
p,
p(1− p)

n

)
and

Y = nXn ≈ N
(
np, np(1− p)

)
by the continuous mapping theorem (which we will cover in slides
46–49, this deck).

The disclaimer about neither np or n(1− p) are near zero comes
from the fact that if np → µ we get the Poisson approximation,
not the normal approximation and if n(1 − p) → µ we get a
Poisson approximation for n− Y .
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The CLT and Addition Rules (cont.)

Suppose X1, X2, . . . are IID Gam(α, λ) and Y = X1 + · · ·+ Xn,

so Y is Gam(nα, λ). Then the CLT says

Xn ≈ N
(
α

λ
,
α

nλ2

)
and

Y = nXn ≈ N
(
nα

λ
,
nα

λ2

)
by the continuous mapping theorem.

Writing β = nα, we see that if Y is Gam(β, λ) and β is large,

then

Y ≈ N
(
β

λ
,
β

λ2

)
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Correction for Continuity

A trick known as “continuity correction” improves normal ap-

proximation for integer-valued random variables. Suppose X has

an integer-valued distribution. For a concrete example, take

Bin(10,1/3), which has mean and variance

E(X) = np =
10

3

var(X) = np(1− p) =
20

9
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Correction for Continuity (cont.)
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Correction for Continuity (cont.)

If X is an integer-valued random variable whose distribution is

approximately that of Y , a normal random variable with the same

mean and variance as X, and F is the DF of X and G is the DF

of Y , then the correction for continuity says for integer x

Pr(X ≤ x) = F (x) ≈ G(x+ 1/2)

and

Pr(X ≥ x) = 1− F (x− 1) ≈ 1−G(x− 1/2)

so for integer a and b

Pr(a ≤ X ≤ b) ≈ Pr(a− 1/2 < Y < b+ 1/2)

= G(b+ 1/2)−G(a− 1/2)
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Correction for Continuity (cont.)

Let’s try it. X is Bin(10,1/3), we calculate Pr(X ≤ 2) exactly,

approximately without correction for continuity, and with correc-

tion for continuity

> pbinom(2, 10, 1 / 3)

[1] 0.2991414

> pnorm(2, 10 / 3, sqrt(20 / 9))

[1] 0.1855467

> pnorm(2.5, 10 / 3, sqrt(20 / 9))

[1] 0.2880751

The correction for continuity is clearly more accurate.
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Correction for Continuity (cont.)

Again, this time Pr(X ≥ 6)

> 1 - pbinom(5, 10, 1 / 3)

[1] 0.07656353

> 1 - pnorm(6, 10 / 3, sqrt(20 / 9))

[1] 0.03681914

> 1 - pnorm(5.5, 10 / 3, sqrt(20 / 9))

[1] 0.07305023

Again, the correction for continuity is clearly more accurate.
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Correction for Continuity (cont.)

Always use correction for continuity when random variable being

approximated is integer-valued.

Never use correction for continuity when random variable being

approximated is continuous.

Debatable whether to use correction for continuity when random

variable being approximated is discrete, not integer-valued, but

has a known relationship to an integer-valued random variable.
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Infinitely Divisible Distributions

A distribution is said to be infinitely divisible if for any positive

integer n the distribution is that of the sum of n IID random

variables.

For example, the Poisson distribution is infinitely divisible be-

cause Poi(µ) is the distribution of the sum of n IID Poi(µ/n)

random variables.

44



Infinitely Divisible Distributions and the CLT

Infinitely divisible distributions show what is wrong with the

“sloppy” version of the CLT, which says the sum of n IID random

variables is approximately normal whenever n is “large”.

Poi(µ) is always the distribution of the sum of n IID random

variables for any n. Pick n as large as you please. But that

cannot mean that every Poisson distribution is approximately

normal. For small and moderate size µ, the Poi(µ) distribution

is not close to normal.
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The Continuous Mapping Theorem

Suppose

Xn
D−→ X

and g is a function that is continuous on a set A such that

Pr(X ∈ A) = 1.

