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1 Maximum Likelihood Estimation

Before we can learn about the “sandwich estimator” we must know the
basic theory of maximum likelihood estimation.

1.1 Likelihood for One Observation

Suppose we observe data x, which may have any structure, scalar, vector,
categorical, whatever, and is assumed to be distributed according to the
probability density function fθ. The probability of the data fθ(x) thought
of as a function of the parameter for fixed data rather than the other way
around is called the likelihood function

Lx(θ) = fθ(x). (1)

For a variety of reasons, we almost always use the log likelihood function

lx(θ) = log Lx(θ) = log fθ(x) (2)

instead of the likelihood function (1). The way likelihood functions are
used, it makes no difference if an arbitrary function of the data that does
not depend on the parameter is added to a log likelihood, that is,

lx(θ) = log fθ(x) + h(x) (3)

is just as good a definition as (2), regardless of what the function h is.
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1.2 Likelihood for Many IID Observations

Suppose X1, . . ., Xn are IID random variables having common probabil-
ity density function fθ. Then the joint density function for the data vector
x = (x1, . . . , xn) is

fn,θ(x) =
n∏

i=1

fθ(xi)

and plugging this in for fθ in (2) gives

ln(θ) =
n∑

i=1

log fθ(xi). (4)

(We have a sum instead of a product because the log of a product is the sum
of the logs.) We have changed the subscript on the log likelihood from x to
n to follow convention. The log likelihood function ln still depends on the
whole data vector x as the right hand side of (4) makes clear even though
the left hand side of (4) no longer mentions the data explicitly.

As with the relation between (2) and (3) we can add an arbitrary function
of the data (that does not depend on the parameter) to the right hand side
of (4) and nothing of importance would change.

1.3 Maximum Likelihood Estimation

The value of the parameter θ that maximizes the likelihood or log like-
lihood [any of equations (1), (2), or (3)] is called the maximum likelihood
estimate (MLE) θ̂. Generally we write θ̂n when the data are IID and (4) is
the log likelihood.

We are a bit unclear about what we mean by “maximize” here. Both
local and global maximizers are used. Different theorems apply to each.
Under some conditions, the global maximizer is the optimal estimator, “op-
timal” here meaning consistent and asymptotically normal with the smallest
possible asymptotic variance. Under other conditions, the global maximizer
may fail to be even consistent (which is the worst property an estimator
can have, being unable to get close to the truth no matter how much data
is available) but there exists a local maximizer that is optimal. Thus both
global and local optimizers are of theoretical interest and neither is always
better than the other. Thus both are used, although the difficulty of global
optimization means that it is rarely used except for uniparameter models
(when the one-dimensional optimization can be done by grid search).
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Regardless of whether we use a local or global maximizer. It makes no
difference which of (1), (2), or (3) we choose to maximize. Since the log
function is increasing, (1) and (2) have the same maximizers. Since adding
a constant does not change the location the maximum, (2) and (3) have the
same maximizers.

1.4 Log Likelihood Derivatives

We are interested in the first two derivatives l′x and l′′x of the log likeli-
hood. (We would write l′n and l′′n in the IID sample size n case.) Since the
derivative of a term not containing the variable (with respect to which we
are differentiating) is zero, there is no difference between the derivatives of
(2) and (3).

It can be proved by differentiating the identity∫
fθ(x) dx = 1

under the integral sign that

Eθ{l′X(θ)} = 0 (5a)
varθ{l′X(θ)} = −Eθ{l′′X(θ)} (5b)

1.5 Fisher Information

Either side of the identity (5b) is called Fisher information (named after
R. A. Fisher, the inventor of the method maximum likelihood and the creator
of most of its theory, at least the original version of the theory). It is denoted
I(θ), so we have two ways to calculate Fisher information

I(θ) = varθ{l′X(θ)} (6a)
I(θ) = −Eθ{l′′X(θ)} (6b)

When we have IID data and are writing ln instead of lx, we write In(θ)
instead of I(θ) because it is different for each sample size n.
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Then (6b) becomes

In(θ) = −Eθ{l′′n(θ)}

= −Eθ

{
d2

dθ2

n∑
i=1

log fθ(Xi)

}

= −
n∑

i=1

Eθ

{
d2

dθ2
log fθ(Xi)

}

= −
n∑

i=1

Eθ

{
l′′1(θ)

}
= nI1(θ)

because the expectation of a sum is the sum of the expectations and the
derivative of a sum is the sum of the derivatives and because all the terms
have the same expectation when the data are IID.

This means that if the data are IID, then we can use sample size one in
the calculation of Fisher information (not for anything else) and then get
the Fisher information for sample size n using the identity

In(θ) = nI1(θ) (7)

just proved.

