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Sets

In mathematics, a set is a collection of objects thought of as

one thing.

The objects in the set are called its elements.

The notation x ∈ S says that x is an element of the set S.

The notation A ⊂ S says that the set A is a subset of the set S,

that is, every element of A is an element of S.

2



Sets (cont.)

Sets can be indicated by listing the elements in curly brackets

{1,2,3,4}.

Sets can collect anything, not just numbers

{1,2, π, cabbage, {0,1,2}}

One of the elements of this set is itself a set {0,1,2}.

Most of the sets we deal with are sets of numbers or vectors.
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Sets (cont.)

The empty set {} is the only set that has no elements.

Like the number zero, it simplifies a lot of mathematics, but isn’t

very interesting in itself.

The empty set has its own special notation ∅.
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Sets (cont.)

Some very important sets also get their own special notation.

• N denotes the natural numbers {0,1,2, . . .}.

• Z denotes the integers {. . . ,−2,−1,0,1,2, . . .}.

• R denotes the real numbers.
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Sets (cont.)

Another notation for sets is the set builder notation

{x ∈ S : some condition on x }

denotes the set of elements of S that satisfy the specified con-

dition.

For example,

{x ∈ R : x > 0 }

is the set of positive real numbers.
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Intervals

Another important special kind of set is an interval. We use the

notation

(a, b) = {x ∈ R : a < x < b } (1)

[a, b] = {x ∈ R : a ≤ x ≤ b } (2)

(a, b] = {x ∈ R : a < x ≤ b } (3)

[a, b) = {x ∈ R : a ≤ x < b } (4)

which assumes a and b are real numbers such that a < b.

(1) is called the open interval with endpoints a and b; (2) is

called the closed interval with endpoints a and b; (3) and (4) are

called half-open intervals.
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Intervals (cont.)

We also use the notation

(a,∞) = {x ∈ R : a < x } (5)

[a,∞) = {x ∈ R : a ≤ x } (6)

(−∞, b) = {x ∈ R : x < b } (7)

(−∞, b] = {x ∈ R : x ≤ b } (8)

(−∞,∞) = R (9)

which assumes a and b are real numbers.

(5) and (7) are open intervals. (6) and (8) are closed intervals.

(9) is both open and closed.
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Functions

A mathematical function is a rule that for each point in one set

called the domain of the function gives a point in another set

called the codomain of the function. Functions are also called

maps or mappings or transformations.

Functions are often denoted by single letters, such as f , in which

case the rule maps points x in the domain to values f(x) in the

codomain.

f is a function, f(x) is the value of this function at the point x.
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Functions (cont.)

If X is the domain and Y the codomain of the function f , then

to indicate this we write

f : X → Y

or

X
f−→ Y
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Functions (cont.)

To define a function, we may give a formula

f(x) = x2, x ∈ R.

Note that we indicate the domain in the formula.

The same function can be indicated more simply by x 7→ x2, read

“x maps to x2.”

This “maps to” notation does not indicate the domain, which

must be indicated some other way.
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Functions (cont.)

If the domain is a small finite set, we can just give a table

x 1 2 3 4
f(x) 1/10 2/10 3/10 4/10

Functions can map any set to any set

x red orange yellow green blue
f(x) tomato orange lemon lime corn
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Functions (cont.)

You probably aren’t used to being careful about domains of func-

tions. You will have to start now.

What is wrong with saying a function maps numbers to numbers?

Define f by

f(x) =
√
x, x ≥ 0.

Without the domain indicated, the definition makes no sense.
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Functions (cont.)

Functions can be indicated by notations other than letters

R exp−−→ (0,∞)

is the exponential function, which has values exp(x). This func-

tion can also be denoted x 7→ ex.

(0,∞)
log−−→ R

is the logarithmic function, which has values log(x).

These functions are inverses of each other

log
(
exp(x)

)
= x, for all x in the domain of exp

exp
(
log(x)

)
= x, for all x in the domain of log
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Functions (cont.)

If you are used to distinguishing between base e and base 10

logarithms, calling one ln(x) and the other log(x), forget it.

In this course, log(x) always means the base e logarithm, also

called natural logarithm.

Base 10 logarithms are used in probability and statistics only by

people who are confusing themselves and everyone else.
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Functions (cont.)

Two kinds of functions that simplify a lot of mathematics, but

aren’t very interesting in themselves are constant functions and

identity functions.

For any constant c, the function x 7→ c can be defined on any set

and is called a constant function.

The function x 7→ x can be defined on any set and is called the

identity function for that set.
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Functions (cont.)

We never say x2 is a function. We must always write x 7→ x2 to

indicate the squaring function.

If you are in the habit of calling x2 a function, then how can you

describe identity and constant functions? Would you say x is a

function? Would you say 2 is a function?

Better to be pedantically correct and say x 7→ x2 so we can also

say x 7→ x and x 7→ 2.
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Probability Models

Probability model, also called probability distribution, basic idea

of probability theory.

Saying you have a probability model or distribution, doesn’t say

exactly how it is specified.
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Probability Models (cont.)