Then

g(Xn)
D−→ g(X)

This fact is called the continuous mapping theorem.
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The Continuous Mapping Theorem (cont.)

The continuous mapping theorem is widely used with simple

functions. If σ > 0, then z 7→ z/σ is continuous. The CLT

says
√
n(Xn − µ)

D−→ Y

where Y is N (0, σ2). Applying the continuous mapping theorem

we get
√
n(Xn − µ)

σ

D−→
Y

σ

Since Y/σ has the standard normal distribution, we can rewrite

this
√
n(Xn − µ)

σ

D−→ N (0,1)
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The Continuous Mapping Theorem (cont.)

Suppose

Xn
D−→ X

where X is a continuous random variable, so Pr(X = 0) = 0.

Then the continuous mapping theorem implies

1

Xn

D−→
1

X

The fact that x 7→ 1/x is not continuous at zero is not a problem,

because this is allowed by the continuous mapping theorem.
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The Continuous Mapping Theorem (cont.)

As a special case of the preceding slide, suppose

Xn
P−→ a

where a 6= 0 is a constant. Then the continuous mapping theo-

rem implies

1

Xn

P−→
1

a

The fact that x 7→ 1/x is not continuous at zero is not a problem,

because this is allowed by the continuous mapping theorem.
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Slutsky’s Theorem

Suppose (Xi, Yi), i = 1, 2, . . . are random vectors and

Xn
D−→ X

Yn
P−→ a

where X is a random variable and a is a constant. Then

Xn + Yn
D−→ X + a

Xn − Yn D−→ X − a

XnYn
D−→ aX

and if a 6= 0

Xn/Yn
D−→ X/a
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Slutsky’s Theorem (cont.)

As an example of Slutsky’s theorem, we show that convergence

in distribution does not imply convergence of moments. Let X

have the standard normal distribution and Y have the standard

Cauchy distribution, and define

Zn = X +
Y

n

By Slutsky’s theorem

Zn
D−→ X

But Zn does not have first moments and X has moments of all

orders.
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The Delta Method

The “delta” is supposed to remind one of the ∆y/∆x woof about

differentiation, since it involves derivatives.

Suppose

nα(Xn − θ)
D−→ Y,

where α > 0, and suppose g is a function differentiable at θ, then

nα[g(Xn)− g(θ)]
D−→ g′(θ)Y.
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The Delta Method (cont.)

The assumption that g is differentiable at θ means

g(θ + h) = g(θ) + g′(θ)h+ o(h)

where here the “little oh” of h refers to h→ 0 rather than h→∞.

It refers to a term of the form |h|ψ(h) where ψ(h)→ 0 as h→ 0.

And this implies

nα[g(Xn)− g(θ)] = g′(θ)nα(Xn − θ) + nαo(Xn − θ)

and the first term on the right-hand side converges to g′(θ)Y by

the continuous mapping theorem.
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The Delta Method (cont.)

By our discussion of “little oh” we can rewrite the second term
on the right-hand side

|nα(Xn − θ)|ψ(Xn − θ)

and

|nα(Xn − θ)| D−→ |Y |

by the continuous mapping theorem. And

Xn − θ P−→ 0

by Slutsky’s theorem (by an argument analogous to homework
problem 11-6). Hence

ψ(Xn − θ)
P−→ 0

by the continuous mapping theorem.
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The Delta Method (cont.)

Putting this all together

|nα(Xn − θ)|ψ(Xn − θ)
P−→ 0

by Slutsky’s theorem. Finally

nα[g(Xn)− g(θ)] = g′(θ)nα(Xn − θ) + nαo(Xn − θ)
D−→ g′(θ)Y

by another application of Slutsky’s theorem.
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The Delta Method (cont.)

If X1, X2, . . . are IID Exp(λ) random variables and

Xn =
1

n

n∑
i=1

Xi,

then the CLT says

√
n

(
Xn −

1

λ

)
D−→ N

(
0,

1

λ2

)
We want to “turn this upside down”, applying the delta method

with

g(x) =
1

x

g′(x) = −
1

x2
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The Delta Method (cont.)