1.6 Asymptotics of Log Likelihood Derivatives

1.6.1 The Law of Large Numbers

When we have IID data, the law of large numbers (LLN) applies to any
average, in particular to the average

1
n

l′n(θ) =
1
n

n∑
i=1

d

dθ
log fθ(Xi), (8)

and says this converges to its expectation, which by (5a) is zero. Thus we
have

1
n

l′n(θ) P−→ 0. (9a)

Similarly, the LLN applied to the average

− 1
n

l′′n(θ) = − 1
n

n∑
i=1

d2

dθ2
log fθ(Xi) (9b)
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says this converges to its expectation, which by (5b) is I1(θ). Thus we have

− 1
n

l′′n(θ) P−→ I1(θ). (9c)

1.6.2 The Central Limit Theorem

The central limit theorem (CLT) involves both mean and variance, and
(5a) and (5b) only give us the mean and variance of l′n. Thus we only get a
CLT for that. The CLT says that for any average, and in particular for the
average (8), when we subtract off its expectation and multiply by

√
n the

result converges in distribution to a normal distribution with mean zero and
variance the variance of one term of the average. The expectation is zero
by (5a). So there is nothing to subtract here. The variance is I1(θ) by (5b)
and the definition of Fisher information. Thus we have

1√
n

l′n(θ) D−→ Normal
(
0, I1(θ)

)
. (9d)

[we get 1/
√

n here because
√

n · (1/n) = 1/
√

n.]

1.7 Asymptotics of Maximum Likelihood Estimators

So what is the point of all this? Assuming the MLE is in the interior of
the parameter space, the maximum of the log likelihood occurs at a point
where the derivative is zero. Thus we have

l′n(θ̂n) = 0. (10)

That wouldn’t seem to help us much, because the LLN and the CLT
[equations (9a), (9c), and (9d)] only apply when θ is the unknown true
population parameter value. But for large n, when θ̂n is close to θ (this
assumes θ̂n is a consistent estimator, meaning it eventually does get close to
θ) l′n can be approximated by a Taylor series around θ

l′n(θ̂n) ≈ l′n(θ) + l′′n(θ)(θ̂n − θ) (11)

We write ≈ here because we are omitting the remainder term in Taylor’s
theorem. This means we won’t actually be able to prove the result we are
heading for. Setting (11) equal to zero [because of (10)] and rearranging
gives

√
n(θ̂n − θ) ≈ −

1√
n
l′n(θ)

1
n l′′n(θ)

(12)
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Now by (9a) and (9d) and Slutsky’s theorem the right hand side converges
to a normal random variable

−
1√
n
l′n(θ)

1
n l′′n(θ)

D−→ Z

I1(θ)
(13)

where
Z ∼ Normal

(
0, I1(θ)

)
(14)

Using the fact that for any random variable z and any constant c we have
E(Z/c) = E(Z)/c and var(Z/c) = var(Z)/c2 we get

Z

I1(θ)
∼ Normal

(
0, I1(θ)−1

)
Thus finally, we get the big result about maximum likelihood estimates

√
n(θ̂n − θ) D−→ Normal

(
0, I1(θ)−1

)
. (15)

Equation (15) is arguably the most important equation in theoretical statis-
tics. It is really remarkable.

We may have no formula that gives the MLE as a function of the data.
We may have no procedure for obtaining the MLE except to hand any par-
ticular data vector to a computer program that somehow maximizes the log
likelihood. Nevertheless, theory gives us a large sample approximation (and
a rather simple large sample approximation) to the sampling distribution of
this estimator, an estimator that we can’t explicitly describe!

Despite its amazing properties, we must admit two “iffy” issues about
(15). First, we haven’t actually proved it, and even if we wanted to make
this course a lot more mathematical than it should be we couldn’t prove
it in complete generality. We could prove it under some conditions, but
those conditions don’t always hold. Sometimes (15) holds and sometimes it
doesn’t. There must be a thousand different proofs of (15) under various
conditions in the literature. It has received more theoretical attention than
any other result. But none of those proofs apply to all applications. An
even if we could prove (15) to hold under all conditions (that’s impossible,
because there are counterexamples, applications where it doesn’t hold, but
assume we could), it still wouldn’t tell us what we really want to know. It
only asserts that for some sufficiently large n, perhaps much larger than the
actual n of our actual data, the asymptotic approximation on the right hand
side of (15) would be good. But perhaps it is no good at the actual n where
we want to use it. Thus (15) has only heuristic value. The theorem gives no
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way to tell whether the approximation is good or bad at any particular n. Of
course, now that we know all about the parametric bootstrap that shouldn’t
bother us. If we are worried about whether (15) is a good approximation,
we simulate. Theory is no help.

The second “iffy” issue is that this whole discussion assumes the model
is exactly correct, that the true distribution of the data has density fθ for
some θ. What if this assumption is wrong? That’s the subject of Section 2
below.

Before we get to that we take care of a few loose ends.

1.8 Observed Fisher Information

Often Fisher information (6a) or (6b) is hard to calculate. Expectation
involves integrals and not all integrals are doable. But the LLN (9c) gives us
a consistent estimator of Fisher information, which is usually called observed
Fisher information

Ĵn(θ) = −l′′n(θ) (16)

To distinguish this from the other concept, we sometimes call In(θ) expected
Fisher information although, strictly speaking, the “expected” is redundant.