Several ways to specify

• probability mass function (PMF)

• probability density function (PDF)

• distribution function (DF)

• probability measure

• expectation operator

• function mapping from one probability model to another
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Probability Mass Functions

A probability mass function (PMF) is a function

S
f−→ R

whose domain S, which can be any nonempty set, is called the

sample space, whose codomain is the real numbers, and which

satisfies the following conditions: its values are nonnegative

f(x) ≥ 0, x ∈ S

and sum to one ∑
x∈S

f(x) = 1.
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Probability Mass Functions (cont.)

If we write the sample space as {x1, . . . , xn}, then we could write

the PMF as

{x1, . . . , xn}
g−→ R

and rewrite the conditions

g(xi) ≥ 0, i = 1, . . . , n

and
n∑
i=1

g(xi) = 1.
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Probability Mass Functions (cont.)

Mathematical content is the same whatever notation is used.

Mathematics is invariant under changes of notation.

A PMF is a function whose values are nonnegative and sum to

one. This concept can be expressed in many different notations,

but the underlying concept is always the same.

Learn the concept not the notation. We will use these notations

and more for PMF. You must learn to recognize the concept

clothed in any notation.
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Interpretation

An element of the sample space is called an outcome. The value

f(x) of the PMF at an outcome x is called the probability of that

outcome.

We will say more about interpretation later. For now, a casual

notion will do. Probability 0.3 means whatever a weatherperson

means in saying there is a 30% chance of snow tomorrow.

In this course, we never express probabilities in percents.

Forget percents. They yield only confusion; they just help you

make mistakes.
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Interpretation (cont.)

For any outcome x, we have f(x) ≥ 0 by definition of PMF.

For any outcome x, we have f(x) ≤ 1 because

f(x) = 1−
∑
y∈S
y 6=x

f(y)

and the right-hand side is less than or equal to one because all

the terms in the sum are nonnegative.

Probabilities are between zero and one, inclusive.
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Interpretation (cont.)

Probability zero means whatever a weather forecast of 0% chance

of snow tomorrow would mean.

Probability one means whatever a weather forecast of 100%

chance of snow tomorrow would mean.

Probability zero means “can’t happen” or at least the possibility

is ignored in the forecast.

Probability one means “certain to happen” or at least the pos-

sibility of it not happening is ignored in the forecast.
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Finite Probability Models

A probability model is finite if its sample space is a finite set.

For a few weeks we will do only finite probability models.
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Example 1

A sample space cannot be empty. The smallest possible has one

point, say S = {x}. Then f(x) = 1.

This probability model is of no interest in applications. It is just

the simplest of all probability models.
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Example 2

The next simplest possible probability model has a sample space

with two points, say S = {x1, x2}. Say f(x1) = p. Then we

know that 0 ≤ p ≤ 1. Also from f(x1) +f(x2) = 1 it follows that

f(x2) = 1− p.

The PMF f is determined by one real number p

f(x) =

p, x = x1

1− p, x = x2

For each different value of p, we get a different probability model.
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The Bernoulli Distribution

Our first “brand name” distribution.

Any probability distribution on the sample space {0,1} is called a

Bernoulli distribution. If f(1) = p, then we use the abbreviation

Ber(p) to denote this distribution.

A Bernoulli distribution can represent the distribution on any two

point set.

If the actual sample space of interest is S = {apple,orange}, then

we map this to a Bernoulli distribution by “coding” the points.

Let 0 represent apple and 1 represent orange.
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Statistical Models

A statistical model is a family of probability models.

We often say, in a rather sloppy use of terminology, the “Bernoulli
distribution” when we really mean the Bernoulli family of distri-
butions, the set of all Ber(p) distributions for 0 ≤ p ≤ 1.

The PMF of the Ber(p) distribution can be defined by

fp(x) =

1− p, x = 0

p, x = 1

We can think of the Bernoulli statistical model as this family of
PMF’s

{ fp : 0 ≤ p ≤ 1 }.
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Statistical Models (cont.)

fp is a different function for each different p.

We say that x is the argument of the function fp.

p is not the argument of the function fp. We need a term for it,

and the standard term is parameter.

p is the parameter of the Bernoulli family of distributions.
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Statistical Models (cont.)

The set of allowed parameter values is called the parameter space

of a statistical model.

For the Bernoulli statistical model (family of distributions) the

parameter space is the interval [0,1].

For any p ∈ [0,1] there is a PMF fp of a Bernoulli distribution.
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Example 3

The next simplest possible probability model has a sample space

with three points, say S = {x1, x2, x3}. Say f(x1) = p1 and

f(x2) = p2. Now from the condition that probabilities sum to

one we derive f(x3) = 1− p1 − p2.

The PMF f is determined by two parameters p1 and p2

f(x) =


p1, x = x1

p2, x = x2

1− p1 − p2, x = x3
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Example 3 (cont.)

Instead of saying we have two parameters p1 and p2, we can say

we have a two-dimensional parameter vector p = (p1, p2).

The set of all pairs of real numbers (all two-dimensional vectors)

is denoted R2. For this model the parameter space is

{ (p1, p2) ∈ R2 : p1 ≥ 0 and p2 ≥ 0 and p1 + p2 ≤ 1 }
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Discrete Uniform Distribution

Our second “brand name” distribution.

Let {x1, . . . , xn} denote the sample space. The word “uniform”

means all outcomes have equal probability, in which case the

requirement that probabilities sum to one implies

f(xi) =
1

n
, i = 1, . . . , n

defines the PMF.

