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Chapter 1

Introduction

1.1 Monte Carlo

Monte Carlo is a cute name for learning about probability models by sim-
ulating them, Monte Carlo being the location of a famous gambling casino. A
half century of use as a technical term in statistics, probability, and numeri-
cal analysis has drained the metaphor of its original cuteness. Everybody uses
“Monte Carlo” as the only technical term describing this method.

Whenever we can simulate a random process, we can calculate probabilities
and expectations by averaging over the simulations. This means we can handle
any calculation we might want to. If we can’t do pencil and paper calculations
deriving closed-form expressions for the quantities we want, we can always use
brute force computation. The Monte Carlo method may not be as elegant as the
pencil and paper method, and it may not give as much insight into the problem,
but it applies to any random process we can simulate, and we shall see that we
can simulate almost any random process. Pencil and paper methods are nice
when they work, but they only apply to a small set of simple, computationally
convenient probability models. Monte Carlo brings a huge increase in the models
we can handle.

Suppose X1, Xo, ... are a sequence of independent, identically distributed
(i. i. d.) simulations of some probability model. Let X denote a generic realiza-
tion of the model, so all of the X; have the same distribution as X. We want
to calculate the expectation of some random variable g(X). If we can do it
by pencil and paper calculations, fine. If not, we use Monte Carlo. Write the
expectation in question as = F{g(X)}. The Monte Carlo approximation of u
is the sample average over the simulations

= =3 g(X0). (L1)

Since fi,, is the sample mean of i. i. d. random variables g(X3), ..., g(X,)
having expectation p, the strong law of large numbers (SLLN) says [i,, converges
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almost surely to p as the number of simulations goes to infinity,
fin 225, n — oo. (1.2)

Furthermore, if Var{g(X)} is finite, say o2, then the central limit theorem (CLT)
says fi, is asymptotically normal with mean p and variance o2 /n,

Viljin — p) > N(0,02).

The nice thing for statisticians about Monte Carlo is that we already understand
the theory. It is just elementary statistics.

All of this applies to calculating probabilities as well as expectations, because
probabilities are expectations of indicator functions.

Example 1.1. Evaluating a Probability.
If X and Y are independent normal random variables with mean zero and the
same variance, what is P(Y < X?2)? We could do this by numerical integration

p= [ o)o() ds

where ¢ is the standard normal probability density function and @ is the stan-
dard normal distribution function (Mathematica gives p = 0.719015), but we
will pretend we can’t and use Monte Carlo.

We generate a large number n of pairs (X;,Y;) of independent standard
normal random variables. Then fi,, is the proportion of pairs having Y; < X2.
The first time I tried this with n = 1000, I got [, = 0.700.

We do not know o2 but can, as everywhere else in statistics, estimate it
by the sample variance, which when we are estimating a probability has the
binomial form p(1 — p) where p = fi,,. Thus for fi,, = 0.700 we get an estimate
of o/y/n of 1/0.7 x 0.3/1000 = 0.0145.

So we find that statistics works (no surprise). The standard error (SE)
calculation says that our Monte Carlo approximation 0.700 is about one SE,
0.0145 more or less, from the exact answer, and it is just a little over one SE
low.

In order to avoid confusion we call n the Monte Carlo sample size when
it is necessary to distinguish it from some other “sample size” involved in the
problem. Often in statistics, the random process X we are simulating is a model
for data. If X is a vector of length m, the usual terminology of statistics says
we have sample size m. Calling n the Monte Carlo sample size avoids confusion
between m and n.

Similarly we call the standard error of the Monte Carlo approximation the
Monte Carlo standard error (MCSE) in order to distinguish it from any other
“standard error” involved in the problem. It my be that the very thing we
are trying to calculate by Monte Carlo is the standard error of a parameter
estimate or a related quantity like Fisher information. Then the term MCSE
avoids confusion.
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1.2 Problems with Ordinary Monte Carlo

The main problem with ordinary independent-sample Monte Carlo is that
it is very hard to do for multivariate random quantities. A huge number of
methods exist for simulating univariate random quantities. Devroye (1986) is
the definitive source. Ripley (1987) is more introductory but is authoritative as
far as it goes. Knuth (1998) is also authoritative, though oriented more toward
computer science than statistics.

There are a few tricks for reducing multivariate problems to univariate prob-
lems. A general multivariate normal random vector X ~ A (p,¥) can be simu-
lated using the Cholesky decomposition of the variance matrix ¥ = LLT. Let Z
be a N (0, I) random vector (each component is standard normal and the compo-
nents are independent). Then X = p+ LZ has the desired N (u,X) distribution
(Ripley 1987, p. 98). Wishart distributions can also be simulated (Ripley 1987,
p. 99-100). There are a few other special cases in which independent simulations
of a multivariate process are possible, but not many.

One general method that has occurred to many people is to use the laws of
conditional probability. Simulate the first component using its marginal distri-
bution, simulate the second component using its conditional distribution given
the first, then simulate the third component using its conditional distribution
given the first two, and so forth. The sad fact is that this is almost never useful,
because the required marginal and conditional distributions are not known and
cannot be used for simulation.

In summary, ordinary independent-sample Monte Carlo is not useful for most
multivariate random quantities. Something better is needed.

1.3 Stochastic Processes

A discrete-time stochastic process is the same as what is called a random
sequence in Fristedt and Gray (1997, Chapter 22). It is a sequence X, X, ...
of random elements of some fixed set called the state space of the stochastic
process. A specific familiar example is a sequence of i. i. d. random variables.

The point of calling this object a “random sequence” or “stochastic process”
is to serve as a reminder that the entire sequence can be considered a random
object. A familiar example of this is the SLLN (1.2), which can be rewritten

Pr(jin — 1) = 1

where the probability refers to the whole infinite sequence. This is a measure-
theoretic technicality that will play only a very minor role in our study of Markov
chains. It is a theorem of measure-theoretic probability that the probability law
of a “random sequence” contains no more information than the so-called “finite-
dimensional distributions,” meaning the distributions of finite segments of the
sequence X7, ..., X,,. The probability law of the infinite sequence, thought of as
an infinite vector (X1, Xa,...), determines the joint distribution of the vector
(X1, ..., Xp) for each n, and vice versa: the finite-dimensional distributions
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collectively determine the probability law of the infinite sequence. Thus mostly
finite-dimensional distributions are enough.

A continuous-time stochastic process is a set of random variables X; indexed
by a continuous variable, say ¢ € [0, 1]. An example is Brownian motion (Fristedt
and Gray 1997, Chapter 19). These have not played much role in Markov chain
Monte Carlo, and we shall ignore them.

1.4 Markov Chains

In this course, the term Markov chain refers to a discrete-time stochastic
process on a general state space that has the Markov property: the future
is independent of the past given the present state. This follows one of the
two conflicting standard usages of the term “Markov chain.” Older Markov
chain literature (Chung 1967) uses “Markov chain” to refer to a discrete-time
or continuous-time stochastic process on a countable state space that satisfies
the Markov property. The limitation to a countable state space would rule out
most of the interesting applications. Thus much of the modern Markov chain
literature (Nummelin 1984; Meyn and Tweedie 1993) and all of the Markov
chain Monte Carlo (MCMC) literature follows the usage adopted here.

So to repeat our definition with more specificity, a Markov chain is a discrete-
time stochastic process X7, Xo, ... taking values in an arbitrary state space and
having the property that the conditional distribution of X, 1 given the past,
X1, ..., X,,, depends only on the present state X,,. Following Nummelin (1984)
and Meyn and Tweedie (1993) and all of the MCMC literature, we will further
restrict the term “Markov chain” to refer to a Markov chain with stationary
transition probabilities, that is, the conditional distribution of X, 1 given X,
is the same for all n.

The specification of a Markov chain model has two pieces, the initial distri-
bution and the transition probabilities. The initial distribution is the marginal
distribution of X;. The transition probabilities specify the conditional distribu-
tion of X,,4+1 given X,,. Since we always assume stationary transition probabil-
ities, this is just one conditional distribution, the same for all n.

By mathematical induction, these two pieces determine the marginal dis-
tribution of Xy, ..., X,, for any n. The base of the induction is obvious, the
marginal distribution of X7 is the initial distribution. Assuming the distribution
of X1, ..., X;,—1 is known, the distribution of X7, ..., X,, is determined by the
usual

joint = conditional x marginal

formula when densities exist, where “marginal” refers to the distribution of X7,

.oy Xn1, “joint” refers to the distribution of X, ..., X,, and “conditional”
refers to the distribution of X, given X;, ..., X,,_1, which by the Markov
property depends on X, _; alone and is the specified transition probability. A
more general proof that does not depend on the existence of densities will be
given later after we have developed the required notation.
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Example 1.2. AR(1) Time Series.
An AR(1) time series is a stochastic process X1, Xo, ... with state space R
defined recursively by

X, =pX,_1+e, (1.3)

where eg, eg, ... are i. i. d. N'(0,72) and where p and 72 are real numbers that
are parameters of the model. The distribution of X; may be specified arbitrarily.

It is easy to see that this stochastic process is a Markov chain (with sta-
tionary transition probabilities). The conditional distribution of X,, given X1,

vy Xp_1 is N(pX,_1,72), which is the same as the conditional distribution
conditioning on X,,_; only. Thus the process has the Markov property. Since
the conditional distribution of X,, given X,,_; is the same for all n, the process
has stationary transition probabilities. If the last point is not clear, perhaps
different notation will help. The conditional distribution of X, given X,,_1 =z
is N(pz,72), and it is now clear that this does not depend on n.

For those who are curious about the name, “AR(1)” stands for autoregressive
of order one. Equation (1.3) looks like the specification of a regression model
except that the same variables occur on both sides of the equation at different
times, thus the “auto-” to indicate this.

An AR(k) time series is defined by the recursion

X, = Pan—l + p2Xn72 +--+ kanfk + en. (14)

It is clear that this is not a Markov chain, because the conditional distribution
of X,, given the past depends on X,,_g, ..., X;,—1 rather than just on X,,_;.
An AR(k) time series can be turned into a Markov chain by redefining the

state space. Consider the stochastic process Yi, Ys, ... with state space R
defined by
Xn
Xn+1
Y, = Xn+2
Xnth-1

where the X; form an AR(k) process. The new process is Markov, since the
conditional distribution of Y;, given Y7, ..., ¥;,_1 depends only on Y,,_;. It also
obviously has stationary transition probabilities.
This is a special case of a vector-valued AR(1) time series with state space
RF, defined by
Yn = AYn—l + én (15)

where now Y,, and e,, are vectors in R¥ with e, es, ... arei. i. d. N(0, M) and
where and A is a linear transformation from R¥ to R¥, which can be represented
by a k x k matrix, and M is also a k X k matrix, the covariance matrix of the
vectors e;. The initial distribution (the distribution of Y7) can be specified
arbitrarily. The scalar parameter p in (1.3) corresponds to the matrix A in
(1.5), and the scalar parameter 72 in (1.3) corresponds to the covariance matrix
M in (1.5).
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In the example, we took a scalar-valued AR(k) time series, which is not
Markov, and simply by changing what we thought of as the state space, it
became a vector-valued AR(1) time series, which is Markov. This illustrates a
very important general principle.

Whether a process is Markov depends on what you consider the state.

We will see many examples of the use of this principle. Adding more variables
to the state, can make a process Markov that wasn’t before. It can also turn a
process that was Markov into a different Markov process with simpler properties.

1.5 Stationary Stochastic Processes

A discrete-time stochastic process X7, Xo, ..., not necessarily Markov, is
stationary if the joint distribution of the vector (X,,, X,,11,. .., Xn1x) does not
depend on n for each fixed k.

This definition simplifies considerably when applied to a Markov chain. The
conditional distribution of (X, X;,11,..., X, 1) given the entire past history
is a function of X, alone by the Markov property. Therefore a Markov chain
is stationary if the distribution of X, does not depend on n. Note well the
distinction, a Markov chain having stationary transition probabilities is not nec-
essarily stationary. The former is a property of the transition properties alone,
the latter involves the initial distribution.

A probability distribution is invariant for a specification of transition prob-
abilities if the Markov chain that results from using that distribution as the
initial distribution is stationary.

A important problem in the theory of Markov chains is determining for a
specification of transition probabilities whether an invariant distribution exists
and is unique. For us the existence aspect of this problem will not be interesting,
because in Markov chain Monte Carlo we always construct chains to have a
specified invariant distribution. We will be interested in the uniqueness question.

Example 1.3. I. I. D. Sequences.

A trivial special case of Markov chains is an i. i. d. sequence X1, Xo, .... Since
the conditional distribution of X,, given any other variables is the same as its
unconditional distribution by independence, the Markov property holds. The
Markov chain is stationary because the X, are identically distributed. The
unique invariant distribution is the distribution of the X,,.

Example 1.4. Maximally Uninteresting Chains.

A very trivial special case of Markov chains is defined by the recursion X,,11 =
X,. This specifies a set of transition probabilities for which any probability
distribution is invariant. Since X,, = X7 for all n, of course the distribution of
X, is the same for all n. The reason this chain is “maximally uninteresting” is
because it goes nowhere and does nothing. Observing the whole chain tells us
nothing more than observing Xj.
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Needless to say, we will not be very interested in “maximally uninteresting”
chains. The only point in knowing about them at all is to provide simple
examples. For example, they do tell us that the uniqueness question for invariant
distributions is a real question. There do exist transition probabilities with more
than one invariant distribution.

Example 1.5. AR(1) Time Series (Continued).

The fact that linear combinations of normal random variables are normal leads
one to suspect that an AR(1) time series has an invariant distribution that is
normal, say A (u,0?). We can determine y and o2 by checking the first and
second moments of (1.3).

n=E(Xy) = pE(Xn_1)+ Elen) = ppt (1.6a)

and
0? = Var(X,,) = p® Var(X,,_1) + Var(e,) = p?c?® + 7°. (1.6b)

From (1.6a) we see that we must have either p = 1 or u = 0. The choice
p = 1 combined with (1.6b) requires 72 = 0, which gives us the maximally
uninteresting chain as a degenerate special case of the AR(1) model.

The choice p = 0 places no restriction on p, but we get other restrictions
from (1.6b). Since 02 and 72 are both nonnegative, p> > 1 would require
0?2 = 72 = 0, which again gives a degenerate model. Thus the only Gaussian
invariant distributions for nondegenerate AR(1) models (i. e., 72 > 0) have
p=0and p? <1 and

2 7
ot =T ek (1.7)

In fact, this is the unique invariant distribution (Exercise 1.1).

1.6 Asymptotics for Stationary Processes and
Markov Chains

1.6.1 The Law of Large Numbers

The theorem for stationary stochastic processes that is analogous to the
SLLN for i. i. d. sequences is often called the Birkhoff ergodic theorem (Frist-
edt and Gray 1997, Section 28.4). Under a certain technical condition called
“ergodicity” it has exactly the same conclusion as the SLLN. If Y7, Y5, ... is a
stationary real-valued stochastic process that is ergodic, and E(Y;) = u, then

Yo 22, n — 00. (1.8)
A stationary Markov chain X, Xo, ... is a stationary stochastic process,

but it needn’t be real-valued. If g is a real-valued function on the state space of
the Markov chain, then g(X7), g(X2), ... is a stationary real-valued stochastic
process. Note well that it is not necessarily a Markov chain, because condition-
ing on ¢g(X,) as opposed to X,, may not give the Markov property. However,
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the process ¢g(X7), g(X2), ... does have many nice properties. It is called a
“functional” of the original chain.

If the original Markov chain has a unique invariant distribution, then it
is an ergodic process in the sense required for the Birkhoff ergodic theorem,
and the SLLN holds for the functional of the chain if the functional has finite
expectation, that is, if Y; = ¢(X;) and E(Y;) = p, then (1.8) holds, which is the
same except for different notation as (1.2), which we used in analyzing ordinary
independent-sample Monte Carlo.

It is not completely obvious from the statement we just gave, but the SLLN
for Markov chains does not have anything to do with the initial distribution
or stationarity. Because it involves almost sure convergence, the convergence
happens from almost all starting points. Thus we could restate the result as
follows. If for a fixed specification of transition probabilities there is a unique
invariant distribution, then the SLLN holds for any initial distribution that is
dominated by the invariant distribution (is absolutely continuous with respect
to it).