Equation (15) can be rewritten (with another use of Slutsky’s theorem)√
In(θ) · (θ̂n − θ) D−→ Normal(0, 1) (17a)

and yet another use of Slutsky’s theorem gives√
Ĵn(θ) · (θ̂n − θ) D−→ Normal(0, 1). (17b)

1.9 Plug-In

Equations (15), (17a), and (17b) are not useful as they stand because
we don’t know the true parameter value θ. But still another use of Slutsky’s
theorem allows us to plug in the MLE√

In(θ̂n) · (θ̂n − θ) D−→ Normal(0, 1) (18a)

and √
Ĵn(θ̂n) · (θ̂n − θ) D−→ Normal(0, 1). (18b)
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1.10 Sloppy Asymptotics

People typically rewrite (18a) and (18b) as

θ̂n ≈ Normal
(
θ, In(θ̂n)−1

)
(19a)

and
θ̂n ≈ Normal

(
θ, Ĵn(θ̂n)−1

)
. (19b)

We call these “sloppy”because they aren’t real limit theorems. In real math,
you can’t have an n in the limit of a sequence indexed by n. But that’s what
we have if we try to treat the right hand sides here as real limits.

But generally no harm is done. They both say that for “large n” the
distribution of the MLE is approximately normal with mean θ (the true
unknown parameter value) and approximate variance inverse Fisher infor-
mation (either observed or expected and with the MLE plugged in).

1.11 Asymptotic Efficiency

It is a theorem (or again perhaps we should say many theorems with var-
ious conditions) that the MLE is the best possible estimator, asymptotically.
Any other consistent and asymptotically normal estimator must have larger
asymptotic variance. Asymptotic variance I1(θ)−1 is the best possible.

That’s a bit off topic. I just thought it should be mentioned.

1.12 Cauchy Location Example

We use the following data, which is assumed to come from some distri-
bution in the Cauchy location family, that is, we assume the data satisfy

Xi = θ + Zi

where the Zi are IID standard Cauchy.

> foo <- function(file) {

+ paste("http://www.stat.umn.edu/geyer/5601/mydata/",

+ file, sep = "")

+ }

> X <- read.table(foo("xc.txt"), header = TRUE)

> x <- X$x
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> stem(x, scale = 4)

The decimal point is 1 digit(s) to the right of the |

-0 | 5
-0 | 21
0 | 23444
0 | 5555555669
1 | 2
1 |
2 |
2 |
3 |
3 |
4 |
4 | 9

Minus the log likelihood function is calculated by the R function,

> mlogl <- function(theta, x) sum(-dcauchy(x, theta,

+ log = TRUE))

and the MLE is calculated by

> out <- nlm(mlogl, median(x), hessian = TRUE, x = x)

> print(out)

$minimum
[1] 56.63041

$estimate
[1] 4.873817

$gradient
[1] 1.632823e-07

$hessian
[,1]

[1,] 13.17709

$code
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Figure 1: Log likelihood for Cauchy location model.

[1] 1

$iterations
[1] 3

To check our work, let us plot the log likelihood function. Figure 1 is
produced by the following code

> fred <- function(theta) return(-apply(as.matrix(theta),

+ 1, mlogl, x = x))

> curve(fred, from = -2, to = 12, xlab = expression(theta),

+ ylab = "log likelihood")

It appears on p. 11 and seems to have a unique maximum in the region
plotted at the solution (4.874) produced by the R function nlm.
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Note that we have no guarantee that the MLE produced by nlm is the
global maximizer of the log likelihood. It is clearly the nearest local maxi-
mizer to the starting point, which is the sample median. The fact that the
sample median is already a good estimator of location guarantees that this
MLE is the optimal estimator (assuming the population distribution really
does satisfy our assumptions).

Now we use the approximation to Fisher information (the Hessian, which
nlm has calculated by approximating derivatives with finite differences, to
calculate a confidence interval for the true unknown θ

> theta.hat <- out$estimate

> info <- out$hessian

> conf.level <- 0.95

> crit <- qnorm((1 + conf.level)/2)

> theta.hat + crit * c(-1, 1)/sqrt(info)

[1] 4.333886 5.413748

2 Misspecified Maximum Likelihood Estimation

2.1 Model Misspecification

A lot of what is said above survives model misspecification in modified
form. By model misspecification, we mean the situation in which everything
is the same as in Section 1 except that the true (unknown) probability
density function g of the data is not of the form fθ for any θ. The true
distribution is not in the model we are using.

So our model assumption is wrong. What does that do?

2.2 Modifying the Theory under Model Misspecification

First it makes no sense to write Eθ or varθ, as we did in (5a), (5b),
(6a), and (6b) to emphasize that the distribution of the data is that having
parameter θ. Now the true distribution has no θ because it isn’t in the
model. So we write Eg and varg.