Later we will meet another uniform distribution, the continuous

uniform distribution. The word “discrete” is to distinguish this

one from that one.
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Discrete Uniform Distribution (cont.)

Applications of the discrete uniform distribution are coin flips

and dice rolls.

A coin flip is modeled by the uniform distribution on a two-

point sample space. The two possible outcomes, usually denoted

“heads” and “tails” are generally considered equally probable,

although magicians can flip whatever they want.

The roll of a die (singular die, plural dice) is modeled by a uni-

form distribution on a six-point sample space. The six possible

outcomes, 1, 2, 3, 4, 5, 6, are generally considered equally prob-

able, but loaded dice won’t have those probabilities.
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Supports

More generally, if S is the sample space of a probability dis-

tribution and f is the PMF, then we say the support of this

distribution is the set

{x ∈ S : f(x) > 0 },

that is, f(x) = 0 except for x in the support.

We also say the distribution is concentrated on the support.
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Supports (cont.)

Since points not in the support “can’t happen” it does not mat-

ter if we remove such points from the sample space.

On the other hand it may be mathematically convenient to leave

such points in the sample space.

In the Bernoulli family of distributions, all of the distributions

have support {0,1} except the distribution for the parameter

value p = 0, which is concentrated at 0, and the distribution for

p = 1, which is concentrated at 1.
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Events and Measures

A subset of the sample space is called an event.

If f is the PMF, then the probability of an event A is defined by

Pr(A) =
∑
x∈A

f(x).

By convention, a sum with no terms is zero, so Pr(∅) = 0.

This defines a function Pr called a probability measure that maps

events to real numbers A 7→ Pr(A).
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Events and Measures (cont.)

Functions A 7→ Pr(A) whose arguments are sets are a bit fancy
for a course at this level. We will not develop tools for dealing
with such functions as functions, leaving that for more advanced
courses.

It is important to understand that each different probability
model has a different measure. The notation Pr(A) means dif-
ferent things in different probability models.

When there are many probability models under consideration, we
decorate the notation with the parameter, as we did with PMF.

Prθ is the probability measure for the parameter value θ.

Sometimes we use single letters Pθ or Qθ for probability measures.
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Example

Consider the probability model with PMF

x 1 2 3 4
f(x) 1/10 2/10 3/10 4/10

and sample space S = {1,2,3,4}.

What is the probability of the events

A = {x ∈ S : x ≥ 3}
B = {x ∈ S : x > 3}
C = {x ∈ S : x > 4}
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Events and Measures (cont.)

PMF and probability measures determine each other.

Pr(A) =
∑
x∈S

f(x), A ⊂ S

goes from PMF to measure, and

f(x) = Pr({x}), x ∈ S

goes from measure to PMF.

Note the distinction between the outcome x and the event {x}.
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Interpretation Again

For any event A, we have Pr(A) ≥ 0 because all the terms in the

sum in

Pr(A) =
∑
x∈A

f(x)

are nonnegative.

For any event A, we have Pr(A) ≤ 1 because all the terms in the

sum in

Pr(A) = 1−
∑
x∈S
x/∈A

f(x)

are nonnegative.
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Interpretation Again (cont.)

This gives the same conclusion as before.

Probabilities are between zero and one, inclusive.

So probabilities of events obey the same rule as probabilities of

outcomes.
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Random Variables and Expectation

A real-valued function on the sample space is called a random

variable.

If f is the PMF, then the expectation of a random variable X is

defined by

E(X) =
∑
s∈S

X(s)f(s).

This defines a function E called an expectation operator that

maps random variables to real numbers X 7→ E(X).
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Random Variables and Expectation (cont.)

Functions X 7→ E(X) whose arguments are themselves functions
are a bit fancy for a course at this level. We will not develop
tools for dealing with such functions as functions, leaving that
for more advanced courses.

It is important to understand that each different probability
model has a different expectation operator. The notation E(X)
means different things in different probability models.

When there are many probability models under consideration, we
decorate the notation with the parameter, as we did with PMF
and probability measures.

Eθ is the expectation operator for the parameter value θ.
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Sets Again: Cartesian Product

The Cartesian product of sets A and B, denoted A × B, is the

set of all pairs of elements

A×B = { (x, y) : x ∈ A and y ∈ B }

We write the Cartesian product of A with itself as A2.

In particular, R2 is the space of two-dimensional vectors or points

in two-dimensional space.
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Sets Again: Cartesian Product (cont.)

Similarly for triples

A×B × C = { (x, y, z) : x ∈ A and y ∈ B and x ∈ C }

We write A×A×A = A3.

In particular, R3 is the space of three-dimensional vectors or

points in three-dimensional space.
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Sets Again: Cartesian Product (cont.)

Similarly for n-tuples

A1 ×A2 × · · · ×An = { (x1, x2, . . . , xn) : xi ∈ Ai, i = 1, . . ., n }

We write A × A × · · · × A = An when there are n sets in the

product.

In particular, Rn is the space of n-dimensional vectors or points

in n-dimensional space.
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Random Variables and Expectation (cont.)

Any function of random variables is a random variable.

If g is a function R→ R and X is a random variable, then

s 7→ g
(
X(s)

)
,

which we write g(X), is also a random variable.