One should not get too excited about this formulation of the SLLN. Later we
will see that an even stronger version is typically true. Under a slightly stronger
regularity condition than uniqueness of the invariant distribution, called Har-
ris recurrence, the SLLN holds for any initial distribution whatsoever. This
condition is too technical to go into now. We will look at it later.

1.6.2 The Central Limit Theorem

We have just seen that the SLLN is no more complicated for Markov chains
than for i. i. d. random variables. This is not the case with the CLT. The
reason the CLT is more complicated is that “the expectation of a sum is the
sum of the expectations” holds for any random variables, dependent or not,
but the analogous rule for variances, “the variance of a sum is the sum of the

”

variances,” only holds for independent random variables. The general rule is

ar (Z Y) =Y Cov(Vi,Y))

i=1 j=1
—ZVar +22 Z Cov(Y;,Y))
1=1 j=i+1

If the variables form a stationary stochastic process, then Var(Y,) does not
depend on n and Cov(Y,,,Y,,+x) does not depend on n for fixed k. Hence

(ZY)nVar +22n7 ) Cov(Y}, Yjik)

(where by stationarity, the right hand side does not depend on j). To simplify
notation, we define for any real-valued stationary stochastic process Y7, Yo, ...
the lag k autocovariance v, = Cov(Y},Y;1r) (which does not depend on j by
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stationarity. Note that as a special case 7o = Var(Y}). Using this notation, the
variance of the sample mean Y,, becomes

n—k
. 1.9
p—_ (1.9)

n—1
n Var (YH) =7 +2 Z
k=1

In the special case where the Y; are i. i. d. with Var(Y;) = o2, this reduces to
the familiar n Var (?n) = vy = 0?2 because all the covariances are zero. When
we have dependence (1.9) makes it clear that the variance in the CLT cannot
be the same as with independence.

So far so good, but now things get very murky. If we look in the literature on
central limit theorems for stationary processes, for example in Peligrad (1986),
we find central limit theorems under many different conditions, but none of the
conditions seem easy to verify, nothing like the very simple condition in the
i. i. d. case (there is a CLT if the variance is finite). For now we will not worry
about conditions that imply the CLT. Let us just assume the CLT holds and
proceed.

If the CLT holds, we might expect the limiting variance to be the limit of
(1.9) as n — oo, and if things are simple this limit will be

T :'7()+2Z'Yk~ (1.10)
k=1

There are two issues here. First is the limit of the variances the variance of the
limiting random variable? The answer is not necessarily, a condition implying
that is uniform integrability (Fristedt and Gray 1997, p. 108 and Problem 26 of
Chapter 14). The second issue is whether the limit of (1.9) as n goes to infinity
is actually (1.10). The answer to that is also not necessarily. The limit

n—1
—k
im S, (1.11)
k=1

is what is called in real analysis the Cesdro sum of the ;. It is a theorem of
real analysis (Stromberg 1981, Theorem 7.81) that the Cesdro sum is equal to

the ordinary sum
Z% = 7}32@2% (1.12)
k=1 k=1

if the series is absolutely summable, that is, if >~ |7k| < co. When the series
is not absolutely summable, it may be the case that the Cesdro sum (1.11)
exists, but the ordinary sum (1.12) does not exist. Neither of these points
enters Markov chain theory in an important way. We have fussed about these
two issues only so that is it is clear what you cannot say about the variance in
the CLT for stationary processes.

In the special case where Y; = g(X;) is a functional of a Markov chain, the
situation remains murky. Theorems that are sharp have conditions that are hard
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to verify. There is one condition that implies a CLT and which can be verified
in at least some practical examples, that the Markov chain be geometrically
ergodic and that E{g(X;)?T¢} exist for some ¢ > 0 (Chan and Geyer 1994), but
this condition is still too complicated to discuss now. Sorting out what we can
say about the CLT for Markov chains will be a major topic of the course.

As was the case with the SLLN, the CLT for a Markov chain does not require
stationarity. The same technical condition, Harris recurrence, that guarantees
the SLLN holds for all initial distributions if it holds for the invariant distri-
bution guarantees the same thing about the CLT: the CLT holds for all initial
distributions if it holds for the invariant distribution.

Example 1.6. AR(1) Time Series (Continued).

For a stationary, scalar-valued AR(1) time series, autocovariances are easy to
calculate using the recursion (1.3). Recall that E(X,,) = 0 and Var(X,) = o2,
where o is given by (1.7). So

Cov(Xpn, Xntk) = Cov( Xy, pXnik—1+ entk) = pCov(Xy, Xpyr—1) (1.13)
By mathematical induction we get
Cov(Xpn, Xntk) = pFo?. (1.14)

The base of the induction, the case k = 0, is clear. Plugging (1.14) into (1.13)
shows the induction step is correct.
Now we can find the asymptotic variance (1.10)

The =0 + 22%~
k=1
=2 (1 + 22;0’“)
k=1

o2 (1+2p)
I—p

1
— 52 +p
L—p

(1.15)

the geometric series being summable because of the condition |p| < 1 which is
required for stationarity. This model is so simple we can show both the SLLN
and the CLT by direct methods (Exercise 1.2).

A Caution: The v are the lagged autocovariances for the stationary Markov
chain, started in the invariant distribution. Thus (1.9) is the variance of \/n Y,
for the stationary Markov chain. We have seen that when the sequence of auto-
covariances is absolutely summable, this variance converges to the asymptotic
variance (1.10).

A tempting error, that many people have fallen prey to, is the very similar
statement that the variance of \/n Y, converges to the asymptotic variance
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without requiring stationarity. The error is easily seen by considering the AR(1)
process.
To simplify notation a bit, let us start with X, rather than X, then

X1 =pXo+e
Xo=pXi +e
— p2X0 + per + €9 (116)

Xo=p"Xo+p" e +p" Pea o ten

It is clear that if Xy does not have finite variance, then neither does any X,,,
nor does X,. Thus the variance of \/n X, (which is always infinite) does
not converge to the asymptotic variance (1.10) even though the CLT holds
(Exercise 1.2).

1.6.3 Estimating the Asymptotic Variance

It is not enough to have a CLT. We must also be able to estimate the variance
in the CLT (1.10). There are many ways to do this, the simplest and the only
one we will look at now is the method of batch means. It is based on the fact
that if a Markov chain X7, Xo, ... satisfies the CLT and we want to estimate
the mean of a functional Y;, = g(X,,) using the estimate Y,, and

nVar(Y,) — aflt,

then the variance of the average over a segment of the chain of sufficiently
long length will be a good estimate. Hence divide the chain into consecutive
segments of length m. These are called batches. Write 02, = m Var(Y,,), which
for sufficiently large m will be close to aflt, because o2, is given by (1.9) with
n replaced by m, and (assuming absolute summability of the autocovariance
sequence) this converges to 02, as m — oo.

Now we use a trick like the one we used in converting an AR(k) process,
which was not Markov, into a vector-valued AR(1) process, which was. Write

Xm(7b—1)+1
7, = ;
Xonn

Then the Z,, form a Markov chain, and the batch means

1 m
i=1
are a functional of this Markov chain. Hence by the SLLN for Markov chains
(a. k. a. the Birkhoff ergodic theorem),
— 1

n —
n

Sy

n
> Bi =5 B(Br) = p,

i=1
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where p = E(Y;) for all 4, assuming stationarity of the Markov chain, and

LS B, — i 2 Var(By) = Var(¥,) =
n
=1

2

2
Im ~ Ol

m m

Combining these gives

1 — o?
2 _ Z 312 . T
Sbatch = E [BZ - Bﬂ] ~ m
1=1

Combining this with the CLT gives

— o2 m
Yn ~ N </~L7 ;;t) ~ N (ﬂa gs%atch)

All of this can be explained without formulas if you trust such an argument.
The batch means B; have approximately the same variance as Y,, except for a
factor m/n that arises from the different lengths of the sequences. The variance
of the batch means is estimated by their sample variance. End of argument.

So how large should the batch size be? To be useful, it should be large
enough so that 02, ~ 02,. And how large is that? It depends on the details of
the Markov chain problem. Since we rarely know anything about those details,
we want a batch size as large as possible.

On the other hand we want the number of batches to be large so that s?_,
will be a good estimate of o2, /m. We want at least 20 batches, and 100 or more
would be desirable.

This creates something of a conflict. We want the batch size to be large,
very large. We also want the batch size to be small relative to the Monte Carlo
sample size n. Unless n is very, very, very large, we may not be able to satisfy
both wants. It is frustrating that we need a much larger Monte Carlo sample
size to estimate the MCSE accurately than we need to estimate accurately the
quantity of interest. However, we do not need a very accurate MCSE, one
significant figure will do, whereas we want as much accuracy as possible, two or
more significant figures, for the sample mean (our Monte Carlo approximation
of the quantity of interest).

So there often is a batch size that works. The question is how to find it.
One recommendation that has been made in the literature (Schmeiser 1982) is
that the number of batches should be small, no more than thirty, since that will
give a decent estimate of o2, and there is generally no telling how large m must
be so that o2, is close to o2, /m.

A possible diagnostic of a batch size being too small is to check the lagged
autocovariances of the batches. Since the batch means form a functional of a
Markov chain, the variance in the CLT is given by a formula like (1.10), say

00
nVar(En) — Ym,0 + 2 Z Ym,k
k=1
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where

Ym,k = m Cov(Bj, Biyy)

1
NP
i=1 j=mk+1
m—1 m— |l|
= Z VYmk41

l=—(m—1)

The lag zero autocovariance is v, 0 = 02,. The other lagged autocovariances
Ym,k for £ > 1 converge to zero as m — oo, because in order for the original
autocovariance sequence to be absolutely summable we need || — 0 as k — oo.

Thus an equivalent way to think about the batch length m being large
enough, is considering whether the batch means B; are almost uncorrelated.
If the vy, for E > 1 are not significantly different from zero, then m is large
enough. We shall defer till later an explanation of how to test whether auto-
covariances are zero, but computer packages with time series capabilities may
have such a test built in. In S-pLUS, for example, the acf function makes an
autocorrelation plot with 95% confidence limits about zero. Autocorrelations
within the confidence limits can be considered negligible.

1.7 Markov Chain Monte Carlo

We are finally ready to say something about Markov chain Monte Carlo.
Specific algorithms for MCMC will be a major focus of the course. Here we will
just mention one algorithm, not the best, nor the most useful, but the easiest to
explain. This is the Gibbs sampler, thus named by Geman and Geman (1984),
although special cases of the algorithm had been used by earlier authors, for
example, Ripley (1979).

The general notion of MCMC is to estimate probabilities or expectations by
simulating a Markov chain and averaging over the simulations. The probabili-
ties or expectations calculated are those for functionals g(X;) of the stationary
chain, hence they are probabilities or expectations with respect to the invariant
distribution. Thus the first task in any MCMC application is to find a Markov
chain having a specified invariant distribution.

The Gibbs sampler is a method that does this using almost no theory, no
more than the definition of conditional probability. Before we can define it,
though we need to look at even more basic concept: combining update mech-
anisms. Let us call any well-defined procedure that makes a random change
in the state of a system according to a probability law that depends only on
the current state a Markov update mechanism. A Markov chain results from
iterating a Markov update mechanism. In the context of MCMC, we can think
of a Markov update mechanism as a bit of computer code that makes a random"
change in the state.

1Pedants will insist on “pseudo-random” rather than “random” here to indicate that com-



CHAPTER 1. INTRODUCTION 14

The point of isolating the notion of an update mechanism, is that we can
use it to define new Markov chains. Let us say that an update mechanism
preserves a specified probability distribution if that distribution is invariant for
the Markov chain obtained by iterating the update mechanism. So another way
to state the “first task in MCMC” is to find a Markov update mechanism that
preserves a specified distribution.

1.7.1 Combining Update Mechanisms

There are several ways of combining update mechanisms that preserve a
specified distribution to obtain a new update mechanism that also preserves
the same distribution. The first is composition, which is following one update
mechanism with another. It is clear that if an update mechanism U; preserves
a specified distribution, and so does another update mechanism Us, then so
does U followed by Us, which we will denote U1Us. It is also clear that this
can be applied to more than two update mechanisms that all preserve the same
distribution: U;Us, ... Uy preserves a distribution if each of the U; does.

Another way of combining update mechanisms is mizing, which is making
a random choice among update mechanisms. Suppose Ui, ..., Uy preserve
the same distribution and py, ..., px is a fixed probability vector (the p; are
nonnegative and sum to one). Then the mechanism that updates the state by
chosing U; with probability p; and then performing U; is called the mixture
of the U; with mixing probabilities p;. It is clear that this also preserves the
specified distribution, because no matter which U; is chosen the distribution
is preserved. Later we will meet several more complicated ways of combining
update mechanisms. These two will do for now.

The terms used here are not standard. Most of the literature uses the word
“scan” in this context, the idea being that if you have several update mecha-
nisms preserving the same distribution, you want to “scan” though them to use
them all. What we call “composition” most MCMC authors call “fixed scan,”
and what we call “mixing” most MCMC authors call “random scan.” There are
two reasons for our new terminology. First, it is more comprehensive. As we
will see, it covers many ways of combining update mechanisms that are not de-
scribed by the terms “fixed scan” and “random scan.” Second, it is more closely
connected to Markov chain theory. As we will see, composition corresponds to
composition of the Markov kernels representing the update mechanisms, and
mixing corresponds to linear combinations.

1.7.2 The Gibbs Sampler

Now we can present the notion of a Gibbs update mechanism. At the begin-
ning of an application of MCMC we don’t have a Markov chain, just a specified
distribution we want our Markov chain (when invented) to preserve. Let X
be a random element of the state space having this distribution, and let h(X)

puters don’t have really truely random numbers. We won’t bother with this distinction.
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be any function of X. A Gibbs update gives X a new value simulated from
the conditional distribution of X given h(X). That is this update preserves
the specified distribution is a straighforward consequence of the definition of
conditional probability. If g(X) is any integrable function, then

E{E[g(X)[n(X)]} = E{g(X)}

(sometimes called the iterated expectation formula) shows that the expectation
of g(X) is unchanged by the update, hence, since g could be the indicator of
any measurable set A, this shows that Pr(X € A) is unchanged by the update
for A.

This usage is also not standard. What we have described here includes what
is usually called a Gibbs update as a special case, but it also includes many
updates most MCMC authors would call “block Gibbs” or “generalized Gibbs”
or perhaps not even recognize as updates closely related to what they think of as
Gibbs. It seems foolish not to collect all updates based on the same extremely
simple idea under one name, and your humble author dislikes terminology of
the form “generalized blah de blah.”

The usual notion of a Gibbs update is the following. The state X is a vector
X = (X1,...,Xk). (Warning: for the next few paragraphs, subscripts indicate
components of the state vector, not the time index of a discrete-time stochastic
process, as they have up to now.) There are k Gibbs update mechanisms.
Each changes only one component X; giving it a new value simulated from
its conditional distribution given the rest of the variables. It is a very useful
notational convenience when dealing with Gibbs sampling to have a notation
for “the rest.” A widely used notation is

X=Xy, Xio1, Xigr, -, Xi).

Thus a Gibbs update gives X; a new value simulating from the conditional
distribution of X; given X_;. These k conditional distributions of each Xj;
given X _; are called the full conditionals of the distribution of X in the Gibbs
sampling literature.

The very limited view of Gibbs updates just described is an obvious special
case of the more general view. Taking h(X) = X_; gives the Gibbs update
of X;. In a very curious inversion, the “general view” is a special case of the
“limited view” if looked at the right way, a way that starts with the question:
what is a “variable” to be Gibbsed? The “limited view” starts with a fixed
list X1, ..., Xy of variables. It declares that these are the only mathematical
objects that will be allowed to be called “variables” in discussion of the problem
at hand. The “general view” says, why not some other list of “variables”? If
we consider h(X) and X to be the “variables,” we get the “generalized Gibbs”
update as a special case of the “limited Gibbs” update, which is absurd. Better
to call them all just plain Gibbs, as we have recommended here.