But more than that goes wrong. The reason we wrote Eθ and varθ in
those equations was to emphasize that all the θ’s must be the same θ in
order for the differentiation under the integral sign to work. So under model
misspecification we lose (5a), (5b), (6a), and (6b). Since these equations
were the key to the whole theory, we need to replace them.
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To replace (5a), we consider the expectation of the log likelihood

λg(θ) = Eg{lX(θ)} (20)

(the expectation being with respect to the true distribution of the data,
which is indicated by the subscript g on the expectation operator). Suppose
the function λg achieves its maximum at some point θ∗ in the interior of the
parameter space. Then at that point the derivative λ′g(θ

∗) is zero. Hence,
assuming differentiation under the integral sign is possible, we have

Eg{l′X(θ∗)} = 0. (21)

This looks enough like (5a) to play the same role in the theory.
The main difference is philosophical: θ∗ is not the true unknown param-

eter value in the sense that fθ∗ is the true unknown probability density of
the data. The true density is g, which is not (to repeat our misspecification
assumption) any fθ. So how do we interpret θ∗? It is (as we shall see below)
what maximum likelihood estimates. In some sense maximum likelihood
is doing the best job it can given what it is allowed to do. It estimates
the θ∗ that makes fθ∗ as close to g as an fθ can get [where “close” means
maximizing (20)].

To replace (5b), we have to face the problem that it just no longer holds.
The two sides of (5b) are just not equal when the model is misspecified (and
we replace Eθ and varθ by Eg and varg. But our use of (5b) was to define
Fisher information as either side of the equation. When the two sides aren’t
equal our definition of Fisher information no longer makes sense.

We have to replace Fisher information by two different definitions

Vn(θ) = varg{l′n(θ)} (22a)
Jn(θ) = −Eg{l′′n(θ)} (22b)

These are our replacements for (6a) and (6b). When the model is not mis-
specified and g = fθ, then both of these are In(θ). When the model is
misspecified, then they are different.

The identity (7) now gets replaced by two identities

Vn(θ) = nV1(θ) (23a)
Jn(θ) = nJ1(θ) (23b)

the first now holding because the variance of a sum is the sum of the variances
when the summands are independent (and in the sum in question (8) the
terms are independent because the Xi are IID) and the second now holding
because the expectation of a sum is the sum of the expectations [the sum
being (9b)].
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2.3 Asymptotics under Model Misspecification

Now the law of large numbers (9c) gets replaced by

− 1
n

l′′n(θ∗) P−→ J1(θ∗). (24)

which we can also write given our definition of Ĵn, which we still use as a
definition even though we shouldn’t now call it “observed Fisher informa-
tion,”

1
n

Ĵn(θ∗) P−→ J1(θ∗). (25)

And the central limit theorem (9d) gets replaced by

1√
n

l′n(θ∗) D−→ Normal
(
0, V1(θ∗)

)
. (26)

Note that (24) and (26) are the same as (9c) and (9d) except that we had
to replace I1(θ) by V1(θ∗) or J1(θ∗), whichever was appropriate.

Then the whole asymptotic theory goes through as before with (13) and
(14) being replaced by

−
1√
n
l′n(θ∗)

1
n l′′n(θ∗)

D−→ Z

J1(θ∗)
(27)

and
Z ∼ Normal

(
0, V1(θ∗)

)
. (28)

Again, we only had to replace I1(θ) by V1(θ∗) or J1(θ∗), whichever was
appropriate.

As before, the distribution of the right hand side of (27) is normal with
mean zero. But the variance is now V1(θ∗)/J1(θ∗)2 and does not simplify
further. For reasons that will become clear in Section 3 below, we write this
as J1(θ∗)−1V1(θ∗)J1(θ∗)−1.

So we arrive at the replacement of“arguably the most important equation
in theoretical statistics” (15) under model misspecification

√
n(θ̂n − θ∗) D−→ Normal

(
0, J1(θ∗)−1V1(θ∗)J1(θ∗)−1

)
. (29)

Of course, (29) is useless for inference as it stands because we don’t know
θ∗. So we need “plug-in” here two. And we finally arrive at a replacement
for (19a) and (19b). Curiously, they are replaced by the single equation

θ̂n ≈ Normal
(
θ∗, Ĵn(θ̂n)−1V̂n(θ̂n)Ĵn(θ̂n)−1

)
(30)
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in which we have replaced Vn(θ) by an empirical estimate

V̂n(θ) =
n∑

i=1

l′n(θ)2. (31)

This makes sense because l′n(θ∗) has expectation zero by (21) and hence its
square estimates its variance.

2.4 The Sandwich Estimator

The asymptotic variance here

Ĵn(θ̂n)−1V̂n(θ̂n)Ĵn(θ̂n)−1 (32)

is called the sandwich estimator, the metaphor being that V̂n(θ̂n) is a piece
of ham between two pieces of bread Ĵn(θ̂n)−1.

It is remarkable that the whole theory of maximum likelihood goes
through under model misspecification almost without change. The only
changes are that we had to reinterpret a bit and substitute a bit, more
precisely,

� the parameter value θ∗ is no longer the “truth” but only the best ap-
proximation to the truth possible within the assumed model and

� the asymptotic variance becomes the more complicated “sandwich”
(32) instead of the simpler “inverse Fisher information” appearing in
(19a) or (19b).