If g is a function R2 → R and X and Y are random variables, then

s 7→ g
(
X(s), Y (s)

)
,

which we write g(X,Y ), is also a random variable.
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Example

Consider the probability model with PMF

x 1 2 3 4
f(x) 1/10 2/10 3/10 4/10

and sample space S.

What are

E(X)

E{(X − 3)2}
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Averages and Weighted Averages

The average of the numbers x1, . . ., xn is

1

n

n∑
i=1

xi

The weighted average of the numbers x1, . . ., xn with the weights

w1, . . ., wn is
n∑
i=1

wixi

The weights in a weighted average are required to be nonnegative

and sum to one.
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Random Variables and Expectation (cont.)

As always, we need to learn the concept beneath the notation.

Expectation and weighted averages are the same concept in dif-

ferent language and notation. In expectation we sum∑
values of random variable · probabilities

in weighted averages we sum∑
arbitrary numbers ·weights

but weights are just like probabilities (nonnegative and sum to

one) and the values of a random variable can be defined arbi-

trarily (whatever we please) and are numbers.
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Random Variables and Expectation (cont.)

So “expectation of random variables” and “weighted averages”

are the same concept clothed in different woof and different

notation.

In both cases you have a sum and each term is the product of

two things. One of those things is arbitrary, the values of the

random variable in the case of expectation. One of those things

is nonnegative and sums to one, the probabilities in the case of

expectation.

54



Averages and Weighted Averages (cont.)

An ordinary average is the special case of a weighted average

when the weights are all equal.

This corresponds to the case of expectation in the model where

the probabilities are all equal, which is the discrete uniform dis-

tribution.

Ordinary averages are like expectations for the discrete uniform

distribution.
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Random Variables and Expectation (cont.)

When using f for the PMF, S for the sample space, and x for

points of S, if S ⊂ R, then we often use X for the identity random

variable x 7→ x. Then

E(X) =
∑
x∈S

xf(x) (10)

and

E{g(X)} =
∑
x∈S

g(x)f(x) (11)

(10) is the special case of (11) where g is the identity function.

Don’t need to memorize two formulas if you understand this

specialization.
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Random Variables and Expectation (cont.)

Don’t need to memorize any formulas if you understand the

concept clothed in the notation.

You always have a sum (later on integrals too) in which each

term is the product of the random variable in question — be it

denoted X(s), x or g(x), or (x− 6)3 — times the probability —

be it denoted f(s) or f(x) or fθ(x) or whatever.
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Probability of Events and Random Variables

Suppose we are interested in Pr(A), where A is an event involving

a random variable

A = { s ∈ S : 4 < X(s) < 6 }.

A convenient shorthand for this is Pr(4 < X < 6).

The explicit subset A of the sample space the event consists of is

not mentioned. Nor is the sample space S explicitly mentioned.

Since X is a function S → R, the sample space is implicitly

mentioned.
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Sets Again: Set Difference

The difference of sets A and B, denoted A \ B, is the set of all

points of A that are not in B

A \B = {x ∈ A : x /∈ B }

59



Functions Again: Indicator Functions

If A ⊂ S, the function S → R defined by

IA(x) =

0, x ∈ S \A
1, x ∈ A

is called the indicator function of the set A.

If S is the sample space of a probability model, then IA : S → R
is a random variable.
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Indicator Random Variables

Any indicator function IA on the sample space is a random vari-

able.

Conversely, any random variable X that takes only the values

zero or one (we say zero-or-one-valued) is an indicator function.

Define

A = { s ∈ S : X(s) = 1 }

Then X = IA.
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Probability is a Special Case of Expectation

If Pr is the probability measure and E the expectation operator

of a probability model, then

Pr(A) = E(IA), for any event A
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Philosophy

Philosophers and philosophically inclined mathematicians and sci-

entists have spent centuries trying to say exactly what probability

and expectation are.

This project has been a success in that it has piled up an enor-

mous literature.

It has not generated agreement about the nature of probability

and expectation.

If you ask two philosophers what probability and expectation are,

you will get three or four conflicting opinions.

63



Philosophy (cont.)

This is not a philosophy course. It is a mathematics course. So

we are much more interested in mathematics than philosophy.

However, a little philosophy may possibly provide some possibly

helpful intuition.

Although there are many, many philosophical theories about

probability and expectation, only two are commonly woofed about

in courses like this: frequentism and subjectivism.

We will discuss one more: formalism.
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Frequentism

The frequentist theory of probability and expectation holds that
they are objective facts about the world.

Probabilities and expectations can actually be measured in an
infinite sequence of repetitions of a random phenomenon, if each
repetition has no influence whatsoever on any other repetition.

Let X1, X2, . . . be such an infinite sequence of random variables
and for each n define

Xn =
1

n

n∑
i=1

Xi

then Xn gets closer and closer to E(Xi) — which is assumed
to be the same for all i because each Xi is the “same” random
phenomenon — as n goes to infinity.
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Frequentism (cont.)

The assertion that Xn gets closer and closer to E(Xi) as n→∞,
is actually a theorem of mathematical probability theory, which
we will soon prove.

But when one tries to build philosophy on it, there are many
problems.

What does it mean that repetitions have “no influence whatso-
ever” on each other?