Example 1.7. Bayesian Inference for the Two-Parameter Normal.
Suppose we observe data Xi, ..., X, i. i. d. M(p, A7!) and want to make
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Bayesian inference about the parameters @ and A. The distribution we want to
know about here is the posterior distribution of p and A\ given the data X1, ...,
X . The posterior depends on the data and on our prior, which we will assume
has a probability density function g(u, A).

As is well known (DeGroot 1970, Section 9.6), there is a closed-form solution
to this problem, if (big if) we choose the prior for reasons of mathematical
convenience to be of the form?

A ~ Gamma(a, 3) (1.17a)
pA ~N(y,67'AH (1.17Db)

where «, 3, 7, and 0 are hyperparameters of the prior to be chosen to reflect
subjective prior opinion (or objective, call it what you will, your humble author
has no ax to grind here).

This is a so-called conjugate family of prior distributions (DeGroot 1970,
Chapter 9), one that is closed under sampling, which means the posterior dis-
tribution is in the same family (with different values of the hyperparameters)
as the prior for any sample size n and any values of the data.

Bayesians have always felt a need to justify the curious prior dependence
between p and A. Why have Var(u|\) = §71A71? How does that represent any-
one’s prior opinion? The justification is that, because this is a conjugate family,
the prior could have arisen as the posterior from some earlier data analysis, and
even if a flat prior would have been used then, the resulting posterior, which is
now our prior, would exhibit this “curious” dependence (DeGroot 1970, p. 170).
There is something unsatisfactory about this explanation. Why this particular
family of priors?

The family obtained by keeping (1.17a) and changing (1.17b) to

pA ~ N (y,671), (1.17c)

is no longer a conjugate family, but it is a reasonable family of priors, perhaps
more reasonable. We cannot resolve the question of which family is better.
A subjectivist Bayesian always resolves the issue by asking an “expert” or a
“user” or whatever one wishes to call the person whose subjective opinion is
to be used. The opinion of statisticians, especially those not involved in the
particular application is irrelevant. Having no particular application in mind
and hence no users to ask, we can have no opinion about which family of priors
is better, or for that matter whether either family is any use at all. We can only
proceed with the example to see how it turns out, leaving questions of relevance
unanswered.

The conjugate family is “pencil-and-paper-friendly” (to coin a phrase by
analogy with “user-friendly”). The family described by (1.17a) and (1.17c) is

2The notation Gamma(a, 3) here indicates the distribution with density

fla) = %xme*ﬁz, £>0

rather than the other convention which replaces 3 by 1/3.
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“Gibbs-friendly” because as we will see, there is no problem sampling it with
the Gibbs sampler. The likelihood times the prior is proportional to

)

n\v, n\,_ a1 —
h(u,A)/\”/zexp{ 5 Q(In.u)2}>‘ te ﬁAexp{Q(uv)Q}

where Z,, is the sample mean and v,, is the sample variance with n rather than
n — 1 in the formula, that is

n
_ 1
Ly = — E ZT;
n <
=1
n
1
= \2
Uy = — E (z; — Zp)
n-
=1

Staring a bit at the definition of h(u, ) we see that for fixed A it is e to a
quadratic function of u, hence the “full conditional” for p is normal, and that
for fixed p it is a power of A times e to a constant times A, hence the “full
conditional” for A is gamma. Specifically,

Ap ~ Gamma (aJrg,ﬁJr%Jrﬁ(fnfu)z) (1.18a)

2 2
JIA N,(n/\a_:n+67 1 )

nA\+39d ‘nA+4

(1.18Db)

(Exercise 1.7).

So here is the recipe for the Gibbs sampler for this problem. Start anywhere,
say at the prior means p; = v and Ay = «/f8. Then alternate the update
steps. Simulate Ay from the distribution (1.18a) with p; plugged in for u. Then
simulate po from the distribution (1.18b) with Ay (the current value) plugged
in for A\. And repeat.

e Simulate A\, from the distribution (1.18a) with p,,—1 plugged in for pu.
e Simulate p, from the distribution (1.18b) with A, plugged in for .

This produces a Markov chain (A, i), n = 1, 2, ... with state space R2.

There are several ways to look at the simulation output. One is to look at
time-series plots of functionals of the chain. An example is Figure 1.1, which
plots p,, versus n. The time series plot shows very little autocorrelation. The
reader should be warned that this example is very atypical. Most MCMC time-
series plots show much more autocorrelation. This is a very easy Markov chain
problem.

Another way to look at the simulation output is a scatter plot of two function-
als of the chain. An example is Figure 1.2, which plots u,, versus o, = 1v/A,.
In this figure we have lost the time-series aspect. It gives no indication that
the sample is from a Markov chain or how much dependence there is in the
Markov chain. There is no way to tell, just looking at the figure, whether this
is an MCMC sample or an ordinary, independent-sampling sample. This is an
important principle of MCMC.
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Figure 1.1: Time series plot of Gibbs sampler output for g in the two-parameter
normal model. Sufficient statistics for the data were %, = 41.56876, v, =
207.5945, and n = 10. Hyperparameters of the prior were a = 1, f = 202,
v =50, and § = 1/10%. The starting point was u =y and A\ = /3.
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Figure 1.2: Scatter plot of Gibbs sampler output for x and o = 1/4/X in the

two-parameter normal model, the same run as shown in Figure 1.1.

An MCMC scatter plot approximates the distribution of interest, just

like an OMC (ordinary Monte Carlo) scatter plot.

This follows from the SLLN. Suppose A is any event (some region in the figure).

Then the SLLN says

n

1

n -

> 1A pn) 255 Pr{(\, p) € Aldata}
1=1

Without the symbols, this says the fraction of points in a region A in the figure

approximates the posterior probability of that region.

Yet another way to look at the simulation output is a histogram of one
functional of the chain. An example is Figure 1.3, which plots a histogram of
the p,. By the SLLN again, this is the MCMC approximation of the marginal

posterior distribution of p (same argument as for scatter plots).

A clever method due to Wei and Tanner (1990) gives a much better estimate
of the marginal posterior for u. Curiously, it ignores the simulated values of p
and uses only the simulated values of A. The distribution of u given A is a known
normal distribution (1.18b). Denote its density by f(u|A, data). Let fy(A|data)
denote the marginal posterior density of A (which is not known). The marginal
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Figure 1.3: Histogram of Gibbs sampler output for g in the two-parameter
normal model, the same run as shown in Figure 1.1. The curve is the estimator
of Wei and Tanner (1990) given by (1.19).
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posterior for y is then given by

f#(,u|data):/f(u|)\,data)f>\()\\data) dA.

The integrand is the joint posterior of (u, A) given the data, so integrating out
A gives the marginal for u. We cannot easily do the integral analytically, but
we can do it by Monte Carlo

fum(pldata) = % > F(plni, data) (1.19)
=1

where the \; are the simulated values from the MCMC run. Note well that
(1.19) is to be considered a function of p. For fixed data and MCMC output Ay,
..+, Ap, wWe vary p obtaining the smooth curve in Figure 1.3. Clearly the smooth
curve is a much better estimate of the marginal posterior than the histogram.
It is also much better than the histogram smoothed using standard methods of
density estimation, such as kernel smoothing.

We can also get a highest posterior density (HPD) region for . An HPD
region is a level set of the posterior density, in this case a set of the form

A= {u: fululdata) > ¢}

for some constant ¢, which is chosen to give a desired posterior coverage, e. g.,
a 95% HPD region choses ¢ so that P(u € A.|data) = 0.95. For any event A,
the SLLN says that this probability is approximated by

1 n
P(p € Aldata) ~ - Z Ta(ps)
i=1

So a region A will have 95% coverage, as estimated by MCMC, if it contains
95% of the points ji1, ..., iy. It will be a HPD region if it has the property that
fu(p|data) is larger for any p € A than for any p ¢ A. Thus we estimate ¢ by
the 5-th percentile of the n numbers f, ., (u;|data), ¢ = 1, ..., n, and estimate
A, by

Acn ={ 1 fun(uldata) > c}

Then the MCMC estimate of P(u € A,, .|data) is 0.95 by construction, and A. ,,
approximates the HPD region A.. For the run shown in Figure 1.3, the 5-th
percentile is 0.086, giving a 95% HPD region (33.76,53.4).

1.7.3 The Moral of the Story

It’s a bit hard to say exactly what lessons are to be drawn from this example,
because it’s a toy problem. From the Jargon File (Raymond 1996)

toy problem /n./[Al] A deliberately oversimplified case of a challenging prob-
lem used to investigate, prototype, or test algorithms for a real problem.
Sometimes used pejoratively.
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In statistics, toy problems include analyses of real data that look at questions
much simpler than the original questions the data were collected to shed light
on. By this criterion most examples in textbooks and papers are toy problems.
As the definition from the Jargon File says, the term is only sometimes used
pejoratively. If a toy problem is a good illustration of some specific issues, then
there’s nothing wrong with it.

Toy problems are all right if you draw the right lessons from them.

But it’s hard to know what lessons to draw from a toy problem.

The trouble is that toy problems lack realism. At best they have pseudo-realism,
when they use real data for a toy purpose,

Merely corroborative detail, intended to give artistic verisimilitude
to an otherwise bald and unconvincing narrative.

Pooh-Bah (Lord High Everything Else)
in Gilbert and Sullivan’s Mikado

And it’s hard to know what in a toy problem is realistic and what is merely
artistic verisimilitude.

You might draw the lesson that all MCMC problems are this easy, which is
very wrong. You might draw the lesson that “pencil-and-paper-friendly” models
are now obsolete, that “for reasons of mathematical convenience” is no longer a
good excuse. I hope you got that lesson. It’s an important one. You might go a
little farther and draw the lesson that “Gibbs-friendly” models are an important
new class of models we need to theorize about. That would be a wrong lesson.
The Gibbs sampler is a very limited algorithm, but there are many other MCMC
algorithms. One of them almost always does the job.

MCMC does anything. Hence there is never any excuse for doing
the Wrong Thing.

From the Jargon File (Raymond 1996)

Right Thing /n./ That which is compellingly the correct or appropriate thing
to use, do, say, etc. Often capitalized, always emphasized in speech as
though capitalized. Use of this term often implies that in fact reasonable
people may disagree. “What’s the right thing for LISP to do when it sees
(mod a 0)? Should it return a, or give a divide-by-0 error?” Oppose
Wrong Thing.

Wrong Thing /n./ A design, action, or decision that is clearly incorrect or
inappropriate. Often capitalized; always emphasized in speech as if capi-
talized. The opposite of the Right Thing; more generally, anything that is
not the Right Thing. In cases where ‘the good is the enemy of the best’,
the merely good—although good—is nevertheless the Wrong Thing. “In
C, the default is for module-level declarations to be visible everywhere,
rather than just within the module. This is clearly the Wrong Thing.”
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As the definition says, “reasonable people may disagree.” If you are a Bayesian,
you think a Bayesian analysis is the Right Thing. If you are a frequentist, you
may think a hypothesis test is the Right Thing. The same goes for finer details,
if you are a subjective Bayesian you think the prior must be elicited from a user
or an expert, and so forth. Whatever the philosophical analysis that leads you
to conclude that a particular statistical procedure is the Right Thing, that is
what you must do, because some form of MCMC will enable you to do it.

It follows that there is no excuse for “algorithm-friendly” analyses. Changes
made to the statistical model or the mode of statistical inference for the sake
of using a particular MCMC algorithm or a simpler MCMC algorithm, are the
Wrong Thing. In particular, “Gibbs-friendly” is dumb.

Another lesson you might draw from the example is that MCMC has its own
bag of tricks not taken from the rest of statistics, like the method of Wei and
Tanner (1990) for HPD regions. This is also a good lesson to draw. We will see
other tricks, that do more than just calculate a simple sample average.

Exercises

1.1. For the scalar-valued AR(1) time series with nondegenerate error distri-
bution (72 > 0), show that

(a) When p? < 1, the invariant distribution found in Example 1.5 is the unique
invariant distribution.

(b) When p > 1, an invariant probability distribution does not exist.
Hint: use characteristic functions (both parts).

1.2. For a stationary, scalar-valued AR(1) time series with nondegenerate error
distribution (|p| < 1 and 72 > 0), show that, for any initial distribution,

(a) the marginal distribution of X,, converges to the invariant distribution
N(0,0?%) with o2 given by (1.7),

(b) the CLT holds, that is

VX, 2 N(0,0%,)
where o2, is given by (1.15), and

(¢) the SLLN holds, that is

X, =20.

Hints: In (b) use the fact that the autocovariances are absolutely summable so
(1.11) and (1.12) agree. For (c) the Borel-Cantelli lemma implies that SLLN
holds if the sequence Pr(|X,,| > €) is summable.



CHAPTER 1. INTRODUCTION 24

1.3. Implement a scalar-valued AR(1) sampler with p = 0.95, and o2 = 1.
Use a run of the chain of length 10,000 to estimate p = ®(—2) = 0.02275 using
as your Monte Carlo approximation the fraction of the run that has X,, < —2.
Find the MCSE of your estimate using the method of batch means.

1.4. For the vector-valued AR(1) time series with nondegenerate error distri-
bution (the error variance matrix M is strictly positive definite), show that an
invariant distribution exists if and only if A™ — 0 as n — oo.

1.5. Verify the formulas (1.18a) and (1.18b) for the full conditionals in Exam-
ple 1.7.

1.6. Produce a marginal density plot for ¢ = A~'/2 and a 95% HPD region for
o using the method of Wei and Tanner (1990) as described in Example 1.7. Use
the data and hyperparameter values given in the caption for Figure 1.3. Hint:
Don’t forget the Jacobian.

1.7. Find the “full conditionals” for mean-zero exchangeable bivariate normal
distribution (exchangeable meaning both components have the same variance).
What is the connection of the Gibbs sampler for this distribution with the
scalar-valued AR(1) time series?



Chapter 2

Basic Markov Chain Theory

To repeat what we said in the Chapter 1, a Markov chain is a discrete-time
stochastic process X7, X, ... taking values in an arbitrary state space that has
the Markov property and stationary transition probabilities:

e the conditional distribution of X, given Xy, ..., X,,_1 is the same as the
conditional distribution of X, given X,,_; only, and

e the conditional distribution of X,, given X, _; does not depend on n.

The conditional distribution of X,, given X,,_;1 specifies the transition proba-
bilities of the chain. In order to completely specify the probability law of the
chain, we need also specify the initial distribution, the distribution of Xj.

2.1 Transition Probabilities

2.1.1 Discrete State Space

For a discrete state space S, the transition probabilities are specified by
defining a matrix

P(x,y) =Pr(X, =y|Xn—1 = x), x,y €S (2.1)

that gives the probability of moving from the point = at time n — 1 to the point
y at time n. Because of the assumption of stationary transition probabilities,
the transition probability matrix P(x,y) does not depend on the time n.

Some readers may object that we have not defined a “matrix.” A matriz (I
can hear such readers saying) is a rectangular array P of numbers p;;, i = 1,
..om,j=1,....n, called the entries of P. Where is P? Well, enumerate the
points in the state space S = {x1,..., 24}, then

pij:Pr{Xn:xﬂXn,l:mi}, i=1,...7d7j:1,...d.
I hope I can convince you this view of “matrix”
two reasons.

is the Wrong Thing. There are

25
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First, the enumeration of the state space does no work. It is an irrelevancy
that just makes for messier notation. The mathematically elegant definition of
a matrix does not require that the index sets be {1,...,m} and {1,...,n} for
some integers m and n. Any two finite sets will do as well. In this view, a matriz
is a function on the Cartesian product of two finite sets. And in this view, the
function P defined by (2.1), which is a function on S x S, is a matrix.

Following the usual notation of set theory, the space of all real-valued func-
tions on a set A is written R4. This is, of course, a d-dimensional vector space
when A has d points. Those who prefer to write R? instead of R4 may do so,
but the notation R4 is more elegant and corresponds to our notion of A being
the index set rather than {1,...,d}. So our matrices P being functions on S x S
are elements of the d?-dimensional vector space RS*S.

The second reason is that P is a conditional probability mass function. In
most contexts, (2.1) would be written p(y|x). For a variety of reasons, partly
the influence of the matrix analogy, we write P(z,y) instead of p(y|z) in Markov
chain theory. This is a bit confusing at first, but one gets used to it. It would
be much harder to see the connection if we were to write p;; instead of P(x,y).