2.5 Cauchy Location Example, Revisited

Although having log likelihood derivatives calculated automatically is
convenient, it is better to do exact calculations when possible. To do that
we need to know the formula for the density of the Cauchy distribution

fθ(x) =
1
π
· 1
1 + (x− θ)2

which makes one term of the log likelihood

log fθ(x) = − log(π)− log
[
1 + (x− θ)2

]
and we may drop the term − log(π), which does not contain the parameter
θ if we please.
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This makes the following R code

> logl <- expression(-log(1 + (x - theta)^2))

> scor <- D(logl, "theta")

> hess <- D(scor, "theta")

> print(scor)

2 * (x - theta)/(1 + (x - theta)^2)

> print(hess)

-(2/(1 + (x - theta)^2) - 2 * (x - theta) * (2 * (x - theta))/(1 +
(x - theta)^2)^2)

calculate derivatives of one term of the log likelihood. Each of these objects,
results of the R functions expression and D, have type "expression". They
are raw bits of R language stuffed into R objects.

From these we can define functions to calculate the log likelihood itself
(summing over all the data) and its derivatives.

> mloglfun <- function(theta, x) sum(-eval(logl))

> gradfun <- function(theta, x) sum(-eval(scor))

> vfun <- function(theta, x) sum(eval(scor)^2)

> jfun <- function(theta, x) sum(-eval(hess))

For the convenience of nlm, our function mloglfun calculates minus the log
likelihood. Our function gradfun calculates the first derivative of minus
the log likelihood. Our function vfun calculates the sum of squares of first
derivatives of terms of the log likelihood, thus calculating V̂n(θ) as given by
equation (31) above. Our function jfun calculates, the second derivative of
minus the log likelihood Ĵn(θ) as given by equation (16) above.

In order for each of these functions to work, the argument theta must
be a scalar and the argument x must be a vector. Then when the expression
(the thingy of type "expression", for example logl) is evaluated using the
R function eval, the usual R vectorwise evaluation occurs and the result
has one term for each element of x. The result vector is then summed using
the sum function. The only magic is in eval. The function sum and the
operators - and ^ work in the usual way, operating on the result of eval. In
the eval the theta and x in the expression, are taken from the environment,
which in this case are the theta and x that are the function arguments.

Having redefined mlogl, we try it out to see that it works. This time we
omit the hessian argument to nlm because we now have jfun to calculate
the Hessian.
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> out2 <- nlm(mloglfun, median(x), x = x)

> print(out$estimate)

[1] 4.873817

> print(out2$estimate)

[1] 4.873817

> gradfun(out2$estimate, x)

[1] -3.193930e-05

> print(out2$gradient)

[1] 1.661980e-07

Looks like it works. The gradients don’t agree because nlm is using finite
difference approximation and gradfun is using exact derivatives, but clearly
the derivative is nearly zero.

If we want nlm to use our gradfun we can do that too.

> fred <- function(theta, x) {

+ result <- mloglfun(theta, x)

+ attr(result, "gradient") <- gradfun(theta, x)

+ return(result)

+ }

> out3 <- nlm(fred, median(x), x = x)

> print(out3$estimate)

[1] 4.873819

> print(out3$gradient)

[1] 1.657468e-07

And we see that it makes almost no difference

> print(out2$estimate - out3$estimate)

[1] -2.436783e-06
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So far nothing about the sandwich estimator. Now we do that

> theta.hat <- out3$estimate

> Vhat <- vfun(theta.hat, x)

> Jhat <- jfun(theta.hat, x)

> print(Vhat)

[1] 7.055237

> print(Jhat)

[1] 13.17518

> print(info)

[,1]
[1,] 13.17709

> conf.level <- 0.95

> crit <- qnorm((1 + conf.level)/2)

> theta.hat + crit * c(-1, 1) * sqrt(Vhat/Jhat^2)

[1] 4.478683 5.268956

This interval is shorter than the interval we calculated on p. 12 because
Vhat is smaller than Jhat. With other data, the sandwich interval would
be larger (when Vhat is larger than Jhat). In either case, this interval is
semiparametric: the point estimate uses the likelihood equations for a very
specific model (in this case Cauchy location) but the margin of error only
uses Taylor series approximation of the likelihood function and the empirical
distribution of the components of the score vector. In particular, the margin
of error calculation does not assume the model is correct.

3 Multiparameter Models

3.1 Multivariable Calculus

When the parameter is a vector θ = (θ1, . . . , θp) almost nothing changes.
We must replace ordinary derivatives with partial derivatives, of course,
since there are several variables θ1, . . ., θp to differentiate with respect to.
We indicate this by writing ∇ln(θ) in place of l′n(θ) and ∇2ln(θ) in place of
l′′n(θ).
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3.1.1 Gradient Vectors

The symbol ∇, pronounced “del” indicates the vector whose components
are partial derivatives. In particular, ∇ln(θ) is the vector having i-th com-
ponent

∂ln(θ)
∂θi

.

Another name for ∇f is the gradient vector of the function f .