√
n

(
Xn −

1

λ

)
D−→ Y

implies

√
n

[
g(Xn)− g

(
1

λ

)]
=
√
n

(
1

Xn
− λ

)
D−→ g′

(
1

λ

)
Y

= −λ2Y

57



The Delta Method (cont.)

Recall that in the limit −λ2Y the random variable Y had the

N (0,1/λ2) distribution. Since a linear function of normal is nor-

mal, −λ2Y is normal with parameters

E(−λ2Y ) = −λ2E(Y ) = 0

var(−λ2Y ) = (−λ2)2 var(Y ) = λ2

Hence we have finally arrived at

√
n

(
1

Xn
− λ

)
D−→ N (0, λ2)
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The Delta Method (cont.)

Since we routinely use the delta method in the case where the

rate is
√
n and the limiting distribution is normal, it is worthwhile

working out some details of that case.

Suppose
√
n(Xn − θ)

D−→ N (0, σ2),

and suppose g is a function differentiable at θ, then the delta

method says

√
n[g(Xn)− g(θ)]

D−→ N
(
0, [g′(θ)]2σ2

)
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The Delta Method (cont.)

Let Y have the N (0, σ2) distribution, then the general delta

method says
√
n[g(Xn)− g(θ)]

D−→ g′(θ)Y

As in our example, g′(θ)Y is normal with parameters

E{g′(θ)Y } = g′(θ)E(Y ) = 0

var{g′(θ)Y } = [g′(θ)]2 var(Y ) = [g′(θ)]2σ2
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The Delta Method (cont.)

We can turn this into a “sloppy” version of the delta method. If

Xn ≈ N
(
θ,
σ2

n

)
then

g(Xn) ≈ N
(
g(θ),

[g′(θ)]2σ2

n

)
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The Delta Method (cont.)

In particular, if we start with the “sloppy version” of the CLT

Xn ≈ N
(
µ,
σ2

n

)
we obtain the “sloppy version” of the delta method

g(Xn) ≈ N
(
g(µ),

[g′(µ)]2σ2

n

)
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The Delta Method (cont.)

Be careful not to think of the last special case as all there is to

the delta method, since the delta method is really much more

general. The delta method turns one convergence in distribution

result into another. The first convergence in distribution result

need not be the CLT. The parameter θ in the general theorem

need not be the mean.
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Variance Stabilizing Transformations

An important application of the delta method is variance stabi-

lizing transformations. The idea is to find a function g such that

the limit in the delta method

nα[g(Xn)− g(θ)]
D−→ g′(θ)Y

has variance that does not depend on the parameter θ. Of

course, the variance is

var{g′(θ)Y } = [g′(θ)]2 var(Y )

so for this problem to make sense var(Y ) must be a function

of θ and no other parameters. Thus variance stabilizing trans-

formations usually apply only to a distributions having a single

parameter.
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Variance Stabilizing Transformations (cont.)

Write

varθ(Y ) = v(θ)

Then we are trying to find g such that

[g′(θ)]2v(θ) = c

for some constant c, or, equivalently,

g′(θ) =
c

v(θ)1/2

The fundamental theorem of calculus assures us that any indef-

inite integral of the right-hand side will do.
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Variance Stabilizing Transformations (cont.)

The CLT applied to an IID Ber(p) sequence gives

√
n(Xn − p)

D−→ N
(
0, p(1− p)

)
so our method says we need to find an indefinite integral of

c/
√
p(1− p). The change of variable p = (1 + w)/2 gives∫

c dp√
p(1− p)

=
∫

c dw√
1− w2

= casin(w) + d

where d, like c, is an arbitrary constant and asin denotes the

arcsine function (inverse of the sine function).
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Variance Stabilizing Transformations (cont.)