Thus, in general, we define a transition probability matrixz to be a real-valued
function P on S x S satisfying

P(z,y) >0, x,y €S (2.2a)

and
> Pla,y) =1 (2.2b)
yes
The state space S must be countable for the definition to make sense. When
S is not finite, we have an infinite matrix. Any matrix that satisfies (2.2a) and
(2.2b) is said to be Markov or stochastic.

Example 2.1. Random Walk with Reflecting Boundaries.

Consider the symmetric random walk on the integers 1, ..., d with “reflecting
boundaries.” This means that at each step the chain moves one unit up or down
with equal probabilities, % each way, except at the end points. At 1, the lower
end, the chain still moves up to 2 with probability %, but cannot move down,
there being no points below to move to. Here when it wants to go down, which
is does with probability %, it bounces off an imaginary reflecting barrier back
to where it was. The behavior at the upper end is analogous. This gives a
transition matrix

3 00 00 0
10 4L 0 0 0 0
0o+ 0 1 0 0 0
00 %+ 0 0 0 0
. o (2.3)
00 0 0 0 % 0
00 0 0 i 0 14
00 0 0 o+ 1
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We could instead use functional notation

Pla,y) 1/2, Jz—y|=1lorz=y=1lorz=y=d
T,y) = )
Y 0, otherwise

Either works. We will use whichever is most convenient.

2.1.2 General State Space

For a general state space S the transition probabilities are specified by defin-
ing a kernel

P(z,B) =Pr{X,, € B|X,—1 = z}, x € S, B a measurable set in S,
satisfying

e for each fixed x the function B +— P(z, B) is a probability measure, and

e for each fixed B the function x — P(z, B) is a measurable function.

In other words, the kernel is a regular conditional probability (Breiman 1968,
Section 4.3).

Lest the reader worry that this definition signals an impending blizzard of
measure theory, let me assure you that it does not. A little bit of measure theory
is unavoidable in treating this subject, if only because the major reference works
on Markov chains, such as Meyn and Tweedie (1993), are written at that level.
But in practice measure theory is entirely dispensable in MCMC, because the
computer has no sets of measure zero or other measure-theoretic paraphernalia.
So if a Markov chain really exhibits measure-theoretic pathology, it can’t be a
good model for what the computer is doing.

In any case, we haven’t hit serious measure theory yet. The main reason
for introducing kernels here is purely notational. It makes unnecessary a lot of
useless discussion of special cases. It allows us to write expressions like

B{g(X) Xomr =2} = [ Pla.dn)g(v) (24)
using one notation for all cases. Avoiding measure-theoretic notation leads to
excruciating contortions.

Sometimes the distribution of X, given X,,_; is a continuous distribution
on R? with density f(y|z). Then the kernel is defined by

P(z, B) = /B f(yl) dy

and (2.4) becomes

E{g(X,))| X1 = 2} = / o(v)f(yl) dy.
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Readers who like boldface for “vectors” can supply the appropriate boldface.
Since both x and y here are elements of R?, every variable is boldfaced. I
don’t like the “vectors are boldface” convention. It is just one more bit of
distinguishing trivial special cases that makes it much harder to see what is
common to all cases.

Often the distribution of X, given X, _; is more complicated. A common
situation in MCMC is that the distribution is continuous except for an atom
at . The chain stays at « with probability r(z) and moves with probability
1—r(z), and when it moves the distribution is given by a density f(y|z). Then
(2.4) becomes

E{g(X,)|Xom1 = 2} = rla)g(a) + [1 = ()] [ ) (wlo) d.
The definition of the kernel in this case is something of a mess

r(@) + [L=r(@)] [z fyle)dy, z€B

11— r(@)] [ F(ylo) dy, otherwise (2:5)

P(z,B) = {

This can be simplified by introducing the identity kernel (yet more measure-
theoretic notation) defined by

1, z€B

0 vin (2.6)

I(z,B) = {
which allows us to rewrite (2.5) as

P(z, B) = r(2)I(z, B) + [1 - r(x) /B f(ylz) dy.

We will see why the identity kernel has that name a bit later.

Another very common case in MCMC has the distribution of X, given X,,_;
changing only one component of the state vector, say the i-th. The Gibbs update
discussed in Chapter 1 is an example. The distribution of the i-th component
has a density f(y|z), but now z is an element of R? and y is an element of R
(not R?). Then (2.4) becomes

E{g(Xn)|Xn—l = ZL’} = /g(xla ey L1, Yy Lig 1y - - - ,I'd)f(ykﬂ) dy

The notation for the kernel is even uglier unless we use “probability is a special
case of expectation.” To obtain the kernel just take the special case where g is
the indicator function of the set B.

The virtue of the measure-theoretic notation (2.4) is that it allows us to
refer to all of these special cases and many more without getting bogged down
in a lot of details that are irrelevant to the point under discussion. I have
often wondered why this measure-theoretic notation isn’t introduced in lower
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level courses. It would avoid tedious repetition, where first we woof about
the discrete case, then the continuous case, even rarely the mixed case, thus
obscuring what is common to all the cases. One can use the notation without
knowing anything about measure-theoretic probability. Just take (2.4) as the
definition of the notation. If you understand what expectations mean in the
model at hand, then you can write out what the notation means in each case,
as we have done above. Regardless of whether you think this would be a good
idea in lower level courses, or not, I hope you are convinced that the notation
is necessary in dealing with Markov chains. One would never see the forest for
the trees without it.

2.1.3 Existence of Infinite Random Sequences

Transition probabilities do not by themselves define the probability law of
the Markov chain, though they do define the law conditional on the initial
position, that is, given the value of X;. In order to specify the unconditional
law of the Markov chain we need to specify the initial distribution of the chain,
which is the marginal distribution of Xj.

If A is the initial distribution and P is the transition kernel and ¢, ..., gn
are any real-valued functions, then

E{gl(Xl) N gn(Xn)}
= / . / Adx1)P(xy,dxg) - P(xp_1,dzy)g1(x1) - gn(xn)

provided the expectation exists. This determines the joint probability distri-

bution of Xi, ..., X,, for any n. Just take the special case where the g; are
indicator functions.
Let @, denote the probability distribution of Xy, ..., X,, a measure on

the cartesian product S, where S is the state space. The @Q,, are called the
finite-dimensional distributions of the infinite random sequence Xi, Xo, ....
The finite-dimensional distributions satisfy the obvious consistency property:
Qn(A) = Qni1(AXS). It is a theorem of measure-theoretic probability (Fristedt
and Gray 1997, Theorem 3 of Chapter 22 and Definition 10 of Chapter 21) that
for any consistent sequence of finite-dimensional distributions, there exists a
unique probability measure @), for the infinite sequence such that Q.. agrees
with the finite-dimensional distributions, that is, if A is a measurable set in S™
and
B={(x1,29,...) €8%: (x1,...,2,) € A},

then Q,(A) = Qo (B).

We will only rarely refer explicitly or even implicitly to Q. One place
where it cannot be avoided is the strong law of large numbers, which says that
the set of infinite sequences (X1, Xs,...) having the property that X, — u
has probability one, the probability here referring to .., since it refers to
probabilities on the space of infinite sequences. But mostly we deal only with
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finite-dimensional distributions. The CLT, for example, is a statement about
finite-dimensional distributions only.

Anyway, this issue of o, has nothing to do particularly with Markov chains.
It is needed for the SLLN in the i. i. d. case too. If you are not bothered by the
SLLN for i. i. d. random sequences, then the SLLN for Markov chains should
not bother you either. The measure-theoretic technicalities are exactly the same
in both cases.

2.2 'Transition Probabilities as Operators

When the state space is finite, we have seen that the transition probabilities
form a matrix, an d X d matrix if the state space has d points. From linear
algebra, the reader should be familiar with the notion that a matrix represents
a linear operator. This is true for Markov transition matrices as well. Actually,
we will see it represents two different linear operators.

In the general state space case, transition probabilities also represent linear
operators. In this case the vector spaces on which they operate are infinite-
dimensional. We do not assume the reader should be familiar with these notions
and so develop what we need of this theory to work with Markov chains.

2.2.1 Finite State Space
Right Multiplication
When the state space S is finite (2.4) becomes

E{g(Xp)| X1 =2} =D P(,y)g(y).
yes

Although the notation is unusual, the right hand side corresponds to the matrix
multiplication of the matrix P on the right by the “column vector” g. Using
this notation we write the function defined by the right hand side as Pg. Hence
we have

Pg(z) = E{g(Xn)|Xn—1 = 2}

If we were fussy, we might write the left hand side as (Pg)(x), but the extra
parentheses are unnecessary, since the other interpretation of Pg(x), that P
operates on the real number g(z), is undefined.

As mentioned above, the vector space of all real-valued functions on S is
denoted R®. The operation of right multiplication defined above takes a function
g in R® to another function Pg in R®. This map Rp : g — Pg is a linear
operator on R? represented by the matrix P. When we are fussy, we distinguish
between the matrix P and the linear operator Rp it represents, as is common
in introductory linear algebra books (Lang 1987, Chapter IV). But none of the
Markov chain literature bothers with this distinction. So we will bother with
making this distinction only for a little while. Later we will just write P instead
of Rp as all the experts do, relying on context to make it clear whether P means
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a matrix or a linear operator. We don’t want the reader to think that making a
clear distinction between the matrix P and the linear operator Rp is essential.
Holding fast to that notational idiosyncrasy will just make it hard for you to
read the literature.

Left Multiplication

A probability distribution on S is also determines a vector in R. In this case
the vector is the probability mass function A(z). If X,,_; has the distribution
A, then the distribution of X, is given by

Pr(X, =y) = ) Mx)P(z,y). (2.7)

zeSs

Again we can recognize a matrix multiplication, this time of the matrix P on
the left by the “row vector” A. Using this notation we write the probability
distribution defined by the right hand side as AP. and hence have

AP(y) = Pr(X, =),

when X,, 1 has the distribution \. Again if we were fussy, we might write the
left hand side as (AP)(y), but again the extra parentheses are unnecessary, since
the other interpretation of AP(y), that P(y) operates on A, is undefined because
P(y) is undefined.

Equation (2.7) makes sense when \ is an arbitrary element of R, in which
case we say it represents a signed measure rather than a probability measure.
Thus the matrix P also represents another linear operator on R®, the operator
Lp : A — AP. Note that Lp and Rp are not the same operator, because P
is not a symmetric matrix, so right and left multiplication produce different
results.

When we are not being pedantic, we will usually write P instead of Lp or
Rp. So how do we tell these two operators apart? In most contexts only one
of the two is being used, so there is no problem. In contexts where both are in
use, the notational distinction between P f and AP helps distinguish them.

Invariant Distributions

Recall from Section 1.5 that a probability distribution 7 is an invariant dis-
tribution for a specified transition probability matrix P if the Markov chain that
results from using 7 as the initial distribution is stationary. (An invariant dis-
tribution is also called a stationary or an equilibrium distribution.) Because the
transition probabilities are assumed stationary, as we always do, it is enough to
check that X,,_1 ~ 7 implies X,, ~ 7. But we have just learned that X,,_1 ~ A
implies X,, ~ AP. Hence we can use our new notation to write the charac-
terization of invariant distributions very simply: a probability distribution 7 is
invariant for a transition probability matrix P if and only if 7 = 7w P.

Recall from Section 1.7 that the “first task in MCMC?” is to find a Markov
update mechanism that preserves a specified distribution. Now we can state
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that in notation. We are given a distribution 7. The “first task” is to find
one transition probability matrix P such that 7 = 7 P. Often, we want to find
several such matrices or kernels, intending to combine them by composition or
mixing.

Matrix Multiplication (Composition of Operators)
The distribution of X,,42 given X, is given by

Pr(Xn+2 = Z|Xn = SC) = ZP(SE,y)P(y,Z)
yeS

Now we recognize a matrix multiplication. The right hand side is the (z,z2)
entry of the matrix P?, which we write P?(z,z). Carrying the process further
we see that

Pr(X,ix = 2| X, = 2) = P¥(z, 2),

where P*(z, z) denotes the (z, z) entry of the matrix P*.

We can use these operations together. P*g is the conditional expectation of
9(Xnik) given X,,, and AP* is the marginal distribution of X, when X,, has
marginal distribution .

We also want to use this operation when the transition probability matrices
are different. Say P(z,y) and Q(z,y) are two transition probability matrices,
their product is defined in the obvious way

(PQ)(x,2) = Y Pz,y)Qy, 2).

yeS

We met this object in Chapter 1 under the name of the composition of P
and @, which we wrote as PQ, anticipating that it would turn out to be a
matrix multiplication. The reason for calling it “composition” is that it is
functional composition when we think of P and @ as linear operators. Obviously,
(PQ)g = P(Qg). This translates to

RPQ = Rp o RQ (28&)
when we use the notation Rp for the linear operator f +— Pf. It translates to
LPQ = LQ 9 Lp (28b)

when we use the notation Lp for the linear operator A — AP. In both cases
matrix multiplication represents functional composition, but note that P and
@ appear in opposite orders on the right hand sides of (2.8a) and (2.8b), the
reason being the difference between right and left multiplication.

Convex Combinations of Matrices (Mixing)

Besides multiplication of matrices, linear algebra also defines the operations
of matrix addition and multiplication of a matrix by a scalar. Neither of these
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operations turns a Markov matrix into a Markov matrix, because matrix addi-
tion loses property (2.2b) and multiplication by a negative scalar loses property
(2.2a).

If we use both operations together, we can get an operation that preserves
Markovness. Transition probability matrices are elements of the vector space
RS*9 a d?-dimensional vector space if the state space S has d elements. Ad-
dition of matrices is just vector addition in this vector space. Multiplication of
a matrix by a scalar is just scalar multiplication in this vector space. If Py, ...,
Py are elements of any vector space, and aq, ..., a; are scalars, then

P=a1Pi+- -+ apPx (29)

is called a linear combination of the P;. If the a; also satisfy >, a; = 1, a linear
combination is called an affine combination. If the a; also satisfy a; > 0 for each
1, an affine combination is called a convex combination.

For Markov matrices Py, ..., Py,

e if P in (2.9) is Markov, then linear combination is affine,

e conversely, if the linear combination is convex, then P is Markov.

(Exercise 2.2).

Convex combinations correspond exactly to the operation of mixing of up-
date mechanisms (also called “random scan”) described in Section 1.7. if there
are k update mechanisms, the -th mechanism described by transition probabil-
ity matrix P;, and we choose to execute the i-the mechanism with probability
a;, then the transition probability matrix for the combined update mechanism is
given by (2.9). In order to be probabilities the a; must be nonnegative and sum
to one, which is exactly the same as the requirement for (2.9) to be a convex
combination. We would have called this notion “convex combination” rather
than “mixture,” but that seemed too long for everyday use.

2.2.2 General State Space

Now we turn to general state spaces, and kernels replace matrices. The
objects on which the kernels operate on the left and right now are very different,
a function on the state space (an object for right multiplication) is not at all
like a measure on the state space (and object for left multiplication).

Signed Measures

In the discrete case we wanted to talk about measures that were not proba-
bility measures. We need a similar notion for general state spaces. A real-valued
measure on a measurable space! (S, B) is a function p : B — R that is countably
additive.

LA measurable space is a pair (S, B) consisting of a set S, in this case the state space, and
a o-field of subsets of S. The elements of B are called the measurable sets or, when we are
talking about probabilities, events. So B is just the set of all possible events.
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Although not part of the definition, it is a theorem of real analysis that u
is actually a bounded function (Rudin 1987, Theorem 6.4), that is, there are
constants a and b such that a < p(B) < b for all B € B. If u(B) > 0 for all
measurable sets B, then we say u is a positive measure. The general case, in
which p(B) takes values of both signs, is sometimes called a real signed measure,
although strictly speaking the “signed” is redundant.

Another theorem (Rudin 1987, Theorem 6.14) says that there exists a par-
tition? of the state space into two measurable sets A; and A such that

This is called the Hahn decomposition of the state space S. Then the measures
p and p~ defined by

u (B)=—u(BNA), BeB
pH(B) = p(B N Ay), BeB

are both positive measures on S and they are mutually singular. Note that
i = pt — p~, which is called the Jordan decomposition of p. It is entirely
analogous to the decomposition f = f+ — f~ of a function into its positive and
negative parts. The measure |u| = p™ + p~ is called the total variation of p.
And ||p|| = |p|(S) is called the total variation norm of p.