What does it mean that repetitions are of “the same random
phenomenon”?

Theories that try to formalize all this are much more complicated
than conventional probability theory.
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Frequentism (cont.)

Worse, if probability and expectation can only be defined with
respect to infinite sequences of repetitions of a phenomenon,
then it has no real-world application. Such sequences don’t exist
in the real world.

Thus no one actually uses the frequentist philosophy of prob-
ability, although many — not understanding what that theory
actually is — claim to do so.

As we shall see next semester, one of the main methodologies
of statistical inference is called “frequentist” even though it has
no necessary connection with the frequentist philosophy.

So many statisticians say they are “frequentists” without having
commitment to any particular philosophy.
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Subjectivism

The subjectivist theory of probability and expectation holds that

they are all in our heads, a mere reflection of our uncertainty

about what will happen or has happened.

Consequently, subjectivism is personalistic. You have your prob-

abilities, which reflect or “measure” your uncertainties. I have

mine. There is no reason we should agree, unless our information

about the world is identical, which it never is.
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Subjectivism (cont.)

Hiding probabilities and expectations inside the human mind,

which is incompletely understood, avoids the troubles of fre-

quentism, but it makes it hard to motivate any properties of

such a hidden, perhaps mythical, thing.
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Subjectivism (cont.)

The best attempt to motivate mathematical probability from

subjectivism imagines each person as a bookie, who is obligated

to take bets for or against any possible event in the sample space

of a random phenomenon.

The bookie must formulate odds on each event and must offer

to take bets for or against the occurrence of the event at the

same odds.

It can be shown (we won’t bother) that the odds offered must

derivable from a probability measure or else there is a combina-

tion of bets on which the bookie is guaranteed to lose money.
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Subjectivism (cont.)

The technical term for odds on events derived from a probability

measure, so there is no way the bookie is certain to lose money,

is coherent.

Subjectivists often say everyone else is incoherent.

But this claim is based on (1) already having accepted subjec-

tivism and (2) accepting the picture that all users of probability

and statistics are exactly like the philosophical bookie.

Since both (1) and (2) are debatable, the “incoherence” label is

just as debatable.
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Subjectivism (cont.)

As we shall see next semester, one of the main methodologies

of statistical inference is called “Bayesian” after one of the first

proponents, Thomas Bayes. Bayesian inference is often con-

nected with subjectivist philosophy, although not always. There

are people who claim to be objective Bayesians, even though

there is no philosophical theory backing that up.

Many statisticians say they are “Bayesians” without having com-

mitment to any particular philosophy.
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Formalism

The mainstream philosophy of all of mathematics — not just

probability theory — of the twentieth century and the twenty-

first, what there is of it so far, is formalism.

Mathematics may be defined as the subject in which we

never know what we are talking about, nor whether what

we are saying is true

— Bertrand Russell
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Formalism (cont.)

Formalists only care about the form of arguments, that theorems

have correct proofs, conclusions following from hypotheses and

definitions by logically correct arguments.

It does not matter what the hypotheses and definitions “really”

mean (“we never know what we are talking about”) nor whether

they are “really” true (“nor whether what we are saying is true”).

Hence we don’t know whether the conclusions are true either.

We know that if the hypotheses and definitions are true then

the conclusions are true. But we don’t know about the “if”.
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Formalism (cont.)

Formalism avoids hopeless philosophical problems about what

things “really” mean and allows mathematicians to get on with

doing mathematics.
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Everyday Philosophy

How statisticians really think about probability and expectation.

You’ve got two kinds of variables: random variables are denoted

by capital letters like X and ordinary variables are denoted by

lower case letters like x.

A random variable X doesn’t have a value yet, because you

haven’t seen the results of the random process that generates

it. After you have seen it, it is either a number or an ordinary

variable x standing for whatever number it is.
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Everyday Philosophy (cont.)

In everyday philosophy, a random variable X is a mysterious

thing.

It is just like an ordinary variable x except that it doesn’t have

a value yet, and some random process must be observed to give

it a value.

Mathematically, X is a function on the sample space.

Philosophically, X is a variable whose value depends on a random

process.
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Everyday Philosophy (cont.)

For any random variable X, its expectation E(X) is the best

guess as to what its value will be when observed.

As in the joke about the average family with 1.859 children, this

does not mean that E(X) is a possible value of X.

It only means that E(X) is a number that is closest (on average)

to the observed value of X for some definition of “close” (more

on this idea later).

If you have to pick one number to represent X before its value

is observed, E(X) is (arguably) it.
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Everyday Philosophy (cont.)

When the sample space is a subset of the real numbers, the

identity function x 7→ x is a random variable.

Mathematically, it is just a random variable like any other.

Philosophically, it feels different. So in everyday philosophy we

distinguish between the “original” random variable, which is the

identity function on the sample space, and all other random

variables, which are functions of it.

79



Everyday Philosophy (cont.)

We say f is the PMF of a random variable X meaning

Pr(X = x) = f(x), x ∈ S,

and

E(X) =
∑
x∈S

xf(x),

where S is the sample space.

But mathematically, X is just the identity function on S.
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Change of Variable

Suppose fX is the PMF of a random variable X having sample
space S, and Y = g(X) is another random variable.

If we want to consider Y as the “original” random variable rather
than X, then we need to determine its PMF fY .