Thus

g(p) = asin(2p− 1), 0 ≤ p ≤ 1

is a variance stabilizing transformation for the Bernoulli distribu-
tion. We check this using

g′(p) =
1√

p(1− p)

so the delta method gives
√
n[g(Xn)− g(p)]

D−→ N (0,1)

and the “sloppy” delta method gives

g(Xn) ≈ N
(
g(p),

1

n

)
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Variance Stabilizing Transformations (cont.)

It is important that the parameter θ in the discussion of vari-

ance stabilizing transformations is as it appears in convergence

distribution result we start with

nα[Xn − θ]
D−→ Y

In particular, if we start with the CLT

√
n[Xn − µ]

D−→ Y

the “theta” must be the mean. We need to find an indefinite

integral of v(µ)−1/2, where v(µ) is the variance expressed as a

function of the mean, not some other parameter.

68



Variance Stabilizing Transformations (cont.)

To see how this works, consider the Geo(p) distribution with

E(X) =
1− p
p

var(X) =
1− p
p2

The usual parameter p expressed as a function of the mean is

p =
1

1 + µ

and the variance expressed as a function of the mean is

v(µ) = µ(1 + µ)
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Variance Stabilizing Transformations (cont.)

Our method says we need to find an indefinite integral of the

function x 7→ c/
√
x(1 + x). According to Mathematica, it is

g(x) = 2 asinh(
√
x)

where asinh denotes the hyperbolic arc sine function, the inverse

of the hyperbolic sine function

sinh(x) =
ex − e−x

2
so

asinh(x) = log
(
x+

√
1 + x2

)
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Variance Stabilizing Transformations (cont.)

Thus

g(x) = 2 asinh(
√
x), 0 ≤ x <∞

is a variance stabilizing transformation for the geometric distri-

bution. We check this using

g′(x) =
1√

x(1 + x)
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Variance Stabilizing Transformations (cont.)

So the delta method gives

√
n

[
g(Xn)− g

(
1− p
p

)]
D−→ N

0, g′
(

1− p
p

)2 1− p
p2


= N

0,
1

1−p
p

(
1 + 1−p

p

)1− p
p2


= N (0,1)

and the “sloppy” delta method gives

g(Xn) ≈ N
(
g

(
1− p
p

)
,
1

n

)
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Multivariate Convergence in Probability

We introduce the following notation for the length of a vector

‖x‖ =
√
xTx =

√√√√ n∑
i=1

x2
i

where x = (x1, . . . , xn).

Then we say a sequence X1, X2, . . . of random vectors (here
subscripts do not indicate components) converges in probability
to a constant vector a if

‖Xn − a‖ P−→ 0

which by the continuous mapping theorem happens if and only
if

‖Xn − a‖2 P−→ 0

73



Multivariate Convergence in Probability (cont.)

We write

Xn
P−→ a

or

Xn − a = op(1)

to denote

‖Xn − a‖2 P−→ 0
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Multivariate Convergence in Probability (cont.)

Thus we have defined multivariate convergence in probability to

a constant in terms of univariate convergence in probability to a

constant. Now we consider the relationship further. Write

Xn = (Xn1, . . . , Xnk)

a = (a1, . . . , ak)

Then

‖Xn − a‖2 =
k∑
i=1

(Xni − ai)2

so

(Xni − ai)2 ≤ ‖Xn − a‖2
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Multivariate Convergence in Probability (cont.)

It follows that

Xn
P−→ a

implies

Xni
P−→ ai, i = 1, . . . , k

In words, joint convergence in probability to a constant (of ran-

dom vectors) implies marginal convergence in probability to a

constant (of each component of those random vectors).
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Multivariate Convergence in Probability (cont.)

Conversely, if we have

Xni
P−→ ai, i = 1, . . . , k

then the continuous mapping theorem implies

(Xni − ai)2 P−→ 0, i = 1, . . . , k

and Slutsky’s theorem implies

(Xn1 − a1)2 + (Xn2 − a2)2 P−→ 0

and another application of Slutsky’s theorem implies

(Xn1 − a1)2 + (Xn2 − a2)2 + (Xn3 − a3)2 P−→ 0

and so forth. So by mathematical induction,

‖Xn − a‖2 P−→ 0
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Multivariate Convergence in Probability (cont.)