Let M(S) denote the set of all real signed measures on S. From the Jordan
decomposition, we see that every element of M(S) is a difference of positive
finite measures, hence a linear combination of probability measures. Thus M(.S)
is the vector space spanned by the probability measures. Hence it is the proper
replacement for R® in our discussion of left multiplication in the discrete case.

Norms and Operator Norm

For any vector space V, a function = +— |[|z|| from V to [0,00) is called a
norm on V if it satisfies the following axioms (Rudin 1987, p. 95)

(@) llz+yll < llzll + [[y]l for all z,y € V,
(b) |laz| = |a| - ||z|| for all a € R and = € V, and
(¢) ||z|| = 0 implies = = 0.

Axiom (a) is called the triangle inequality. The pair (V|| -||) is called a normed
vector space or a normed linear space.
Total variation norm makes M(S) a normed vector space. We do need to
verify that total variation norm does satisfy the axioms for a norm (Exercise 2.3).
Denote the set of all linear operators on a vector space V' by L(V). Then
L(V) is itself a vector space if we define vector addition by

(S +T)(z) = S(x) +T(x), STeLV), zeV (2.10a)

2Partition means A; N Ay = @ and Aj UAy = S
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and scalar multiplication by
(aT)(z) = aT(z), aeR, TeL(V), zeV. (2.10b)

These definitions are the obvious ones, arrived at almost without thinking. How
else would you define the sum of two functions S and T except as the sum
(2.10a)?

When V is normed, there is a natural corresponding norm for L(V') defined
by

T
I = sup 121 (2.11)
zeV ||$H
z#£0

Or, more precisely, we should say that (2.11) defines a norm for the subset of
L(V') consisting of T such that (2.11) is finite. We denote that subset B(V),
and call its elements the bounded operators on L(V'). The bounded operators
are the well behaved ones.

A normed linear space is also a metric space, the metric being defined by
d(z,y) = ||z — y||. Hence we can discuss topological notions like continuity
and convergence of sequences. A sequence {z,} in V converges to a point x if
|z — || — 0. An operator T' € L(V) is continuous at a point x if Tz, — Tx
(meaning ||Tx,, — Tx| — 0) for every sequence {z,} converging to z. Since
Tz, — Tx = T(x, — x) by linearity, a linear operator T is continuous at x if
and only if it is continuous at zero. Thus linear operators are either everywhere
continuous or nowhere continuous. A linear operator T is continuous if and only
if it is bounded (Rudin 1991, Theorem 1.32). Thus the unbounded operators
are nowhere continuous, a fairly obnoxious property. If V' is finite-dimensional,
then every operator in L(V) is bounded (Halmos 1958, p. 177). But if V is
infinite-dimensional, there are lots of unbounded operators.

Let’s check that operator norm satisfies the norm axioms. Essentially it
satisfies the axioms because vector norm does. For the triangle inequality

S T
IS+ T = sup [[Sz + Ta|

wev |
z#0

[Sz|| + || T|

eV (]
x#0

IN
n

S T
< o 121, I
sy el "oy Mol
270 y#0

= [ISI + 1T

The first inequality is the triangle inequality for the vector norm. The second
inequality is subadditivity of the supremum operation. For any functions f and
g on any set S

f@)+g(x) < fz) + Stellgg(y),
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so taking the sup over x gives

sup[f(z) + g(x)] < sup f(z) + sup g(y).

zeS zesS yes
For axiom (b),
T |
a7 = sup JoTell _ o lal Tl
sev 2l wey 2]
z#0 x7#0

Finally, for axiom (c), ||T|| = 0 only if ||Tz| = 0 for all € V, but axiom (c)
for vector norm implies ||Tz|| = 0 if and only if T2 = 0. Thus ||T'|| = 0 implies
that T is the operator that maps every x to 0. And this operator is indeed the
zero of the vector space L(V'), because then

(S+T)(x)=95()+T(xr) =S(x)+0=5(), zeV

s0 S+ T =S for all S € L(V), and this is the property that makes T the zero
of the vector space L(V).
Operator norm satisfies two important inequalities. The first

[T| < T - ]| (2.12)

follows immediately from the definition (2.11).

The second involves the notion of operator “multiplication,” which is defined
as composition of functions: ST is shorthand for S oT. As we saw above, this
agrees with our usual notation in the finite-dimensional case: matrix multipli-
cation corresponds to functional composition of the corresponding operators.
With this notion of multiplication B(V') becomes an operator algebra. A vector
algebra, also called linear algebra, is a vector space in which a multiplication is
defined. The reason the subject “linear algebra” is so called is because matrices
form a vector algebra.

The second important inequality is

ST < IS[-1T1]- (2.13)

T call (2.13) the Banach algebra inequality because it is one of the defining
properties of a Banach algebra. Since we will have no need of Banach algebras
in this course, it is a really horrible name. Maybe we should call it the mumble
mumble inequality. Whatever we call it, the proof is a trivial consequence of
operator “multiplication” actually being functional composition.
S(Tx S| ||Tx
ST — sup IS _ 18] -]
zev | eev |zl
z#0 x#0

= [IS11- 177

where the inequality is just (2.12).
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Left Multiplication

If X is a probability measure on the state space, and X,,_; has distribution
A, then the distribution of X, is given by

AP(A) = / A(dz)P(z, A). (2.14)

This is no longer a matrix multiplication, but it does define a linear operator,
because integration is a linear operation. Using the Jordan decomposition, we
see that (2.14) makes sense for any A € M(S). Hence (2.14) defines a linear
operator on M(S).

The next question to answer is whether it is a well-behaved operator, that is,
whether it is bounded. In fact, it is. For any Markov kernel P, let L p denote the
linear operator on M(S) defined by A — AP. Then ||Lp|| =1 (Exercise 2.5).

As was the case for discrete state spaces, a probability measure 7 is invariant
for a transition probability kernel if and only if # = 7. This is an integral
equation

m(B) = /w(dm)P(x,B), BeB

but we do not usually attempt to find a P that satisfies this equation by direct
means. Usually we exploit some trick (if this is mysterious, it will all become
clear in the next chapter).

Function Spaces

Before we can define the analog to right matrix multiplication, we must
decide what space the linear operator f — Pf is to act upon. There are
a number of possibilities. The ones we will consider are the so-called LP(7)
spaces, where 1 < p < oo and 7 is a probability measure.

The LP(m) norm of a real-valued measurable function f on the probability
space (S, B, ) is defined by

ey |f<x>|”w<dz>)l/p

when 1 < p < oo. The vector space LP(7) is the set of all measurable functions
fon (S, B) such that ||f||, < co. It is easy to see that the LP(7) norm satisfies
axiom (b) for norms. That it satisfies axiom (a) is a well-known inequality
called Minkowski’s inequality (Rudin 1987, Theorem 3.5). It is also easy to
see that the L”(7) norm fails to satisty axiom (c), since ||f||, = 0 only implies
{|f(X)] > 0} = 0. If S is not discrete, there must be nonempty sets of
probability zero, and any function f that is zero except on a set of probability
zero has ||f]l, = 0.

In order to make LP(7) a normed vector space, we need to work around
this problem by redefining equality in LP(7) to mean equal except on a set
of probability zero. Then axiom (c) is satisfied too, and LP(w) is a legitimate
normed vector space.
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We also redefine what we mean by inequalities as well. The statement f < g
only means f(z) < g(x) except on a set of probability zero, and similarly for the
other inequality relations. The space L*(m) consists of the bounded elements
of LP(r), that is | f| < ¢ for some real number c. Following the conventions for
L? spaces, this only means |f(z)| < ¢ except on a set of probability zero. The
L*°(7) norm is the smallest ¢ that will work

[flloe = inf{e > 0:m{[f(X)[>c} =0}

This is also now easily seen to satisfy the axioms for norms, axiom (c) holding
because we consider f = 0 if it is zero except on a set of probability zero. Thus
all the LP(7) spaces for 1 < p < oo are normed vector spaces®.

An useful fact about LP(w) spaces is that 1 < p < ¢ < oo implies LP(7) D
L1(r) (Exercise 2.12). (Warning: this uses the fact that 7 is a bounded measure.
It is not true otherwise. However, we will be interested only in the case where
7 is a probability measure.)

Right Multiplication

We are finally ready to define “multiplication” of a kernel on the right by a
function. If f is any nonnegative measurable function on (S, B),

Pf(x) = / P, dy) () (2.15)

is well-defined, though possibly +00. So we have no trouble defining “right
multiplication” for nonnegative functions.

General functions are a bit more tricky. The issue is whether we can even
define P f for f that are both positive and negative. The trouble is that we want
f to be integrable with respect to an infinite collection of probability measures,
Pz, ),z €S.

It turns out that we get everything we need, if 7 is an invariant probability
measure for a transition probability kernel P and we use integrability with
respect to 7 as our criterion. For f € L'(r), define

o(z) = / Pl dy)| £ (y)].

Then
[ wtdnygta) = [[ wtdn) P dnlsw)

- / w(d) £ (v)| (2.16)
— £l

3 Actually they are Banach spaces, a Banach space being a complete normed vector space,
where complete means every Cauchy sequence converges. But that will not play any role in
the theory used in this course.
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because m = mP. The interchange of the order of integration going from line 2
to line 3 is the conditional Fubini theorem (Fristedt and Gray 1997, Theorem 2
of Chapter 22). Hence the set

B={zeS:g9(z) <}

satisfies m(B°) = 0, because if g were infinite on a set of positive probability,
the integral (2.16) would be infinite. This means we can define P f(x) by (2.15)
for € B and arbitrarily (say Pf(z) = 0) for € B¢ and have a function well
defined in the LP(m) sense. Since LP(m) C L'(7) for any p > 1, this makes the
map [ +— Pf well-defined on LP(x) for 1 <p < oo.

Now we want to show that the linear transformation Rp : f — Pf actually
maps LP(m) into LP(w). For € B and 1 < p < oo, Jensen’s inequality gives
P

Pfunp'/ﬁwadwf@>

S/PudwﬂwV

When we integrate both sides with respect to m, the fact that the left hand side
is not defined for x € B does not matter because w(B°) = 0. Hence

nPﬂmza/wamnPf@np
g‘/yfw<dx>f«z,dynf<ynp

:/%wmuww
— If1

Again m = mP and the conditional Fubini theorem were used in going from line
2 to line 3.
The case p = oo is even simpler, for x € B

IPf@O::L/f%%dwf@ﬂ
g/ﬂ%@W@ﬂ

< fll [ Pla.dy)

= lfllso
Integrating with respect to m gives || Pfloo < ||f|loo-

Thus we see that for 1 < p < oo the linear transformation Rp : f +— Pf
maps LP(m) into LP(7) and the corresponding operator norm satisfies

rerr@m N fllp
f#0

IBpl, =
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In fact |Rpl|, = 1 because for f =1,

Pﬂ@=/fwﬂw=l=ﬂw

so ||Pfll, = |l f|l, for constant functions and the supremum in (2.17) is actually
equal to one.

This has been an important section, so we summarize our results. If f is a
measurable function from the state space to [0, 00], then P f(z) is well defined,
though it may have the value +o0o. Since the set of functions on which this
operation is defined is not a vector space, we cannot call P a linear operator
here, but this notion is useful in various places in the theory of Markov chains.

If a kernel P has an invariant distribution = and f € LP(w) for some p > 1,
then Pf is a well defined element of LP(w). The linear operator Rp : f — Pf
is a bounded operator on LP(7) having operator norm equal to one.

General Kernels

In discrete state spaces, we wanted to discuss matrices that were not nec-
essarily Markov. We need the analogous definitions for kernels. If (S,5) is a
measurable space, then a map K from S x B to R is a kernel if

e for each fixed x the function B +— K(x, B) is a real signed measure, and

e for each fixed B the function x +— K (x, B) is a measurable function.

Multiplication of Kernels

The operation on kernels that is analogous to matrix multiplication is defined
by

(KuKo)(, 4) = [ Ka(ody) Kaly, ),
Kernel multiplication is associative,
(K1 K3)K3 = K1 (K3K3) (2.18)

for any kernels K7, K», and K3, by the conditional Fubini theorem (Fristedt
and Gray 1997, Theorem 2 of Chapter 22).

Kernel multiplication is not, in general, commutative: K7 K> = KoK; may
be false.

All of the results for composition and mixing of transition operators that we
described in the discrete case carry over unchanged to the general case. In par-
ticular, multiplication of kernels corresponds to composition of operators (also
called “fixed scan”) in just the same way as we saw in (2.8a) and (2.8b). And a
convex combination of Markov operators again produces a Markov operator and
still corresponds to the operation of choosing an update mechanism at random
and applying it (also called “random scan”).
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The Identity Kernel

The identity element any of the kernel operations is indeed the identity kernel
defined back in (2.6). The identity kernel has connections with other notations
widely used in probability. For fixed z, the measure I(x, -) is the probability
measure concentrated at x, sometimes written d,, sometimes called the Dirac
measure. For fixed A, the function I(-, A) is the indicator of the set A, more
commonly written 1 4.

The identity kernel is the identity for kernel multiplication because

(IK)(a:,A):/ (z,dy)K /(5 (dy)K(y, A) = K(z,A),

and
(KI)(z,A) = /Kmdy (y, A /Ka:dy 1a( ):/AK(x,dy):K(m,A).

For this reason, we define K = I for any kernel K. Then the so-called
Chapman-Kolmogorov equation

holds whenever 0 < m < n as a direct consequence of the associative law (2.18).
The identity kernel is the identity for left multiplication of a kernel by a
signed measure because

(M)(A) = / Ndz)I(z, A) = / Adz)1a(z) = /A A(dz) = A(A)

It is the identity for right multiplication of a kernel by a function because

(1@ = [ 1diw) = [ 6 f) = fo).

Needless to say, the operators Lp : A — AP and Rp : f +— Pf are the identity
operators on the relevant vector spaces when P is the identity kernel.

The identity kernel is Markov, because, as we have seen I(x, -) is a proba-
bility measure, d,, for each . If X,, ~ d,, then X,, ;1 ~ 6., because §,I = d,.
Hence the chain never moves. Thus the identity kernel is the transition proba-
bility for the “maximally uninteresting chain” described in Example 1.4.

2.2.3 Hilbert Space Theory
Inner Product Spaces

An inner product on a complex vector space V is a map from V x V to C, the
value for the ordered pair of vectors 2 and y being written (z,y), that satisfies
the following axioms (Halmos 1958, p. 121)

() (z.9) = (y,2),
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(b) (azx + by, z) = a(x, z) + by, z), for a,b € C,
(c) (z,z) >0, and
(d) (x,2) =0 implies = = 0.

where the overline in (a) denotes complex conjugation. An inner product space
is a vector space equipped with an inner product.

For the most part, we will only be interested in real inner product spaces, in
which case the complex conjugation in (a) does nothing and the scalars in (b)
must be real. Since in applications we have no complex numbers, why should the
theory involve them? The answer is eigenvalues and eigenvectors. Transition
probability matrices are nonsymmetric and hence may have complex eigenvalues
even though all their entries are real. So we will not be able to avoid mentioning
complex inner product spaces. However, we will see they play a very minor role
in Markov chain theory.

An inner product space is also a normed vector space with the norm defined
by ||z|| = v/(z,x). It is easily verified that the norm axioms are implied by the
inner product axioms (Exercise 2.6), the only bit of the proof that is nontrivial
being the triangle inequality, which follows directly from

(@, )l < [l -yl

which is known to statisticians as the Cauchy-Schwarz inequality. It, of course,
is proved exactly the same way as one proves that correlations are between —1
and 1.

Hilbert Spaces

A Hilbert space is a complete inner product space, where complete means
every Cauchy sequence converges, a sequence {x,, } being Cauchy if ||x,, —z,| —
0 as min(m,n) — oco. We will not develop any of the consequences of this
definition, since they are well beyond the level of real analysis taken by most
statistics graduate students, but we will steal a few results here and there from
Hilbert space theory, explaining what they mean but blithely ignoring proofs.