This is a function on the codomain of g, call that T , given by

fY (y) = Pr(Y = y), y ∈ T.
and

Pr(Y = y) = Pr{g(X) = y}
=

∑
x∈S

g(x)=y

fX(x)
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Change of Variable (cont.)

Thus we have derived the change-of-variable formula for discrete

probability distributions.

fY (y) =
∑
x∈S

g(x)=y

fX(x), x ∈ S.

The probability distribution with PMF fY is sometimes called the

image distribution of the distribution with PMF fX because its

support is the image, also called the range, of the function g

g(S) = { g(x) : x ∈ S }.

82



Change of Variable (cont.)

domain codomain
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A picture of a function. Arrows go from x in the domain to g(x)

in the codomain.
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Change of Variable (cont.)

domain codomain
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x1

x2

x3

y1

x4

y2

y3

y4

fY (y1) = fX(x1) + fX(x2)

+ fX(x3)

fY (y2) = 0

fY (y3) = 0

fY (y4) = fX(x4)
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Change of Variable (cont.)

Suppose the random vector (X,Y ) has the uniform distribution

on the set

S = { (x, y) ∈ Z2 : 0 ≤ y ≤ x ≤ 4 }

What are the distributions induced by the natural projection

maps

• (x, y) 7→ x and

• (x, y) 7→ y?
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Change of Variable (cont.)

The easy case is when the function g is one-to-one (maps each

point of the domain to a different point of the codomain). Then

we just have

fY (y) = fX(x), when y = g(x)

fY (y) = 0, when y 6= g(x) for all x

Otherwise, we say g is many-to-one, and you have to use the

general change-of-variable formula, which means you have to

figure out which points map to which points. A picture may

help.
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Change of Variable (cont.)

Suppose the random vector X has the uniform distribution on

the set

S = {x ∈ Z : −4 ≤ x ≤ 4 }

What is the distribution induced by the map

• x 7→ x3?
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Change of Variable (cont.)

We check that the function fY defined by the change-of-variable

formula actually satisfies the conditions for a PMF. The first

condition is obvious: fY (y) ≥ 0 because the sum of nonnegative

terms is nonnegative. The second condition is obvious from a

picture: every point of the domain goes to exactly one point of

the codomain, so ∑
y∈T

fY (y) =
∑
y∈T

∑
x∈S

g(x)=y

fX(x)

=
∑
x∈S

fX(x)

= 1
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Change of Variable (cont.)

Change-of-variable is another way of specifying a probability

model.

Any function on the sample space of a probability model defines

a new probability model (the image distribution).

We will use this change-of-variable formula (and other change-of-

variable formulas for continuous distributions) a lot. Important!
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The PMF of a Random Variable

A random variable is a function on the sample space. Hence it

induces an image distribution by the change-of-variable formula.

We say two random variables X and Y having different probability

models (possibly different sample spaces and different PMF’s)

are equal in distribution or have the same distribution if they

have the same image distribution.

What is the distribution that they have? Apply the change-of-

variable formula.

90



The PMF of a Random Variable (cont.)

The trick of allowing the sample space to be bigger than the

support allows us do define the PMF of a random variable on

the whole real line.

If X is a random variable, then

fX(x) = Pr(X = x), x ∈ R,

extends the PMF to all of R.

Although R is an infinite set, the support of fX is finite, so sums

defining probabilities make sense (by convention the sum of any

number of zeros is zero, even an infinite number of them).
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The PMF of a Random Variable (cont.)

So X and Y are equal in distribution if and only if the image

distributions they induce have the same PMF, that is fX = fY
or

Pr(X = r) = Pr(Y = r), for all r ∈ R

If two random variables are equal in distribution, we often say

they have the same distribution, not worrying about them being

defined in different probability models.
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The PMF of a Random Variable (cont.)

If probability theory is to make sense, it had better be true that

if Y = g(X) and fX and fY are the PMF’s of X and Y , then

E(Y ) =
∑
y∈T

yfY (y)

= E{g(X)}
=

∑
x∈S

g(x)fX(x)

for any function g : S → T , where S is the sample space for X

and T is the sample space for Y .

Proving this is a homework problem.
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The PMF of a Random Variable (cont.)

The preceding slide states an important fact.

If X and Y are equal in distribution, then

E{g(X)} = E{g(Y )}

for all functions g.

All expectations and probabilities — probability being a special

case of expectation — depend on the distribution of a random

variable but not on anything else.
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The PMF of a Random Vector

For any random variable X taking values in a finite subset S of

R and any random variable Y taking values in a finite subset T

of R define

f(x, y) = Pr(X = xandY = y), (x, y) ∈ S × T.

By the change-of-variable formula, f : S × T → R is the PMF of

the two-dimensional random vector (X,Y ).
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The PMF of a Random Vector (cont.)

For any random variables X1, X2, . . ., Xn taking values in finite

subsets S1, S2, . . ., Sn of R, respectively, define

f(x1, x2, . . . , xn) = Pr(Xi = xi, i = 1, . . . , n),

(x1, x2, . . . , xn) ∈ S1 × S2 × · · · × Sn.

By the change-of-variable formula, f : S1 × S2 × · · · × Sn → R is

the PMF of the n-dimensional random vector (X1, X2, . . . , Xn).
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The PMF of a Random Vector (cont.)