In words, joint convergence in probability to a constant (of ran-

dom vectors) implies and is implied by marginal convergence in

probability to a constant (of each component of those random

vectors).

But multivariate convergence in distribution is different!
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Multivariate Convergence in Distribution

If X1, X2, . . . is a sequence of k-dimensional random vectors,

and X is another k-dimensional random vector, then we say Xn

converges in distribution to X if

E{g(Xn)} → E{g(X)},

for all bounded continuous functions g : Rk → R, and we write

Xn
D−→ X

to indicate this.
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Multivariate Convergence in Distribution (cont.)

The Cramér-Wold theorem asserts that the following is an equiv-

alent characterization of multivariate convergence in distribution.

Xn
D−→ X

if and only if

aTXn
D−→ aTX

for every constant vector a (of the same dimension as the Xn

and X).
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Multivariate Convergence in Distribution (cont.)

Thus we have defined multivariate convergence in distribution in

terms of univariate convergence in distribution.

If we use vectors a having only the one component nonzero

in the Cramér-Wold theorem we see that joint convergence in

distribution (of random vectors) implies marginal convergence in

distribution (of each component of those random vectors).

But the converse is not, in general, true!
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Multivariate Convergence in Distribution (cont.)

Here is a simple example where marginal convergence in distri-

bution holds but joint convergence in distribution fails. Define

Xn =

(
Xn1
Xn2

)
where Xn1 is standard normal for all n and

Xn2 = (−1)nXn1

(hence is also standard normal for all n). Trivially,

Xni
D−→ N (0,1), i = 1,2

so we have marginal convergence in distribution.
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Multivariate Convergence in Distribution (cont.)

But checking a = (1,1) in the Cramér-Wold condition we get

aTX =
(
1 1

)(Xn1
Xn2

)
= Xn1[1 + (−1)n] =

2Xn1, n even

0, n odd

And this sequence does not converge in distribution, so we do

not have joint convergence in distribution, that is,

Xn
D−→ Y

cannot hold, not for any random vector Y.
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Multivariate Convergence in Distribution (cont.)

In words, joint convergence in distribution (of random vectors)

implies but is not implied by marginal convergence in distribu-

tion (of each component of those random vectors).
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Multivariate Convergence in Distribution (cont.)

There is one special case where marginal convergence in distri-

bution implies joint convergence in distribution. This is when

the components of the random vectors are independent.

Suppose

Xni
D−→ Yi, i = 1, . . . , k,

Xn denotes the random vector having independent components

Xn1, . . ., Xnk, and Y denotes the random vector having indepen-

dent components Y1, . . ., Yk. Then

Xn
D−→ Y

(again we do not have the tools to prove this).
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The Multivariate Continuous Mapping Theorem

Suppose

Xn
D−→ X

and g is a function that is continuous on a set A such that

Pr(X ∈ A) = 1.

Then

g(Xn)
D−→ g(X)

This fact is called the continuous mapping theorem.

Here g may be a function that maps vectors to vectors.
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Multivariate Slutsky’s Theorem

Suppose

Xn =

(
Xn1
Xn2

)
are partitioned random vectors and

Xn1
D−→ Y

Xn2
P−→ a

where Y is a random vector and a is a constant vector. Then

Xn
D−→

(
Y
a

)
where the joint distribution of the right-hand side is defined in

the obvious way.
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Multivariate Slutsky’s Theorem (cont.)

By an argument analogous to that in homework problem 5-6, the

constant random vector a is necessarily independent of the ran-

dom vector Y, because a constant random vector is independent

of any other random vector.

Thus there is only one distribution the partitioned random vector(
Y
a

)
can have.
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Multivariate Slutsky’s Theorem (cont.)

In conjunction with the continuous mapping theorem, this more

general version of Slutsky’s theorem implies the earlier version.