One important fact about Hilbert space theory is the existence of the adjoint
of an operator, which is analogous to the transpose of a matrix. If T"is a bounded
operator on a Hilbert space H. Then there is a unique bounded operator T*
on H that satisfies

(z,Ty) = (T*z,y), wyeH

(Rudin 1991, Section 12.9). T is called the adjoint of T. If T* =T, then T is
said to be self-adjoint.

To see the connection between adjoints and transposes, equip the vector
space R® for some finite set S with the usual inner product

(f.9) =Y fla)g(z). (2.19)

zeS
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A linear operator on R¥ is represented by a matrix M (x,y), the linear oper-
ator being Ty : f — M [ (the same as the right multiplication we studied in
Section 2.1.1 but with M not necessarily a transition probability matrix). Then

(f,Tag) =D > f(x) )9(y)

zeSyes

(Tirf9) =D gla)M*(x,y) f(y)

zeSyes

and

where M* is the matrix that represents T};. Clearly, M and M™* are transposes
of each other.

For Markov chain theory, there are only two important Hilbert spaces. The
first we have already met: L?(r) is a Hilbert space when the inner product is

defined by
9) = / f(@)g@)m(dz). (2.20)

That this defines an inner product (with the usual proviso that equality means
only equality with probability one) is obvious. The completeness comes from the
fact that every LP(m) is a complete metric space (Rudin 1987, Theorem 3.11).
Usually we consider LP(w) a real Hilbert space, in which case the complex
conjugate in (2.20) does nothing.

The reason why L?(r) is so important is that (2.20) is Cov{f(X),g(X)} in
the special case when both variables have mean zero. In order to cater to this
special case of interest to statisticians, we introduce the subspace of L?(r) that
consists of mean-zero functions

L3(r) = {f€L2 [ s }

Another characterization of L2(7) uses the notion of orthogonality. Vectors
and y in a Hilbert space are orthogonal if (x,y) = 0. If 1 represents the constant
function equal to 1 almost surely, then we can also write

Li(m) = { f € L*() : (f,1) = 0}

Thus LE () is the subspace of L?(7) orthogonal to the constant functions. Since
the linear function f +— (f,1) is continuous, LZ(7) is a topologically closed
subspace of L?(m) and hence is also a Hilbert space.

Warning: The characterization of the adjoint as the transpose is incorrect for
L?(7) even in the finite state space case. The reason is that (2.19) is not the inner
product on L?(m). The inner product is defined by (2.20). The same formula
applies to finite state spaces as for general state spaces (general includes finite).
Exercise 2.9 derives the correct formula for the adjoint.
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In the preceding section, we saw that the operator norm for the linear op-
erator f — Pf is exactly equal to one, no matter which LP(7) we have the
operator act on. The Hilbert space L?() is no exception, but Lg(r) is differ-
ent. Reducing the domain of the operator cannot increase the norm, but may
decrease it, the supremum in (2.17) being over a smaller set. The proof that
the norm is exactly one no longer applies, because it used the fact that Pf = f
for constant functions f, and those functions are no longer in the domain. Thus
when we consider Rp : f — Pf an operator on L3(7) we have ||Rp|l2 < 1 with
strict inequality now a possibility.

2.2.4 Time-Reversed Markov Chains

The measure-theoretic construction of infinite sequences of random vari-
ables discussed in Section 2.1.3, says that specification of the probability dis-
tribution of an infinite sequence is equivalent to specifying a consistent set of
finite-dimensional distributions. This allows us to specify a stationary Markov
chain as a doubly infinite sequence ..., X o, X 1, Xg, X1, Xo, .... Specifying
the distribution of the doubly infinite sequence is the same as specifying the
joint distribution of X,,, X, 41, ..., Xn4k for any k£ > 0. Stationarity implies
that this joint distribution does not depend on n.

Two questions naturally arise about the time-reversed sequence. First, is it
Markov? Second, what is its kernel? That the time-reversed sequence has the
Markov property is a trivial consequence of conditional independence being a
symmetric property, that is, the following three statements are equivalent.

e The future is independent of the past given the present.
e The past is independent of the future given the present.
e The past and future are independent given the present.

If this isn’t mathy enough for you, here are some equations. What is to be
shown is that

E{f(Xn+1, Xnt2, .- )9(Xn-1, Xn—2,...)[Xn}
= FE{f(Xn+1, Xnt2,. )Xo} E{9(Xpn-1, Xn—2,...)| X0} (2.21)

for any functions f and g such that both sides are well defined. This says the
o-field generated by X,41, Xny2, ... (the future) and the o-field generated
by X,—1, Xn—2, ... (the past) are conditionally independent given the o-field
generated by X, (the present) (Fristedt and Gray 1997, Definition 23 of Chap-
ter 21).
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The proof is

ELF Xty Xoior o )g(Xn1s X 2ren )| X}
— B{E[f(Xni1, Xt )9 X 12 X9+ )Xoy X1, X2, ]| X0}
= E{g(Xnts X2y VELF (X1, Xomszs )Xoy Xty Xz -] X0}

= E{g(Xn-1,Xp—2,. . ) E[f(Xnt1, Xnt2, ... )| Xn]|[ Xn}
= E{f(Xpnt1, Xnt2, .. )X E{9(Xn-1, Xn—2,...)[Xn}

The equality between lines 3 and 4 is the Markov property of the original chain
running forwards in time. The other equalities are standard properties of con-
ditional expectation. The equalities between lines 2 and 3 and between lines 4
and 5 are the property that functions of the conditioning variables can be taken
outside a conditional expectation (Fristedt and Gray 1997, Problem 27 of Chap-
ter 23). The equality between lines 1 and 2 is the general iterated conditional
expectation formula (Fristedt and Gray 1997, Proposition 6 of Chapter 23).

By Propositions 25 and 27 of Chapter 23 in Fristedt and Gray (1997) (2.21)
implies the Markov property for the time-reversed chain

E{la(Xn-1)|Xn, Xnt1, Xngo2, ... } = B{14(Xp—1)| X0}

Clearly, the time-reversed chain is also stationary, in particular, it has sta-
tionary transition probabilities. As to whether these transition probabilities are
representable by a kernel, the answer is not necessarily, but usually. The issue
is whether there exists a kernel P* satisfying

/ﬂ'(dl‘)P*(ZE,B) :/ m(dz)P(x, A), A,B e B, (2.22)
A B

(where B is the o-field of the state space), that is, whether P* exists as a reqular
conditional probability. Conditional probabilities always exist, but regular ones
do not. The key is whether the state space is “nice” enough. If the state
space is a so-called Borel space, then regular conditional probabilities (a. k. a.
kernels) exist (Fristedt and Gray 1997, Theorem 19 of Chapter 21). Euclidean
spaces R? are Borel spaces, as are most (all?) other state spaces that arise in
practical examples. So we may take it for granted that P* exists. It is not,
however, uniquely defined. P*(z, -) can be defined arbitrarily for x in a set of
m-probability zero without effecting (2.22). Thus there are many kernels P*, all
of which give the same probability law for the time-reversed chain.

Now that we have a kernel P* for the time-reversed chain, we know that
P* and the marginal distribution 7 of X,,, which is invariant for both P and
P*, determine the probability distribution of the infinite sequence. We can also
look at P* as an operator. In particular, (2.22) is equivalent to

/ w(dz) P* (z, dy) f ()9 y) = / w(dz)P(x,dy)g() f(y),  frg € L*(m)
(2.23)
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by linearity of expectation and monotone convergence. In Hilbert space notation
(2.23) is
(f,P*g) = (Pf,g)

so now we see why the choice of P* for the kernel of the time-reversed chain.
It is the adjoint operator on L?(7).

2.2.5 Reversibility

A stationary Markov chain is reversible (also called time-reversible) if the
doubly infinite sequence has the same probability distribution when time is
reversed. We also say a kernel P is reversible with respect to 7 if (2.22) holds
with P* = P, that is,

/W(dx)P(%B) :/ m(dx)P(x, A), A BeB. (2.24)
A B

Taking the case where A is the whole state space in (2.24) gives

/w(dm)P(w,B) = / m(dz) = 7(B), B e B,
B
which says 7P = w. Thus (2.24) implies that 7 is invariant for P.
This is a very important principle.
If P is reversible with respect to w, then P preserves .

This will turn out to be our main method for accomplishing the “first task” of
MCMC. Given a distribution 7, how do we find Markov update mechanisms
that preserve w7 Answer: show they are reversible with respect to .

If (2.24) holds, then so does (2.23) with P* = P, that is,

/ / f(@)g(y)m(de) P, dy) = / / o(2) f(y)m(dz) P(e,dy), g € L*().
(2.25)
Hence P is self-adjoint.

P is reversible with respect to w, if and only if P is a self-adjoint
operator on L?(r).

We can rewrite (2.24) as
Pr(X, € A& X,41 € B)=Pr(X,, € B&X,,11 € A) (2.26)
This gives yet another slogan.

A stationary Markov chain is reversible, if and only if X,, and X,,11
are exchangeable.
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For a discrete state space, transition probability matrix P and invariant
distribution 7, and state space .S, the reversibility property is

Pr(X,=2& X411 =y) =Pr(X, =y & X1 = ),
or stated in terms of w and P
m(z)P(z,y) =7(y)P(y,x), z,y€S, (2.27)

a condition that is referred to as detailed balance. Our main tool for establishing
that a particular transition probability P has a specified invariant distribution m
will be verification of the detailed balance condition (2.27) and its counterparts
for general state spaces. This is generally much easier than verifying 7P = 7
directly.

The analogue of (2.27) for general state spaces (2.26) involves probabilities
of sets rather than points, and so does not lead to an analog of the detailed
balance condition. You will sometimes see

7(dx)P(z, dy) = w(dy)P(y, dx)

called “detailed balance for general state spaces,” but strictly speaking this is
merely a shorthand for (2.24) or (2.25).

Exercises

2.1. Find an invariant distribution and show that it is unique for
(a) The random walk with reflecting barriers, Example 2.1.

(b) The modification of random walk with reflecting barriers, so that the first
row of the transition probability matrix is 0,1,0,... and the last row is
modified similarly to ..., 0,1,0, the rest of the rows remaining as in (2.3).

2.2,

(a) Show that a linear combination of Markov transition operators is Markov if
and only if the linear combination is an affine combination.

(b) Provide a counterexample that shows an affine combination of Markov tran-
sition operators that is not a convex combination but is still Markov.

2.3. Show that total variation norm satisfies the norm axioms.

2.4. Show that the map Lp : A — AP is a linear operator on M(S) when
P is a Markov kernel. There are two things to show, first that Lp is a linear
transformation

Lp(aX+bu) = aLp(A\) +bLp(u), a,be R, A\, ue M(S),

and second that Lp maps M(S) to M(S) (that is, AP is a countably additive
set function).
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2.5. Show that the map Lp : A +— AP satisfies | Lp|| = 1 when P is a Markov
kernel.

2.6. Show that ||z| = \/(x, x) defines a norm, when (z,y) is an inner product.
Include a proof of the Cauchy-Schwarz inequality for inner product spaces.

2.7. Show that the stationary scalar-valued AR(1) time series discussed in
Examples 1.2 and 1.5 is reversible.

2.8.

(a) Show that the random walk with reflecting barriers of Example 2.1 is re-
versible.

(b) Show that the modified random walk of Problem 2.1 (b) is reversible.

(c¢) Show that the “maximally uninteresting chain” having the identity kernel
as its kernel is reversible for any invariant distribution 7.

2.9. Suppose P is a transition probability matrix on a finite state space S
having invariant distribution 7 considered as a vector 7 € R®. Find the formula
for the adjoint of Rp : f — Pf considered as an operator on L?(r).

2.10. Find a Markov chain transition probability kernel that is not reversible.
2.11. Show that the Gibbs update described in Section 1.7 is reversible.

2.12. If 7 is a probability measure, show that 1 < p < ¢ < oo implies LP(7) D
Li(r).



Chapter 3

Basic Algorithms

This chapter describes the two basic “algorithms” for Markov chain Monte
Carlo. The word “algorithms” is in quotation marks because what will actually
be described are elementary update steps, bits of algorithm that change the state
variable of the Markov chain in such a way so as to preserve a specified invariant
distribution. These updates can be combined as described in Section 1.7.1 to
make more complicated Markov transition mechanisms preserving the same in-
variant distribution. Repeating an update mechanism, basic or combined, again
and again simulates a Markov chain. The two types of basic update step are
the Gibbs update described in Section 1.7.2, the basic component of the “Gibbs
sampler,” and the Metropolis-Hastings-Green update, the basic component of
the so-called “Metropolis-Hastings-Green algorithm.”

3.1 Combining Update Mechanisms

3.1.1 Simple Composition and Mixing

We already met “composition” and “mixing” of elementary update mech-
anisms in Section 1.7.1 (commonly called “fixed scan” and “random scan” in
the MCMC literature). Then in Chapter 2 we learned that composition cor-
responded to operator multiplication and mixing to a convex combination of
operators.

The composition of update mechanisms that correspond to Markov transi-
tion kernels Py, ..., P;is the kernel P; - -- P;. The proof that if Py, ..., Py each
preserves a distribution 7, then so does the composition P; - - - Py is trivial, just
the fact that kernel multiplication is associative (2.18), so

TP Py Py=7Py--Py=--=nP;=n.

The mixture of update mechanisms that correspond to Markov transition
kernels P, ..., P; and uses the mixing distribution with probabilities a4, ...,
ag i Zi a; P;. The proof that if Py, ..., Py each preserves a distribution 7, then

49
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so does the composition ), a; P; is just as trivial

d d d
W(Z(hj%) :ZamPi: <Zai>7r:7r
i=1 i=1 i=1

No good theoretical reasons are known for choosing any particular mixing
distribution, but the most common choice is the discrete uniform distribution
a; = 1/d, perhaps because of lack of imagination and spirit of adventure in
MCMC practitioners.

3.1.2 Non-Finite Mixtures

Mixtures can use any mixing distribution, discrete or continuous. We need
an argument that this is o. k. when the mixture is not finite.

Theorem 3.1. Suppose p is a probability distribution and for each z in the
domain of u there is a Markov kernel P, satisfying m = wP,, and suppose that
the map (z,x) — P.(x, A) is jointly measurable for each A. Then

Q. A) = / u(d=)P.(z, A)

defines a kernel Q that is Markov and satisfies m = wQ.

Proof. First we need to show that @ is a kernel. The double integral

//(w « 1)(dz, d2)P.(z, A)

exists because (x,z) — P,(x,A) is jointly measurable and bounded. Hence
x — Q(z, A) is measurable (one of the conclusions of the Fubini theorem). To
check that A — Q(z, A) is a measure, we need only check countable additivity.
If A, T A, then

lim Q(z,A,) = Q(z, A)

n—0oo

by the monotone convergence theorem.
The Markovness of @) is obvious. That 7 is invariant for () is just the Fubini
theorem

[ Q. ) = [ 7o) [ u(a@z)p.oa)
— [ a) [ wtdo)p. (o, 2)

~ [ ntayma)
7(4)
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3.1.3 The Hit-and-Run Algorithm

An example of a non-finite mixing distribution is the so-called “hit-and-run”
algorithm (Bélisle, Romeijn, and Smith 1993; Chen and Schmeiser 1993). In its
simplest form this algorithm is just a mixture of Gibbs updates that condition
on a direction in the state space.

Example 3.1. Gibbs Sampling a Uniform Distribution.

Consider a bounded set A in R?. A conventional Gibbs sampler uses d updates,
one for each coordinate. The i-th update updates the i-coordinate, giving it
a new value simulated from its conditional distribution given the rest of the
coordinates, which is uniform on some set.

If the region A is a rectangle parallel to the coordinate axes, the sampler
produces i. i. d. samples. Starting at the point (x1,y1) in the figure, it simulates
a new x value uniformly distributed over its possible range thereby moving to a
position uniformly distributed along the horizontal dashed line, say to (z2,y1).
Then it simulates a new y value uniformly distributed over its possible range
thereby moving to a position uniformly distributed along the vertical dashed
line, say to (x2,ys2). This clearly produces a point uniformly distributed in the
rectangle and uncorrelated with the previous point.