3.1.2 Hessian Matrices

The symbol ∇2 pronounced “del squared” indicates the matrix whose
components are second partial derivatives. In particular, ∇2ln(θ) is the
matrix having i, j-th component

∂2ln(θ)
∂θi∂θj

. (33)

It is a theorem of multivariable calculus that the order of partial differ-
entiation doesn’t matter, in particular, that swapping i and j in (33) doesn’t
change the value. Hence ∇2ln(θ) is a symmetric p× p matrix.

Another name for ∇2f is the Hessian matrix of the function f .

3.1.3 Taylor Series

If f is a scalar valued function of a vector variable, then the Taylor series
approximation keeping the first two terms is

f(x + h) ≈ f(x) + hT∇f(x)

Thus (11) becomes

∇ln(θ̂n) ≈ ∇ln(θ∗) + (θ̂n − θ∗)T∇2ln(θ∗) (34)

which, using the fact that the left hand side is zero, can be rearranged to
√

n(θ̂n − θ∗) ≈ −
(

1
n∇

2ln(θ∗)
)−1 · 1√

n
∇ln(θ∗) (35)

which is the multiparameter analog of the left hand side of (13). We’ve
also replaced θ by θ∗ to do the misspecified case right away (the correctly
specified case is a special case of the misspecified case).

Note that (35) is just like (12) except for some boldface and except that
we had to replace the division operation in (12) by multiplication by an
inverse matrix in (35). Without the matrix notation, we would be stuck.
There is no way to describe a matrix inverse without matrices.

Before we can proceed, we need to review a bit of probability theory.
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3.2 Multivariate Probability Theory

3.2.1 Random Vectors

A random vector is a vector whose components are random variables.

3.2.2 Mean Vectors

If x = (x1, . . . , xp) is a random vector, then we say its expectation is the
vector µ = µ1, . . . , µp) where

µi = E(xi), i = 1, . . . , p

and we write µ = E(x), thus combining p scalar equations into one vector
equation.

3.2.3 Variance Matrices

The variance of the random vector x is the p×p matrix M whose i, j-th
component is

cov(xi, xj) = E{(xi − µi)(xj − µj)}, i = 1, . . . , p, j = 1, . . . , p (36)

(this is sometimes called the “covariance matrix” or the “variance-covariance
matrix” because the diagonal elements are cov(xi, xi) = var(xi) or the “dis-
persion matrix” but we prefer the term variance matrix because it is the
multivariate analog of the variance of a scalar random variable). We write
var(x) = M, thus combining p2 scalar equations into one matrix equation.

The variance matrix M is also a symmetric p × p matrix because the
value (36) is not changed by swapping i and j.

It is useful to have a definition of the variance matrix that uses vector
notation

var(x) = E{(x− µ)(x− µ)T } (37)

where, as before, µ = E(x). The superscript T in (37) indicates the trans-
pose of a matrix. When this notation is used the vector x−µ is treated like
a p× 1 matrix (a “column vector”) so its transpose is 1× p (a “row vector”)
and the product is p× p.

3.2.4 Linear Transformations

If x is a scalar random variable and a and b are scalar constants, then

E(a + bx) = a + bE(x) (38a)

var(a + bx) = b2 var(x) (38b)
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If x is a random vector and a is a constant vector and B a constant
matrix, then

E(a + Bx) = a + BE(x) (39a)

var(a + Bx) = B var(x)BT (39b)

The right hand side of (39b) is the original “sandwich.” It is where the
“sandwich estimator” arises.

3.2.5 The Law of Large Numbers

If X1, X2, . . . is an IID sequence of random vectors having mean vector

µ = E(Xi), (40a)

then the multivariate law of large numbers (LLN) says

Xn
P−→ µ (40b)

where

Xn =
1
n

n∑
i=1

Xi. (40c)

3.2.6 The Central Limit Theorem

If X1, X2, . . . is an IID sequence of random vectors having mean vector
(40a) and variance matrix

M = E{(Xi − µ)(Xi − µ)T }, (41a)

then the multivariate central limit theorem (CLT) says

√
n(Xn − µ) D−→ Normal(0,M) (41b)

where Xn is given by (40c) and the distribution on the right hand side is the
multivariate normal distribution with mean vector 0 and variance matrix
M.
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3.3 Asymptotics of Log Likelihood Derivatives

3.3.1 Misspecified Models

With the probability review out of the way, we can continue with maxi-
mum likelihood.

Now the law of large numbers (24) gets replaced by

− 1
n
∇2ln(θ∗) P−→ J1(θ∗) (42)

and the central limit theorem (26) gets replaced by

1√
n
∇l′n(θ∗) D−→ Normal

(
0,V1(θ∗)

)
. (43)

where

Vn(θ) = varg{∇ln(θ)} (44a)

Jn(θ) = −Eg{∇2ln(θ)} (44b)

Note these are the same as (22a) and (22b) except for some boldface type and
replacement of ordinary derivatives by ∇ and ∇2. The boldface is significant
though, both Vn(θ) and Jn(θ) are p× p symmetric matrices.