As with random variables, so with random vectors.

If X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) are equal in distribution,

then

E{g(X1, . . . , Xn)} = E{g(Y1, . . . , Yn)}

for all functions g.

All expectations and probabilities — probability being a special

case of expectation — depend on the distribution of a random

vector but not on anything else.
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Independence

The only notion of independence used in probability theory, some-

times called statistical independence or stochastic independence

for emphasis, but the adjectives are redundant.

Random variables X1, . . ., Xn are independent if the PMF f of

the random vector (X1, . . . , Xn) is the product of the PMF’s of

the component random variables

f(x1, . . . , xn) =
n∏
i=1

fi(xi), (x1, . . . , xn) ∈ S1 × · · · × Sn

where

fi(xi) = Pr(Xi = xi), xi ∈ Si
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Terminology using the Word Independence

In elementary mathematics, we say in y = f(x) that x is the

independent variable and y is the dependent variable. Unless your

career plans include teaching elementary school math, forget this

terminology!

In probability theory, it makes no sense to say one variable is

independent. A set of random variables X1, . . ., Xn is (stochas-

tically) independent or not, as the case may be.

It also makes no sense to say one variable is dependent. A set

of random variables X1, . . ., Xn is (stochastically) dependent if

they are not independent.
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Interpretation of Independence

When we are thinking of X1, . . ., Xn as variables whose values
we haven’t observed yet — data that are yet to be observed —
then independence is the property that these variables have no
effect whatsoever on each other.

When we are thinking mathematically — random variables are
functions on the sample space — then independence has the
mathematical definition just given.

Don’t get the two notions — informal and formal — mixed up.

In applications, we say random variables (functions of observable
data) are independent if they have no effect whatsoever on each
other. In mathematics, we use the formal definition.
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Independence (cont.)

Random variables X1, . . ., Xn are independent if and only if

the PMF f of the random vector X = (X1, . . . , Xn) satisfies the

following properties.

The support of X is a Cartesian product S1 × · · · × Sn.

f(x1, . . . , xn) =
n∏
i=1

hi(xi), (x1, . . . , xn) ∈ S1 × · · · × Sn

where the hi are any (strictly) positive-valued functions.
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Independence (cont.)

Proof of the assertion on the preceding slide.

The distribution of the random variable Xk has PMF

fk(xk) =
∑

x1∈S1

· · ·
∑

xk−1∈Sk−1

∑
xk+1∈Sk+1

· · ·
∑

xn∈Sn

n∏
i=1

hi(xi)

= c1 · · · ck−1ck+1 · · · cnhk(xk)

where

ci =
∑
xi∈Si

hi(xi)

So each hi is proportional to the PMF fi of Xi. That proves one

direction.
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Independence (cont.)

Conversely, if Si is the support of the distribution of Xi and the

components of X are independent, then

Pr(Xi = xi, i ∈ 1, . . . , n) =
n∏
i=1

Pr(Xi = xi)

and the right hand side is nonzero if and only if each term is

nonzero, which is if and only if (x1, . . . , xn) ∈ S1 × · · · × Sn.
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Independence (cont.)

With our simplified criterion it is simple to check independence

of the components of a random vector.

Is the support of the random vector a Cartesian product?

Is the PMF of the distribution of the random vector a product

of functions of one variable?

If yes to both, then the components are independent. Otherwise,

not.
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Independence (cont.)

X = (X1, . . . , Xn) has the uniform distribution on Sn.

Are the components independent? Yes, because (1) the support

of X is a Cartesian product and (2) a constant function of the

vector (x1, . . . , xn) is the product of constant functions of each

variable.
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Independence (cont.)

X = (X1, X2) has the uniform distribution on

{ (x1, x2) ∈ N2 : x1 ≤ x2 ≤ 10 }

Are the components independent? No, because (1) the support

of X is not a Cartesian product, and hence we don’t need to

check (2).
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Counting

How many ways are there to arrange n distinct things?

You have n choices for the first.

After the first is chosen, you have n− 1 choices for the second.

After the second is chosen, you have n− 2 choices for the third.

There are n! = n(n− 1)(n− 2) · · ·3 · 2 · 1 arrangements, which is

read “n factorial”.
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Counting (cont.)

n factorial can also be written

n! =
n∏
i=1

i

The
∏

sign is like
∑

, except
∏

means product where
∑

means

sum.

By definition 0! = 1. There is one way to order zero things.

Here it is in this box .
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Counting (cont.)

How many ways are there to arrange k things chosen from n

distinct things?

After the first is chosen, you have n− 1 choices for the second.

After the second is chosen, you have n− 2 choices for the third.

You stop when you have made k choices.

There are (n)k = n(n − 1)(n − 2) · · · (n − k + 1) arrangements,

which is read “the number of permutations of n things taken k

at a time”.
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Counting (cont.)

The number of permutations of n things taken k at a time can

also be written

(n)k =
n∏

i=n−k+1

i =
n!

(n− k)!

The convention 0! = 1 makes (n)n = n!, which makes sense.
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Counting (cont.)

How many ways are there to choose k things from n distinct
things (the order of the k things chosen doesn’t matter)?

There are (n)k ways to choose when order does matter.

Each choice can be arranged k! ways.