If the region A is not a rectangle parallel to the coordinate axes, then the
Gibbs sampler has autocorrelation.



CHAPTER 3. BASIC ALGORITHMS 52

The update moves are still parallel to the coordinate axes. The possible range
of values for each update is the intersection of a horizontal or vertical line, as
the case may be, with A. Clearly, starting from the point (z1,y;) shown in the
figure, it would take several moves to get into the upper half of the rectangle.
Conclusion: the Gibbs sampler for the second rectangle is less efficient.

This example is an important toy problem. What it lacks in realism, it makes
up for in simplicity. It is very easy to visualize this Gibbs sampler. Moreover,
it does share some of the characteristics of realistic problems.

Example 3.2. Hit-and-Run Sampler for a Uniform Distribution.

The hit-and-run sampler is almost the same as the Gibbs sampler, except that
it moves in an arbitrary direction. A hit-and-run step simulates a random angle
0 uniformly distributed between 0 and 27. Then it simulates a new point uni-
formly distributed along the intersection of A and the line through the current
point making angle 6.
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It is obvious from the figure that some hit-and-run update steps move farther
than Gibbs update steps. Some hit-and-run steps, not many, only those in a
fairly small range of angles, can go from one end of the rectangle to the other.
No Gibbs update step can do that.

Tentative conclusion: the hit-and-run sampler is more efficient than the
Gibbs sampler. Is that right? When we think about the the comparison a bit
more deeply we see that it is not at all obvious that hit-and-run is better. If we
really want to know, we will have to do some simulation experiments and see.

3.1.4 Random Sequence Scans

Composition and mixing are the only ways to combine kernels, since multi-
plication and convex combination are the only operations that combine kernels
to make other kernels, but we can mix a set of kernels that are themselves
products of other kernels.

The best known example of combining composition and mixing is the so-
called “random sequence scan.” If there are d elementary update mechanisms
having kernels P, ..., P;, a random sequence scan chooses a random permu-
tation (kq,ka,...,kq) of the integers 1, 2, ..., d and then applies the updates
in that order. We may use any distribution for the mixing distribution. If we
let P denote the set of all d! permutations, then a mixing distribution is given
by real numbers ay, k € P that are nonnegative and sum to one. The random
sequence scan update can then be described as follows.

1. Choose a random permutation k = (ki,...,kq) € P, choosing k with
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probability ay.

2. Update the state using the composite update mechanism with kernel
Py, ... Py

.
The composite update mechanism referred to in step 2 first does the update

with kernel Pj,, next the update with kernel Py,, and so forth. The whole
random sequence scan update has kernel

P = Z akPkl---Pkd. (31)
(kl,...,kd)EP

This is clearly a mixture, the mixing distribution being the uniform distribution
on P, and the kernels being mixed having the form Py, --- Py,.

When a, = 1/d! for all k, we say we are using a uniform random sequence
scan, but the “uniform” is often dropped. As with the simple random scan,
the uniform mixing distribution seems to be the default. An efficient procedure
for producing uniform random permutations is given by Knuth (1998, p. 145).
It uses computer memory and time proportional to d to generate the random
permutation. Since it also takes time proportional to d to execute the scan, this
is a minor issue, but there is some reason to consider random sequence scans
that don’t require additional memory proportional to d.

For example, we could choose uniformly at random from among the 2(d — 1)
permutations that cycle through the integers in normal or reversed order. With
four variables these permutations are

1234 2341 3412 4123
4321 3214 2143 1432

This random sequence scan uses only two random variates per iteration, one to
decide whether to cycle forward or backward and one to decide which update
to start with. The uniform random sequence scan needs d — 1 random variates
to generate a random permutation.

3.1.5 Auxiliary Variable Random Sequence Scans

Random scan and random sequence scan have an odd property when used
with Gibbs updates. Gibbs updates are idempotent, that is, they satisfy P? = P
(Exercise 3.1). Thus whenever a scan starts with the same update that ended
the preceding scan, no progress is made, but we cannot just omit the useless
update, because then we would not have a Markov chain. For example if there
are two updates with kernels P; and P, and we are using simple random scan
and the first 10 updates are P, P, Py Py P, P; P, P, P; Py, then the distribution of
X190 given Xy is

P,PyP,P,P,P,P,PsP,P, = P,PyP,P,P, P, P,

But we cannot use the kernel on the right hand side, because we must do 10
elementary updates and output the state X, after each one.
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Of course, this problem only occurs in 1/d scans on average, so is not serious
when d is large. Even when d is small, it does not affect correctness only
efficiency. Still there is some reason to see whether we can find a random
sequence scan that never repeats an update consecutively.

To accomplish this we need a new idea: let the random sequence we choose
depend on the preceding one. If this is not to destroy the Markov property, we
must enlarge the state space to include the scan sequence and verify that we
still have a Markov chain with the desired invariant distribution. This trick of
enlarging the state space is widely used in MCMC under the name “auxiliary
variable methods.” We will see it again and again.

Suppose we try choosing a scan sequence uniformly at random from all
possible scans that do not begin with same elementary update that was the end
of the preceding scan, so there are no repeats of elementary updates. Then the
scan chosen depends on the index of the last elementary update of the preceding
scan. In order to continue using Markov chain theory, we must add that index
to the state space.

You can do anything in MCMC, but everything the update depends
on must be part of the state.

If the original state space was S, then the enlarged state space is D x S, where
D ={1,...,d} is the index set of the updates. The Markov chain we simulate
will have the form ([,,X,), ¢ = 1, 2, ..., where I,, € D and X,, € S. The
“auxiliary variable random sequence scan” update can now be described as
follows.

e Choose a scan sequence ki, ..., kg uniformly from the permutations of
(1,...,d) not beginning with I. Set I = kq.
e Update X using the update mechanism with kernel Py, ... Py

a-

In a Markov chain problem, the “given” is a probability distribution 7 on
S that we want to study. If we had not enlarged the state space, m would
have been the invariant distribution of our Markov chain. Now, however, the
invariant distribution of the chain (assuming it has one) will be a distribution
on D x S, since that is now the state space. In order for the new Markov chain
to be of any use in learning about 7w, we need the X, to still have marginal
distribution 7. Thus the marginal for X of the invariant distribution should
be 7. Since the update mechanism for X preserves 7 regardless of the index I
and all of the index values are treated the same, it stands to reason that the
invariant distribution if x4 x m where u(i) = 1/d.

We must, of course, check that this guess is correct. The kernel of the update
on the enlarged state space can be written

P((i,2),{j} x A) = m . .Z;)EP Pi, - Pry(x, A),

k1#1
ka=j
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where P is the set of all permutations of indices as in Section 3.1.4, the factor
(d=1)-(d—=1)! =d!'— (d —1)! being the number of permutations that do not
start with 4. If we left multiply by p x m, we get

ISH

d
> [ wldn)P (o). 45 x 4)

1 d
= e Z Z /7r(dgc)P;Cl coi Py (z, A) (3.2)

i=1 (k1,....kq)EP
ker i
ka=j

= ()
because each Py, preserves 7 so the integral is w(A) and the result must integrate
to one with respect to uxm. Thus we have proved that this update does preserve
[ X T

There is something strange about the case d = 2. There is no longer any
randomness in the scan orders. If we start with I = 2, then we must use the
scan Py P, and have I = 2 at the end of the scan. So every scan uses the same
order and I,, = 2 for all n. Similarly, if we start with I = 1. Thus the method
is essentially fixed scan. We choose one scan order at the beginning and use it
ever after.

3.1.6 Subsampling a Markov Chain

Powers are a special case of kernel multiplication (composition). If P is a
Markov kernel, so is P", and if P preserves 7, so does P". Doing one P" update
is the same as doing the P update n times. Hence the algorithm that does n
update steps between each “sample” that is used in subsequent calculations has
kernel P™. In effect we run the chain with kernel P, but only use X,,, Xo,, X3,
.... This is called subsampling the chain.

If we take a mixture of powers, we get a randomly subsampled chain. Con-
sider a sampling distribution on the nonnegative integers giving probability a.,
to n. Then the kernel of the mixture is

Po=Y a, P (3.3)
n=0

(recall that P° = I). We are assured by our theorem about mixtures that this
kernel preserves 7.

What simulation has P, as its kernel? Just follow the instructions for a
random mixture.

e Generate a random nonnegative integer N; with distribution a, i. e.,

P(N; =n) = ay,.



CHAPTER 3. BASIC ALGORITHMS 57

e Run the chain having kernel P for N; steps. (Running for zero steps means
doing nothing.)

e Output the current state as Y;. (This means Y; = Y; 1 if N; =0.)
e Set i =i+ 1 and repeat.

If Xy, Xo, ... are a Markov chain with transition probability kernel P, then Y7,
Ys, ..., where
Yk = XN1+...+Nk

is a Markov chain with transition probability kernel P,.

Curiously the notion of subsampling a chain at a fixed interval, using the
kernel P, is very widely used, probably overused, in MCMC. But random sub-
sampling, using the kernel P,, is almost never used. This is surprising because
random subsampling, using the kernel P, is a major tool of Markov chain the-
ory, used again and again in (Meyn and Tweedie 1993, Section 5.5). They call
the notion “sampled chains” rather than our “subsampled,” but the concept is
the same.

3.1.7 Preserving Reversibility

Reversibility of a Markov chain is not necessary for MCMC and much of the
literature ignores reversibility. However, reversibility does have some theoretical
and practical consequences (Besag and Clifford 1989; Geyer 1992), and most ele-
mentary update mechanisms that have been proposed for MCMC are reversible,
because the easiest way to show that an update mechanism preserves a speci-
fied distribution is to show that it is reversible with respect to that distribution.
Hence the only way anyone makes a Markov chain for Monte Carlo that is non-
reversible is to combine reversible elementary update steps in a nonreversible
way. This is all right if one doesn’t care whether the sampler is reversible, but
one should know how to obtain a reversible sampler.

Suppose that we have d elementary update mechanisms with kernels P; that
are reversible with respect to the same distribution 7. Let us see whether
composition and mixing preserve reversibility.

Composition

When we combine by composition, we immediately see that reversibility is
not, in general, preserved. Since P; and P are self-adjoint operators on L?(7),

(faP1P2g):<P1faP2g):(P2P1f7g)> fvgeLQ(Tr)a

and this says the adjoint of P; P, is P, P;. Thus the composition is self-adjoint
if and only if PP, = P, Py, that is, if P; and P, are commuting operators on
L?(r). In general the elementary update operators do not commute and hence
the composition is not self-adjoint and reversibility is not preserved. Similarly,
for d operators, the adjoint of P;...P; is P;...P;, and reversibility is not
preserved.
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Some special forms of composition do, however, preserve reversibility. Con-
sider the “scan” P; P, P, P;. Its adjoint has the operators multiplied together in
reversed order, but that gives us the same thing again. Hence it is self-adjoint.

Let us say a composition of operators is palindromic if it reads the same
forwards and backwards.! Then it is obvious that any palindromic composition
of self-adjoint operators is self-adjoint and preserves reversibility.

Mixing

What happens when we combine by mixing? Now it is obvious that re-
versibility is preserved. Since P; and P, are self-adjoint operators on L?(7r),

a’(fv Plg) +b(fa P2g)
a’(Plfa g) + b(P2f7g)
:([apl +bP2]fag)’ fagELZ(W>7

(fv [G‘Pl + bPQ}g)

and this says aP; +bPs is self-adjoint for any real scalars a and b. This obviously
extends to arbitrary linear combinations, even to arbitrary non-finite mixtures
(Exercise 3.2).

Random Sequence Scans

The the kernel (3.1) is self-adjoint if

Z akPk1~-~Pkd = Z akPkd"'Pk1~ (34)
(kl,...,kd)EP (k‘l,...,kd)e'P

If we define an operator r (for reverse) on P by r((k1,...,kq)) = (ka,..., k1),
then (3.4) holds if a,y) = ay for all k. In words, a random sequence scan is
reversible if each scan sequence has the same probability as its reverse sequence.
Both of the specific methods discussed in Section 3.1.4 have this property.

3.1.8 State-Dependent Mixing

Green (1995) proposed an algorithm that involves state-dependent mizing
having mixing probabilities that depend on the current state. Even in the case
of finite mixtures, the theory developed so far does not work. Consider a mixing
distribution with probabilities a,;(z) that depend on the current state x. That
is, we propose to use the kernel

d
Pz, A) = Z a;(x)P;(x, A)

LA palindrome is a phrase that reads the same forwards and backwards, such as “Able was
I ere I saw Elba.”
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Now P = 7 is
d
Z/W(dx)ai(x)Pi(l‘,A) = m(A),

and this equation is no longer easy to verify. It is not implied by 7FP; = « for
each i. The problem is that multiplication of a kernel by a;(x) is not multipli-
cation of the operator P; by a scalar. In fact, this operation is another kernel
multiplication. Define the kernel

M;(z, B) = a;(z)I(z, B)

and check that
wmm@m:/mmuwma@mzm@mwﬁy

Now we see that in operator notation

d
P:ZMR
=1

There is no reason why P should preserve m whenever all the P; do, because M;
does not preserve 7.
Green’s ingenious notion was to use reversibility directly. Define K; = M, P;,
written out in full
Ki(z,A) = a;(x)P;(x, A). (3.5)

Suppose each K is reversible with respect to m, that is, satisfies (2.24) with
P replaced by K;. Then clearly P is also reversible with respect to w. If P is
Markov, then it does everything we want.

Thus we are lead to treating the K; rather than the P; as the primary objects.
Let us see what the relation between the two is. Since a;(z) is a probability, it
is between zero and one. Hence

0, BeB (3.6a)
Kz(l‘,S) 1,

>
< (3.6b)

where (S, B) is, as usual, the state space. A kernel having these properties is
called substochastic. Using

a;i(z) = K;(x,9) (3.7)
we see that Koo A
H@m=é$5 (3.8)

So (3.5) and the pair of equations (3.7) and (3.8) can be used to go back and
forth between K’s and P’s, and we may consider that we have been given the
K; to specify the algorithm.

As in Theorem 3.1 we can consider arbitrary mixtures. For those we change
the index from 7 to z.
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Theorem 3.2. Suppose p is a o-finite positive measure and for each z in the
domain of p there is a substochastic kernel K, that is reversible with respect to
7, suppose that the map (z,z) — K, (x, A) is jointly measurable for each A, and
suppose

/u(dz)Kz(x, A)<1, zeS AcB (3.9)

Then
Q(, A) = / W(d=)K (2, A) (3.10)

defines a substochastic kernel Q that is reversible with respect to .

Proof. The proof that @ is a kernel is exactly like the proof in Theorem 3.1.
That @ is substochastic is again obvious. By the Fubini theorem

[ wtdne B = [ atdn) [ r.e.5) = [ ) [ wtdn)K.e.5).
A A A

(3.11)
Reversibility of @ with respect to 7 is the property that the left hand side of
(3.11) is unchanged by swapping A and B, which is true because swapping A
and B in the right hand side leaves it unchanged by the reversibility of each
K,. O

This theorem is often used in the case where 1 is counting measure, so for
ease of reference we state that as a corollary.

Corollary 3.3. Suppose { K; :i € I} is a family of substochastic kernels, each
reversible with respect to w, and suppose

Y Ki(x,A)<1, z€S, AcB
il
Then
Q(z, A) =Y Kz, A)
il
defines a substochastic kernel Q that is reversible with respect to .

Remark. If the index set [ is finite or countable, the meaning of the sums is
obvious. If I is uncountable, the sum means integration with respect to counting
measure on I, that is,
sup ZKZ'(:L'7A)
F fintte (€F

The kernel @ defined in the corollary will be stochastic (Markov) if and only if
the mixing probabilities a;(x) = K;(z, S) sum to one for each x. Sometimes this
is hard to verify (more precisely, it is hard to invent K; having this property).
Then a simple trick allows us to use the corollary anyway. Define the defect

d(z)=1- ZKi(x,S’), reS (3.12)

icl
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and a new kernel

K(z, A) = d(z)I(z, A). (3.13)

Then K is reversible with respect to any distribution 7 since
[ t@swrnk . = [[ s@ewienin)

is trivially symmetric under the interchange of f and g. If we add K to our set
of kernels, then the sum is stochastic.