For any function g that is continuous at points of the form(
y
a

)
we have

g(Xn1,Xn2)
D−→ g(Y, a)
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The Multivariate CLT

Suppose X1, X2, . . . is an IID sequence of random vectors having

mean vector µ and variance matrix M and

Xn =
1

n

n∑
i=1

Xi

Then
√
n(Xn − µ)

D−→ N (0,M)

which has “sloppy version”

Xn ≈ N
(
µ,

M

n

)
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The Multivariate CLT (cont.)

The multivariate CLT follows from the univariate CLT and the

Cramér-Wold theorem.

aT
[√
n(Xn − µ)

]
=
√
n(aTXn − aTµ)

D−→ N (0, aTMa)

because

E(aTXn) = aTµ

var(aTXn) = aTMa

and because, if Y has the N (0,M) distribution, then aTY has

the N (0, aTMa) distribution.
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Normal Approximation to the Multinomial

The Multi(n,p) distribution is the sum of n IID random vectors
having mean vector p and variance matrix P − ppT , where P is
diagonal and its diagonal components are the components of p

in the same order (deck 5, slide 83).

Thus the multivariate CLT (“sloppy” version) says

Multi(n,p) ≈ N
(
np, n(P− ppT )

)
when n is large and npi is not close to zero for any i, where
p = (p1, . . . , pk).

Note that both sides are degenerate. On both sides we have the
property that the components of the random vector in question
sum to n.
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The Multivariate CLT (cont.)

Recall the notation (deck 3, slide 151) for ordinary moments

αi = E(Xi),

consider a sequence X1, X2, . . . of IID random variables having
moments of order 2k, and define the random vectors

Yn =


Xn
X2
n

...
Xk
n


Then

E(Yn) =


α1
α2
...
αk


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The Multivariate CLT (cont.)

And the i, j component of var(Yn) is

cov(Xi
n, X

j
n) = E(Xi

nX
j
n)− E(Xi

n)E(Xj
n)

= αi+j − αiαj
so

var(Yn) =


α2 − α2

1 α3 − α1α2 · · · αk+1 − α1αk
α3 − α1α2 α4 − α2

2 · · · αk+2 − α2αk
... ... . . . ...

αk+1 − α1αk αk+2 − α2αk · · · α2k − α2
k


Because of the assumption that moments of order 2k exist,

E(Yn) and var(Yn) exist.
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The Multivariate CLT (cont.)

Define

Yn =
1

n

n∑
i=1

Yi

Then the multivariate CLT says

√
n(Yn − µ)

D−→ N (0,M)

where

E(Yn) = µ

var(Yn) = M
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Multivariate Differentiation

A function g : Rd → Rk is differentiable at a point x if there exists

a matrix B such that

g(x + h) = g(x) + Bh + o(‖h‖)

in which case the matrix B is unique and is called the derivative

of the function g at the point x and is denoted ∇g(x), read “del

g of x”.
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Multivariate Differentiation (cont.)

A sufficient but not necessary condition for the function

x = (x1, . . . , xd) 7→ g(x) =
(
g1(x), . . . , gk(x)

)
to be differentiable at a point y is that all of the partial derivatives

∂gi(x)/∂xj exist and are are continuous at x = y, in which case

∇g(x) =



∂g1(x)
∂x1

∂g1(x)
∂x2

· · · ∂g1(x)
∂xd

∂g2(x)
∂x1

∂g2(x)
∂x2

· · · ∂g2(x)
∂xd... ... . . . ...

∂gk(x)
∂x1

∂gk(x)
∂x2

· · · ∂gk(x)
∂xd


Note that ∇g(x) is k × d, as it must be in order for [∇g(x)]h to

make sense when h is k × 1.
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Multivariate Differentiation (cont.)

Note also that ∇g(x) is the matrix whose determinant is the

Jacobian determinant in the multivariate change-of-variable for-

mula. For this reason it is sometimes called the Jacobian matrix.