Now the right hand side of (35) has the limiting distribution J1(θ∗)−1Z,
where Z is a random vector having the distribution on the right hand side
of (43). Using (39b) we get the right hand side of the following for the
asymptotic distribution of the MLE

√
n(θ̂n − θ∗) D−→ Normal

(
0,J1(θ∗)−1V1(θ∗)J1(θ∗)−1

)
. (45)

Again, note, just like (29) except for some boldface. Of course, the reason
it is just like (29) except for boldface is because we chose to write (29) so it
had the “sandwich” form even though we didn’t need it in the uniparameter
case.

Using plug-in and “sloppy” asymptotics we get

θ̂n ≈ Normal
(
θ∗, Ĵn(θ̂n)−1V̂n(θ̂n)Ĵn(θ̂n)−1

)
(46)

to replace (30), where

V̂n(θ) =
n∑

i=1

∇ln(θ)
(
∇ln(θ)

)T (47a)

Ĵn(θ) =
n∑

i=1

∇2ln(θ) (47b)
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3.3.2 Correctly Specified Models

Correctly specified models are a special case of what we have just done.
When the model is correctly specified, we replace θ∗ by the true parameter
value θ. Also we have the identity

Vn(θ) = Jn(θ) = In(θ) (48)

which is the multiparameter analog of (5b). This identity makes (45) sim-
plify to √

n(θ̂n − θ) D−→ Normal
(
0, I1(θ)−1

)
. (49)

and (46) becomes

θ̂n ≈ Normal
(
θ∗, In(θ̂n)−1

)
(50a)

θ̂n ≈ Normal
(
θ∗, Ĵn(θ̂n)−1

)
(50b)

θ̂n ≈ Normal
(
θ∗, V̂n(θ̂n)−1

)
(50c)

One uses whichever plug-in estimate of the asymptotic variance is conve-
nient.

It is interesting that before writing this handout, I only “knew” about
the approximations (50a) and (50b) in the sense that those were the only
ones I had names for, inverse expected Fisher information for the asymptotic
variance in (50a) and inverse observed Fisher information for the asymptotic
variance in (50b). Of course, I also knew about the approximation (50c)
in the sense that the bits and pieces were somewhere in my mind, but I
only though about V̂n(θ) in the context of model misspecification, never in
the context of correctly specified models. The plug-in asymptotic variance
estimator V̂n(θ̂n)−1 used in (50c) probably needs a name, since it is just as
good an approximation as those in (50a) and (50b). But it doesn’t have a
name, as far as I know. Ah, the power of terminology!

3.4 Cauchy Location-Scale Example

For a multiparameter model we go to the Cauchy location-scale family
in which we assume the data satisfy

Xi = µ + σZi

where the Zi are IID standard Cauchy. We call µ the location parameter
and σ the scale parameter. When we “standardize” the data

Zi =
Xi − µ

σ
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we get the standard Cauchy distribution. This is just like every other stan-
dardization in statistics, except more general. Cauchy distributions do not
have moments, so µ is not the mean (it is the center of symmetry and the
median) and σ is not the standard deviation (2σ is the interquartile range)

> qcauchy(0.75) - qcauchy(0.25)

[1] 2

Now the formula for the density of the Cauchy distribution is

fθ(x) =
1
π
· 1
σ
· 1

1 +
(x−µ

σ

)2

where θ = (µ, λ) is the (two-dimensional) parameter vector, which makes
one term of the log likelihood

lx(θ) = − log

[
1 +

(
x− µ

σ

)2
]
− log(σ)

and this time we have dropped the term − log(π), which does not contain
any parameters.

This makes the following R code

> logl <- expression(-log(1 + ((x - mu)/sigma)^2) -

+ log(sigma))

> scor.mu <- D(logl, "mu")

> scor.sigma <- D(logl, "sigma")

> hess.mu.mu <- D(scor.mu, "mu")

> hess.mu.sigma <- D(scor.mu, "sigma")

> hess.sigma.sigma <- D(scor.sigma, "sigma")

calculate the relevant partial derivatives.
From these we can define functions to calculate the log likelihood, its

gradient vector, and its Hessian matrix.

> loglfun <- function(theta, x) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ sum(eval(logl))

+ }

> gradfun <- function(theta, x) {
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+ mu <- theta[1]

+ sigma <- theta[2]

+ grad.mu <- sum(eval(scor.mu))

+ grad.sigma <- sum(eval(scor.sigma))

+ c(grad.mu, grad.sigma)

+ }

> vfun <- function(theta, x) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ s.mu <- eval(scor.mu)

+ s.sigma <- eval(scor.sigma)

+ v.mu.mu <- sum(s.mu^2)

+ v.mu.sigma <- sum(s.mu * s.sigma)

+ v.sigma.sigma <- sum(s.sigma^2)

+ matrix(c(v.mu.mu, v.mu.sigma, v.mu.sigma, v.sigma.sigma),

+ 2, 2)

+ }

> jfun <- function(theta, x) {

+ mu <- theta[1]

+ sigma <- theta[2]

+ j.mu.mu <- sum(-eval(hess.mu.mu))

+ j.mu.sigma <- sum(-eval(hess.mu.sigma))

+ j.sigma.sigma <- sum(-eval(hess.sigma.sigma))

+ matrix(c(j.mu.mu, j.mu.sigma, j.mu.sigma, j.sigma.sigma),

+ 2, 2)

+ }

These functions are messy. The computer algebra features in R are very lim-
ited. Mathematica it ain’t. Nevertheless, that it has any computer algebra
features at all is cool. We just do for each component of the gradient vector
and each component of the Hessian matrix the same sort of thing we did in
the one-parameter case. Then we assemble the vector or matrix in the last
statement of the function. One difference from the one-parameter case is
that now we are calculating the log likelihood (not minus the log likelihood)
and its gradient, although we still have minus the Hessian because that is
what Jn(θ) is.