Thus each choice is counted k! times in the (n)k arrangements.

Thus the number of choices is(n
k

)
=

n!

k! (n− k)!

which is read “the number of combinations of n things taken k

at a time”.
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Counting (cont.)

Note that (n
k

)
=
( n

n− k

)

There are two ways to choose k things from n things.

You can just directly choose the k things.

Alternatively, you can choose the n− k things that are left out.

0! = 1 comes into play here too. Since there is one way to chose

n things from n things (take them all), there had better also be

one way to choose zero things from n things (take none).
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Counting (cont.)

Alternative notations for permutations

(n)k = P (n, k) = nPk

Alternative notations for combinations(n
k

)
= C(n, k) = nCk

For us, combinations are much more important than permuta-

tions and we will always us the notation
(
n
k

)
.

The
(
n
k

)
are also called binomial coefficients.
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Binomial Theorem

Expand (a+ b)n.

There are 2n terms, each of the form x1x2 · · ·xn, where each xi
is either an a or a b.

Order doesn’t matter because multiplication is commutative.

There are
(
n
k

)
terms equal to akbn−k because there are that many

ways to chose k slots to put a’s in.

Hence (this is called the binomial theorem)

(a+ b)n =
n∑

k=0

(n
k

)
akbn−k.
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The Binomial Distribution

Let X1, . . ., Xn be independent and identically distributed Bernoulli

random variables. Identically distributed means they all have the

same parameter value: they are all Ber(p) with the same p.

Define Y = X1 + . . . + Xn. The distribution of Y is called the

binomial distribution for sample size n and success probability p,

indicated Bin(n, p) for short.

For the special case n = 1 we have Y = X1.

So Bin(1, p) = Ber(p).
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Binomial Distribution (cont.)

The possible values of Y clearly range from zero (when all the
Xi are zero) to n (when all the Xi are 1).

Clearly Y = k when exactly k of the Xi are equal to 1 and the
rest are zero.

There are
(
n
k

)
ways that exactly k of the Xi are equal to one.

The rest have to be zero.

When Y = k we have

Pr(X1 = x1 and · · · andXn = xn) =
n∏
i=1

Pr(Xi = xi) = pk(1−p)n−k

because the Xi are independent and because multiplication is
commutative.
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Binomial Distribution (cont.)

Hence the binomial distribution has PMF

f(x) =
(n
x

)
px(1− p)n−x, x = 0,1, . . . , n

The sample space is {0,1, . . . , n} and the parameter space is [0,1]

just like for the Bernoulli distribution.
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Addition Rules

We have now met another “brand name” distribution Bin(n, p).

We have also met our first “addition rule”.

If X1, . . ., Xn are independent and identically distributed (IID)

Ber(p) random variables, then Y = X1 + · · ·+ Xn is a Bin(n, p)

random variable.
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Binomial Distribution (cont.)

Suppose X is a Bin(n, p) random variable. What is E(X)?

E(X) =
n∑

x=0

xf(x)

=
n∑

x=0

x ·
(n
x

)
px(1− p)n−x

=
n∑

x=1

x ·
(n
x

)
px(1− p)n−x

=
n∑

x=1

x ·
n!

x! (n− x)!
px(1− p)n−x

=
n∑

x=1

n!

(x− 1)! (n− x)!
px(1− p)n−x
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Binomial Distribution (cont.)

Continuing where we left off on the preceding slide

E(X) =
n∑

x=1

n!

(x− 1)! (n− x)!
px(1− p)n−x

= np ·
n∑

x=1

(n− 1)!

(x− 1)! (n− x)!
px−1(1− p)n−x

= np ·
n−1∑
k=0

(n− 1

k

)
pk(1− p)n−1−k

= np

In short, E(X) = np when X has the Bin(n, p) distribution.
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A Method of Calculating Expectations

The method used to calculate E(X) here seems very tricky, but
the principle is widely used and important to learn.

For many distributions — and the binomial is no exception —
about the only relevant sums we know how to do are equivalent
to the fact that the probabilities sum to one.

About the binomial distribution, we know

n∑
x=0

(n
x

)
px(1− p)n−x = 1

and this is the special case of the binomial theorem with a = p

and b = 1 − p. No theory we know tells how to do other sums
involving binomial coefficients.
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A Method of Calculating Expectations (cont.)

So if we can’t use the fact that probabilities sum to one to do

the expectation we are trying to do, then we can’t do it at all.

Thus our decision to pull the factor np out of the sum and our

decision to change the summation index from x to k = x − 1

were not unmotivated.
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A Method of Calculating Expectations (cont.)

Once we saw the x in the numerator canceled with the x in the x!
in the denominator leaving (x−1)! (n−x)! in the denominator, we
asked ourselves what binomial coefficient has the denominator
and answered

(
n−1
x−1

)
. Then we ask what binomial distribution

has those coefficients and answered Bin(n− 1, p) with terms(n− 1

k

)
pk(1− p)n−1−k =

(n− 1

x− 1

)
px−1(1− p)n−x

This trick will be used over and over, both with sums and later —
when we define probabilities by integrals — also with integrals.

If you can’t somehow use the fact that probabilities sum (or
integrate) to one for every distribution in the family, then you
probably can’t do the sum (or integral) in question.
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