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1 Introduction

These are class notes for Stat 5601 (nonparametrics) taught at the Uni-
versity of Minnesota, Spring 2006. This not a theory course, so the bit of
theory we do here is very simple, but very important.

Without some notion of robustness we have no way to say why nonpara-
metrics is a good idea, or, at least, no quantitative way. We could say (and
sometimes do say) that the assumptions for the sign test are weaker than
the assumptions for the signed rank test, which in turn are weaker than the
assumptions for Student’s t test.

But what does that say? We know that no data are exactly normal, so
either

no one should ever use Student’s t test

or

one should use Student’s t test so long as the population distri-
bution isn’t too non-normal

but what does the latter statement mean? What is too non-normal when
we have no way to quantitate non-normality?

2 Breakdown Point

It turns out that quantitating non-normality is the wrong idea. There are
just too many ways to be non-normal. A much better idea is to quantitate
properties of estimators and their associated procedures. Here we look at
one such idea.

The finite sample breakdown point of an estimator is the fraction of data
that can be given arbitrary values without making the estimator arbitrarily
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bad. Typically this is some function of the sample size n. To get a single
number, we use the asymptotic breakdown point which is the limit of the
finite sample breakdown point as n goes to infinity.

The distinction between finite sample and asymptotic breakdown points
is only worth bothering about during calculations. After we are done with
these notes, we will always just say “breakdown point” to mean asymptotic
breakdown point.

2.1 The Sample Mean

It is obvious from the formula from the mean

x1 + . . . + xn

n

that if we hold x1, . . ., xn−1 fixed and let xn go to infinity, the sample mean
also goes to infinity. In short even one gross outlier ruins the sample mean.
The finite sample breakdown point is 1/n. The asymptotic breakdown point
is zero.

2.2 The Sample Median

If we have n data points and we let a minority of them b(n − 1)/2c go
to infinity leaving the rest fixed, where b · c denotes the “floor” operation
(largest integer less than or equal to), then the median stays with the ma-
jority. The median changes, but does not become arbitrarily bad. The finite
sample breakdown point is b(n−1)/(2n)c. The asymptotic breakdown point
is one-half.

2.3 The Sample Pseudomedian

The estimator under discussion here is the median of the Walsh averages,
which is the Hodges-Lehmann estimator associated with the Wilcoxon signed
rank test. The Walsh averages are the n(n + 1)/2 numbers of the form

xi + xj

2
, i ≤ j

where x1, . . ., xn are the data.
If we let xk go to infinity, leaving the rest fixed, we ruin n Walsh averages,

all those involving xk. If we let n − m data points go to infinity leaving m
fixed, then we don’t ruin the Walsh averages involving only the m fixed data
points, and there are m(m + 1)/2 of them.
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The median of the Walsh averages, stays with the majority, so we do not
have finite sample breakdown so long as

m(m + 1)
2

>
n(n + 1)−m(m + 1)

2

or
m(m + 1) >

n(n + 1)
2

At this point we see that obtaining the finite sample breakdown point will
be really messy. If we go directly to asymptotic breakdown point, everything
is much simpler. Writing x = m/n we also have (for large n) x ≈ (m +
1)/(n + 1), so we need to solve

x2 =
1
2

giving

x =
1√
2

We’re almost done. Our x is not the breakdown point but the fraction
of good data we need to avoid breakdown. So 1 − x is the (asymptotic)
breakdown point, and this is

1− 1√
2
≈ 0.29289

3 Conclusions

3.1 Summary

estimator breakdown point
sample mean 0
sample pseudomedian 0.293
sample median 0.5

3.2 Analysis

From the breakdown point characterization of robustness, the sample
mean is the worst estimator ever invented. It is suitable only for perfect
data. No outliers at all. Both estimators associated with nonparametric
tests are good. The median is the better of the two.
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It is not clear how much robustness you need. Do you really expect half
your data to be junk? Or, more precisely, do you really need to protect
against the possibility that half your data are junk? Perhaps it is enough to
protect only against the possibility of up to 29% of your data being junk?

On the other hand, is it not just silly to have no protection whatsoever
against problematic data?

This breakdown point notion of robustness must be very different from
whatever people have in mind when they say (as many people and textbooks
do) that Student’s t test and related procedures (including the sample mean
as point estimate) are “robust” against departures from normality. I have
never found any mathematical arguments backing up such statements and
have come to the conclusion that they are essentially tautological.