Let’s do it.

> fred <- function(theta, x) {

+ result <- (-loglfun(theta, x))

+ attr(result, "gradient") <- (-gradfun(theta,
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+ x))

+ return(result)

+ }

> theta.start <- c(median(x), IQR(x)/2)

> out4 <- nlm(fred, theta.start, x = x)

> print(out4$estimate)

[1] 4.8774517 0.9672641

> print(out4$gradient)

[1] 3.416980e-08 1.932423e-08

> print(out3$estimate)

[1] 4.873819

The location parameter estimate only changes a little bit when we go to the
two-parameter model.

Now we do what? Do we want confidence intervals or confidence regions?
Our estimator is now a vector.

> theta.hat <- out4$estimate

> Vhat <- vfun(theta.hat, x)

> Jhat <- jfun(theta.hat, x)

> Mhat <- solve(Jhat) %*% Vhat %*% solve(Jhat)

> print(Vhat)

[,1] [,2]
[1,] 7.601141 -1.530151
[2,] -1.530151 13.775519

> print(Jhat)

[,1] [,2]
[1,] 13.775519 1.530151
[2,] 1.530151 7.601141

> print(Mhat)

[,1] [,2]
[1,] 0.04838327 -0.05177662
[2,] -0.05177662 0.25730936
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I have no idea why the curious pattern of entries in V̂n(θ) and Ĵn(θ),
presumably something about the Cauchy likelihood. It is not the obvious
bug that the code is not calculating what it claims to. The matrix Mhat is
the sandwich estimator of the asymptotic variance of θ̂n.

One thing our theory fails to tell us is that expected Fisher informa-
tion for the Cauchy location-scale model (or for any location-scale model
with symmetric base distribution) is diagonal. Thus for large n we should
have Mhat diagonal, assuming the true unknown distribution of the data
(which may not be Cauchy) is symmetric about the true unknown location
parameter µ.

For that reason, we shall ignore the (estimated) correlation of our esti-
mates and produce (non-simultaneous) confidence intervals for each.

> theta.hat[1] + crit * c(-1, 1) * sqrt(Mhat[1, 1])

[1] 4.446334 5.308569

> theta.hat[2] + crit * c(-1, 1) * sqrt(Mhat[2, 2])

[1] -0.02694075 1.96146898

Our confidence interval for θ1 = µ is not that different from those obtained
using the one-parameter model on p. 12 and on p. 18. This is because the
true unknown σ does not seem to be that much different from the σ = 1 that
gives the standard model. Our confidence interval for θ2 = σ is so wide that
it goes negative, which is ridiculous. By definition σ > 0. This is because
the sample size n is really too small for asymptotic theory to work.

4 The Moral of the Story

Every application of maximum likelihood is a potential application of
the theory of misspecified maximum likelihood. Just stop believing in the
exact correctness of the model. As soon as you become a bit skeptical, you
need the misspecified theory that gives (45) or (46).

This theory is on the borderline between parametrics and nonparamet-
rics, in what is sometimes called semiparametrics. We have a parametric
model: θ and θ∗ are parameters. And we use the model for maximum
likelihood estimation: θ̂n is a parameter estimate. But we don’t base our
inference, at least not completely, on believing the model. The “sandwich
estimator”of asymptotic variance is nonparametric. Confidence intervals for
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θ∗ based on these asymptotics [(45) or (46)] are valid large sample approxi-
mations regardless of the true unknown density function (g).

Of course, this is a bit misleading, because the very definition of θ∗

depends on g because θ∗ is the maximizer of the function λg, which depends
on g as (20) shows. Perhaps we should have written θ∗g everywhere instead
of θ∗.

The same sorts of procedures arise for all but the simplest of nonpara-
metric procedures. Completely nonparametric procedures are available only
in the simplest situations. Generally useful procedures for complicated sit-
uations involve some mix of parametric and nonparametric thinking. The
deeper you get into nonparametrics, the more you run into this kind of
“semiparametric” thinking.

5 Literature

I do not know of a good textbook treatment of this subject at the level
of this handout (that’s why I wrote it). The original paper on the subject
was White (1982). It is quite technical and hard to read, but says essentially
what this handout says but with proofs. This idea has since appeared in
hundreds of theoretical papers.

The notation I use here comes from a recent PhD thesis in the School of
Statistics (Sung, 2003) which extended this model misspecification idea to
the situation where there are missing data and only Monte Carlo approxi-
mation of the likelihood is possible. (Then the asymptotic variance becomes
much more complicated because it involves both sampling variability and
Monte Carlo variability.)
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