Stat 5101 (Geyer) Fall 2009

Homework Assignment 1

Due Wednesday, September 16, 2009

Solve each problem. Explain your reasoning. No credit for answers with no explanation.

- **1-1.** For each of the following functions h either determine a constant c such that $c \cdot h$ that is, the function $x \mapsto c \cdot h(x)$ is a PMF or determine that no such constant exists.
- (a) the identity function on the set $\{0, 1, 2\}$.
- (b) the identity function on the set $\{-2, -1, 0, 1, 2\}$.
- (c) the constant function $x \mapsto 1$ on the set $\{0, 1, 2\}$.
- (d) the constant function $x \mapsto 1$ on the set $\{-2, -1, 0, 1, 2\}$.
- (e) the function $x \mapsto x^2$ on the set $\{0, 1, 2\}$.
- (f) the function $x \mapsto x^2$ on the set $\{-2, -1, 0, 1, 2\}$.
- (g) the function $x \mapsto x^3$ on the set $\{0, 1, 2\}$.
- (h) the function $x \mapsto x^3$ on the set $\{-2, -1, 0, 1, 2\}$.
- **1-2.** Suppose X is a random variable having the discrete uniform distribution on the sample space $\{1, 2, 3, 4, 5, 6\}$.
- (a) Determine Pr(X < 4).
- (b) Determine $Pr(X \leq 4)$.
- (c) Determine Pr(6 < X < 10).
- 1-3. Suppose X is a random variable having PMF

$$f(x) = \frac{x}{21}, \qquad x = 1, 2, 3, 4, 5, 6.$$

- (a) Determine E(X).
- (b) Determine $E(X^2)$.
- (c) Determine $E\{(X-3)^2\}$.

- **1-4.** Suppose X is a Ber(p) random variable.
- (a) Show that $E(X^k) = p$ for all positive integers k.
- (b) Determine $E\{(X-p)^2\}$.
- (c) Determine $E\{(X-p)^3\}$.
- **1-5.** Determine the set of real numbers θ such that

$$f_{\theta}(x) = \begin{cases} \theta, & x = x_1 \\ \theta^2, & x = x_2 \\ 1 - \theta - \theta^2, & x = x_3 \end{cases}$$

is a PMF on the sample space $\{x_1, x_2, x_3\}$.