We know that any outliers at all wreck the sample mean and related
procedures. We don’t prove here, but it is a fact, that skewness also wrecks
them. So does multimodality. Hence we conclude that the procedures that
assume the normal distribution are robust against departures from normality
that

1. keep the light tails of the normal distribution (no outliers),

2. keep the symmetry of the normal distribution, and

3. keep the unimodality of the normal distribution.

In short

So long as the “departures” from normality are so slight that
a human can’t tell the difference between the population distri-
bution and a normal distribution, then Student’s t and related
procedures work well.

Or, tautologically,

If departures from normality don’t hurt Student’s t, then they
don’t hurt Student’s t.

The tautology being that “if blah, then blah” is true whatever blah may be.

4 Addendum on Asymptotics

4.1 Student T

There is one notion of robustness that Student’s t and related procedures
do have. Perhaps we should mention it to be fair to their fans.
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We do know that for large sample sizes n there is almost no difference
between so-called z and t procedures. For large n, Student t critical values
are almost the same as normal z critical values. That’s why the bottom row
of a t table (for infinite degrees of freedom) are the z values. Mathematically,
we say t distributions converge to normal distributions as n goes to infinity.

We also know that the condition for the central limit theorem is finite
variance, which is one notion of “light tails” but a much weaker condition
than normality. The standard normal density function

f(x) =
1√
2π

e−x2/2

has very very light tails. But in order to have finite variance, it is enough
that a density f satisfy

f(x) ≤ C

x3+ε
, |x| ≥ M

for some constants C, M , and ε > 0. Tails going down like 1/x3+ε are very
much heavier than tails going down like exp(−x2/2).

So finite variance is a much larger family than normal. In fact finite
variance is a nonparametric model. The conclusion that we reach from all
of this is that the conventional z (large sample normal theory) procedures
are asymptotically robust in that they work for sufficiently large n for any
population distribution in this large nonparametric class.

Moreover t has the same properties as z. The Student t procedures are
asymptotically equivalent to the z procedures. So they are asymptotically
robust too.

But that is not the aspect of Student t that interests us. When we are
thinking of Student t as a competitor of the sign test and the signed rank
test, we are think of it and them as exact small sample procedures. And
whatever large sample robustness Student t may have is irrelevant to that
issue.

4.2 Two-Sample T and Variance Estimation

The reader may well be wondering why we made such a big deal of the
asymptotic robustness of the Student t family of procedures when it pales
in comparison to the exact small-sample robustness of the sign test and the
signed rank test and related procedures (not to mention other rank-based
procedures that we haven’t gotten to yet but also have similar small-sample
robustness).
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The reason is that asymptotic (large-sample) robustness is not to be
sneezed at. There are procedures, much studied and taught in theory of
statistics classes that don’t even have that. The most well known are the
following.

• The two-sample (non-paired) so-called “exact” Student t procedures
that assume equality of variances of the two populations and con-
sequently use a “pooled” estimator of the common variance. These
procedures are non-robust to any violation of the equality of variance
assumption. If the population variances are not exactly equal, they
give incorrect inference no matter how large the sample sizes are.

Their z competitors that do not assume equality of variances are better
for sufficiently large sample sizes (they are asymptotically robust).

• The one-sample tests and confidence intervals for the population vari-
ance based on the chi-squared distribution and the analogous two-
sample procedures based on the F distribution assume that the ratio
of population second and forth moments (the so-called kurtosis) is
exactly that of the normal distribution, that is,

E{(X − µ)4} = 3E{(X − µ)2} (1)

where µ is the mean. If (1) does not hold exactly, then the inference
is incorrect no matter how large the sample size may be. There is
no way to check (1) in any application since fourth moments are very
sensitive to tail behavior.

4.3 Conclusions for this Addendum

Really good procedures are robust (exact small-sample robust). They
are not wrecked by bad data. The sign test and the signed rank test and
their related procedures fall in this category.

The next best thing is asymptotically robust. Such procedures at least
work well for sufficiently large sample sizes. The one-sample t procedures
and the two-sample t procedure that does not assume equality of variances
and is not exact either (using Welch’s approximation for the distribution of
the test statistic) fall in this category.

The worst thing is having no robustness whatsoever. The other pro-
cedures we mentioned, the two-sample “exact” t procedures that assume
equality of variance, and the one- and two-sample variance estimation pro-
cedures based on chi-square and F , fall in this category. There are other
procedures in this category but we shall be merciful and not mention them.

6