98



The Multivariate Delta Method

The multivariate delta method is just like the univariate delta

method. The proofs are analogous.

Suppose

nα(Xn − θ)
D−→ Y,

where α > 0, and suppose g is a function differentiable at θ, then

nα[g(Xn)− g(θ)]
D−→ [∇g(θ)]Y.
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The Multivariate Delta Method (cont.)

Since we routinely use the delta method in the case where the

rate is
√
n and the limiting distribution is normal, it is worthwhile

working out some details of that case.

Suppose
√
n(Xn − θ)

D−→ N (0,M),

and suppose g is a function differentiable at θ, then the delta

method says
√
n[g(Xn)− g(θ)]

D−→ N
(
0,BMBT

)
,

where

B = ∇g(θ).
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The Multivariate Delta Method (cont.)

We can turn this into a “sloppy” version of the delta method. If

Xn ≈ N
(
θ,

M

n

)
then

g(Xn) ≈ N
(
g(θ),

BMBT

n

)
where, as before,

B = ∇g(θ).
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The Multivariate Delta Method (cont.)

In case we start with the multivariate CLT

Xn ≈ N
(
µ,

M

n

)
we get

g(Xn) ≈ N
(
g(µ),

BMBT

n

)
where

B = ∇g(µ).
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The Multivariate Delta Method (cont.)

Suppose Y = (Y1, Y2, Y3) has the Multi(n,p) distribution and this

distribution is approximately multivariate normal. We apply the

multivariate delta method to the function g defined by

g(x) = g(x1, x2, x3) =
x1

x1 + x2

Then the Jacobian matrix is 1× 3 with components

∂g(x)

∂x1
=

1

x1 + x2
−

x1

(x1 + x2)2

=
x2

(x1 + x2)2

∂g(x)

∂x2
= −

x1

(x1 + x2)2

and, of course, ∂g(x)/∂x3 = 0.

103



The Multivariate Delta Method (cont.)

Using vector notation

g(x) =
x1

x1 + x2

∇g(x) =
( x2

(x1+x2)2 −
x1

(x1+x2)2 0
)

The asymptotic approximation is

Y ≈ N
(
np, n(P− ppT )

)
Hence we need

g(np) =
p1

p1 + p2

∇g(np) =
( p2
n(p1+p2)2 −

p1
n(p1+p2)2 0

)
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The Multivariate Delta Method (cont.)

And the asymptotic variance is

[
∇g(np)

] n
p1(1− p1) −p1p2 −p1p3
−p2p1 p2(1− p2) −p2p3
−p3p1 −p3p2 p3(1− p3)


 [∇g(np)

]T
=

1

n(p1 + p2)4

×
(
p2 −p1 0

)p1(1− p1) −p1p2 −p1p3
−p2p1 p2(1− p2) −p2p3
−p3p1 −p3p2 p3(1− p3)


 p2
−p1

0


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The Multivariate Delta Method (cont.)

p1(1− p1) −p1p2 −p1p3
−p2p1 p2(1− p2) −p2p3
−p3p1 −p3p2 p3(1− p3)


 p2
−p1

0


=

 p1(1− p1)p2 + p2
1p2

−p1p
2
2 − p1p2(1− p2)

−p1p2p3 + p1p2p3


=

 p1p2
−p1p2

0

 = p1p2

 1
−1
0


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The Multivariate Delta Method (cont.)

[
∇g(np)

] n
p1(1− p1) −p1p2 −p1p3
−p2p1 p2(1− p2) −p2p3
−p3p1 −p3p2 p3(1− p3)


 [∇g(np)

]T

=
p1p2

n(p1 + p2)4

(
p2 −p1 0

) 1
−1
0


=

p1p2

n(p1 + p2)4
· (p1 + p2)

=
p1p2

n(p1 + p2)3
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The Multivariate Delta Method (cont.)

Hence (finally !)

Y1

Y1 + Y2
≈ N

(
p1

p1 + p2
,

p1p2

n(p1 + p2)3

)
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