Thus we have the following formulation of state-dependent mixing. Suppose
we are given a family of substochastic kernels as described in the corollary. Then
the combined update described as follows

1. Choose a random index ¢ € I, choosing index i with probability p;(x)
defined by (3.7). With probability (3.12) skip step 2 and stay at the
current position.

2. Simulate a new value of x from the probability distribution P;(x, -) defined
by (3.8).

has the stochastic transition kernel K + >, K and is reversible with respect to
7 if each of the K is reversible with respect to .

In the general case described by the theorem, the algorithm is a bit more
complicated to describe, partly because the notation is a bit confusing. Now the
probability of using the kernel K, is denoted a,(x) = K. (z,5), and we need to
think of this as a subprobability density with respect to u, but in that role z is
the variable, 2 being fixed. So let us write f,(z) = a.(z). Then

/h@MMSl

by (3.9) so f, is indeed a subprobability density. The defect of f, is
dw) =1~ [ L), (314)

and we define K by (3.13) exactly as before except that the defect is defined by
(3.14) rather than (3.12).

In order to carry out the combined update described by the theorem, we
need to be able to simulate a random variate Z having this density with respect
to p. The update is described as follows.

1. Simulate a random variate z having probability density function f, with
respect to p. With probability (3.14) skip step 2 and stay at the current
position.

2. Simulate a new value of x from the probability distribution P, (x, -) de-
fined by (3.8) with 4 replaced by z.
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3.2 The Metropolis-Hastings Algorithm

In one form (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953),
this is the oldest MCMC algorithm, dating to the dawn of the computer age
when the only place something like this could have been done was Los Alamos.
In its modern form (Green 1995), it is the newest MCMC algorithm, which
solves many problems MCMC researchers have stumbled over in the past. In
between, a key improvement was made by Hastings (1970), which in a curious
episode in the sociology of science was not really understood for 20 years. The
paper was published in a prestigious journal (Biometrika) and was cited by
some MCMC authors (Ripley 1987), but many problems that now seem trivial
(“just use Metropolis-Hastings”) were stumbled over because the importance of
Hastings’ improvement was not understood.

3.2.1 Unnormalized Probability Densities

The section heading refers to a concept that is familiar, being a standard
problem in introductory probability courses, but usually is not given a name.
Here we do give it a name so we can use it better. A function h is an unnormal-
1zed probability density with respect to a positive measure y if h is nonnegative
and has a finite, nonzero integral. Then the integral ¢ = [ h(z)u(dz) is called
the normalizing constant for h, and the function f defined by f(x) = h(x)/c is
called the normalized density corresponding to h.

As we said, this is concept is very familiar from introductory probability
problems like: What constant k& makes kx? a probability density for 0 < x < 1?
But lack of a name for this concept keeps people from noticing that it plays a
key role in several areas of statistics.

It is part of the definition, but it needs to be emphasized that calling h and
unnormalized density asserts

e it is nonnegative,

e it does not integrate to zero (i. e., is strictly positive on some set having
positive y-measure), and

e it does not integrate to infinity.

Checking the first two items is trivial. Checking the third is nontrivial, but
it must be done. Arguments about “unnormalized densities” that integrate to
infinity are mathematical nonsense.

Bayesian Inference

The computational problems that make Bayesian inference difficult all in-
volve unnormalized densities, the reason being

likelihood X prior = unnormalized posterior
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If a Bayesian has a data model f(x]f) and a prior g(#), the problem is to
calculate properties of the posterior

h(ol) = L H96) (3.15)

[ f(=]0)g(0) db
Because f and g appear in both the numerator and the denominator, both may
be unnormalized, considered as functions of . Unnormalized versions of f(x|6)
are a concept with a name. A function L,(0) is a likelihood for the problem if

Ly (0) = a(x) f(x]0)
for an arbitrary strictly positive function a(z). If we plug this into (3.15) we

get
n(ofr) = 2 D90) (316)
J La(9)g(0) do
(the a(z) terms in the numerator and denominator cancel). It is also clear that
we could plug in cg(6) for ¢g(#) for an arbitrary positive constant ¢ and the ¢’s
would cancel, leaving the result unchanged.

Equation (3.16) even makes sense when ¢ is not an unnormalized density.
It can be any nonnegative function on the parameter space, so long as the
numerator L, (6)g(#) is an unnormalized density. When g(6) does not integrate,
we say that it is an improper prior.

When the prior is proper, there is no need to show that the likelihood times
the prior is integrable. It is automatically integrable by the laws of probability.
The integral of the numerator in (3.15) is the marginal density for x, which
is finite. When the prior is improper, a proof that the likelihood times the
prior is integrable is a required part of the problem. Omitting the proof risks
committing nonsense.?

Conditioning and Unnormalized Densities

Not surprising, Bayes rule being just a rearrangement of the definition of
conditional probability, the relationship between unnormalized densities and
conditioning we saw in Bayesian inference is a general phenomenon

A joint density is an unnormalized conditional density. The marginal
18 its normalizing constant.

21t happened once to your humble author (Geyer 1992, see the “Note added in proof”).
Don’t let it happen to you. There is some MCMC literature on what happens when you try
to simulate an “improper posterior” (you omitted the proof of integrability, and there isn’t a
proof, and you are in the realm of mathematical nonsense), but a short digest of that literature
is that there is nothing to be said, no one has a clue about what will happen. Moreover, the
whole notion of “improper posterior” seems to have no theoretical foundation. Even if you
could simulate it in some sense, no Bayesian theoretician I’ve talked to thinks it has any
meaning.
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What this means is the following. Say f(x,y) is a joint density considered as a
function of two variables x and y. Considered as a function of one variable, say
x, it is an unnormalized density defined by

hy(x) = f(z,y).

The normalizing constant for h,, is the marginal of y

o) = [yt de = [ siey) s

Really we should call p(y) a “normalizing function” rather than “normalizing
constant” because it is a function of y. Dividing by the normalizing function
gives the conditional density

f(z,y)
p(z)

The same phenomenon holds when the joint distribution is unnormalized,
but we have to be a bit careful with our terminology. Suppose we now have
the unnormalized density h(z,y) = cf(x,y), where ¢ is an unknown constant.
Again, we write

f(zly) =

hy(x) = h(l‘,y),

but now the normalizing function is not the marginal, though it is proportional
to the marginal

o) = [ hyfa)do = [ cslo.p)do = eply)
But still, normalizing h, gives the conditional density

h() _hey) _ fay) o
=t = L = )

Models Specified by Unnormalized Densities

If for each 6 in a parameter space © we have a function hy that is an un-
normalized probability density with respect to u, we say that the family of
unnormalized densities {hy : 0 € O} is a family of unnormalized densities.
Again the normalizing constants

c(0) = /h@(z),u(dx), 6o

define a function ¢ : © — (0,00) called the normalizing function of the family.
As always, the use of the term “unnormalized densities” implies that 0 < ¢(0) <
oo for all 8. The normalized densities of the family are defined by

1

fo(x) = %

ho(z), rxeS (3.17)
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(where S is, as usual, the sample space).

This notion may seem unfamiliar, but it is a widely used technique for spec-
ifying models for complicated phenomena. It may be very difficult to specify a
model for which the normalizing constant is known for complicated data. As we
will see, it is not necessary to have a closed-form expression for the normalizing
constant in order to use the family as a statistical model. We will always be
able to simulate data from the model by MCMC, and

when we can simulate, we can do inference.

This assertion may be a bit hard to swallow until some examples have been
seen, but we will see them in due course.

3.2.2 The Metropolis-Hastings Update

The Metropolis-Hastings update preserves any distribution 7 specified by
an unnormalized density h with respect to a measure u. There is no restriction
on h(x) other than that it actually be an unnormalized density (its normalizing
constant is nonzero and finite) and that it can be evaluated, that is, for each
x we can calculate h(xz). There is no requirement that we be able to do any
integrals or know the value of the normalizing constant. In particular, unlike
the Gibbs sampler, we do not need to know anything about any conditional
distributions of .

The Metropolis-Hastings update uses an auxiliary transition probability
specified by a density ¢(x,y) called the proposal distribution. For every point x
in the state space, ¢(z, -) is a (normalized) probability density with respect to u
having two properties: for each x we can simulate a random variate y having the
density ¢g(z, -) and for each z and y we can evaluate the ¢(z,y). To summarize,
this is what we need

1. For each x we can evaluate h(x).
2. For each x and y we can evaluate ¢(x,y).

3. For each x we can simulate a random variate with density ¢(z, -) with
respect to p.

There is no necessary connection between the auxiliary density ¢(z,y) and the
density h(z) of the stationary distribution. We can choose any density that we
know how to simulate. For example, if the state space is d-dimensional Euclidean
space R? we could use a multivariate normal proposal density with mean z and
variance a constant times the identity. If ¢ denotes a Normal(0,0%I) density,
then we have ¢(z,y) = ¢(y — ). We can easily simulate multivariate normal
variates and evaluate the density.

The Metropolis-Hastings update then works as follows. The current position
is x, and the update changes x to its value at the next iteration.

1. Simulate a random variate y having the density ¢(z, -).
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2. Calculate the “Hastings ratio”

(3.18)

3. Do “Metropolis rejection:” with probability min(1, R) set x = y.

Later in this section we will prove that this update always preserves .

We often say we “accept” the “proposal” y if we set the value z = y in
step 3. Otherwise we say we “reject” the proposal. When we reject, the value of
the state of the Markov chain remains the same for two consecutive iterations.

Warning: Those familiar with so-called rejection sampling in ordinary Monte
Carlo note that Metropolis rejection is completely different. In ordinary rejec-
tion sampling, proposals are made over and over until one is accepted. The first
proposal accepted is the next sample. In Metropolis rejection only one proposal
is made, if it is not accepted, then the Markov chain doesn’t move and X,, 41
is equal to X,,. If Metropolis rejection were done like ordinary rejection, the
resulting Markov chain would not preserve .

Note also that the denominator of the Hastings ratio (3.18) can never be
zero if the chain starts at a point where h(x) is nonzero. A proposal y such that
q(x,y) = 0 occurs with probability zero, and a proposal y such that h(y) = 0 is
accepted with probability zero. Thus there is probability zero that denominator
of the Hastings ratio is ever zero during an entire run of the Markov chain
so long as h(X;) > 0. If we do not start in the support of the stationary
distribution we have the problem of defining how the chain should behave when
h(x) = h(y) = 0, that is, how the chain should move when both the current
position and the proposal are outside the support of the stationary distribution.
The Metropolis-Hastings algorithm says nothing about this. It is a problem
that is best avoided by starting at a point where h(x) is positive.

Also note specifically that there is no problem if the proposal is outside the
support of the stationary distribution. If h(y) = 0, then R = 0 and the proposal
is always rejected, but this causes no difficulties.

3.2.3 The Metropolis Update

The special case when we use a proposal density satisfying ¢(z,vy) = q(y, x)
is called the Metropolis update. In this case the Hastings ratio (3.18) reduces
to the odds ratio

h(y)

and there is no need to be able to evaluate g(x,y) only to be able to simulate
it. Thus the requirements for Metropolis are a bit different from those for
Metropolis-Hastings

1. For each z we can evaluate h(x).
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2. q(z,y) = q(y, z) for each x and y.

3. For each z we can simulate a random variate with density ¢(z, -) with
respect to p.

(the first and third requirements are unchanged, only the second is different).

Metropolis proposals save the trouble of evaluating ¢(z,y) in calculating the
Hastings ratio. Evaluating ¢(x,y) is usually not that much work, so avoiding it
is not worth much additional trouble in making proposals.

Gibbs and Metropolis are all right when they are easy and effective.
Otherwise they are part of the problem, not part of the solution.

Always keep the general method in mind (for now “general” means Metropolis-
Hastings, later it will mean Metropolis-Hastings-Green).3

3.2.4 A Good Default MCMC Sampler

The objective of this section is to outline a good “default” MCMC sampler.
One way to think of what we are looking for is a method that will give reasonably
good answers with a minimum of trouble.*

The normal proposal mentioned above is a Metropolis proposal. By the
symmetry of the multivariate normal distribution, ¢(x,y) = ¢(y — ) is equal to
q(y,z) = ¢(x — y), where ¢ is any non-degenerate multivariate normal density,
that is, the proposal is y ~ Normal(z, ¥), where ¥ is any positive-definite matrix
and x is the current position.

Although there are good reasons for using this method with general X, a
method that asks the user to specify an arbitrary covariance matrix having the
dimension of the state space has to many parameters to be considered easy to
use. So we will restrict ¥ to be diagonal. If the coordinate variables of the state
vector have approximately the same variance under the distribution © we want
to simulate, then we can use an even simpler proposal with ¥ = ¢2I. Now there
is only one parameter (o) that must be adjusted by the user. We can’t do any

3If T had a nickel for every time I’'ve been asked for help with an MCMC problem and
answered, “Why are you using a Gibbs update there? Metropolis-Hastings would be easy and
fix the problem,” I'd be rich.

4 Another way to think of what we are looking for is a default setting for the worlds most
obnoxious seminar question. A statistician who shall remain nameless often asks seminar
questions of the following form: “The most simple minded approach to this problem I can
think of is blah. Can you explain why your method works any better than that?” Here “blah”
stands for any really simple method, preferably one that can be explained in one sentence and
took about fifteen seconds to think up. The reason the question is so obnoxious is that many
people do write papers and give talks about very complicated methods that can be proved
to have various properties, but cannot be proved to be better than the “most simple minded
approach” T can think of. If the speaker understands the question, he is left with nothing
to say. If the speaker doesn’t get the point, and blathers on without addressing the issue of
whether is method is good for anything, he seems a fool. In MCMC the method of this section
is a good “most simple minded approach.” I can’t tell you how many MCMC talks I've heard
or papers I've read that gave no reason to believe the methods proposed were better than this
default.
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better than that. If o is chosen ridiculously small, say 107'%, the chain can’t
get anywhere in any reasonable number of iterations. If ¢ is chosen ridiculously
large, say 10'°, all of the proposals will be so far out in the tail that none will
be accepted in any reasonable number of iterations. In either case, the chain
will not produce a representative sample from its invariant distribution in the
amount of time anyone is willing to wait. So we have a “Goldilocks problem.”
We don’t want the porridge too cold or too hot. Of course we could choose
o = 1 and hope that will be about right for most problems, but that seems a
too much to hope for.

How do we choose 0?7 Gelman, Roberts, and Gilks (1996) considering the
performance of this algorithm in simulating multivariate normal distributions
showed that adjusting o so that about 20% of proposals are accepted gives the
best performance (if you are simulating a multivariate normal). This came as a
shock to many MCMC practitioners whose naive intuition told them that high
acceptance rates like 90% would be right. So even though the recommendation
was not exactly right for any non-toy problem it had a huge effect on practice,
because what everyone was doing was grossly wrong. Geyer and Thompson
(1995) came to a similar conclusion, that a 20% acceptance rate is about right,
in a very different situation. They also warned that a 20% acceptance rate
could be very wrong and produced an example where a 20% acceptance rate
was impossible and attempting to reduce the acceptance rate below 70% would
keep the sampler from ever visiting part of the state space. So the 20% magic
number must be considered like other rules of thumb we toss around in statistics:
n > 30 means the z-test is 0. k. and more than 5 expected in each cell of a
contingency table means the chi-square test is 0. k. We know these rules of
thumb can fail. There are many examples in the literature where they do fail.
We keep repeating them because we want something simple to tell beginners,
and they are all right for many problems.

The rule of thumb says 20% but your mileage may vary.
From the Jargon File (Raymond 1996)

Your mileage may vary (YMMV) /caveat/ [from the standard disclaimer
attached to EPA mileage ratings by American car manufacturers] 1. A rit-
ual warning often found in Unix freeware distributions. Translates roughly
as "Hey, I tried to write this portably, but who knows what’ll happen on
your system?” 2. More generally, a qualifier attached to advice. ”I find
that sending flowers works well, but your mileage may vary.”

Example 3.3. Bayesian Logistic Regression.

Here we do Bayesian logistic regression with a flat prior on the kyphosis data
that comes with S-PLUS (Chambers and Hastie 1993, pp. 200 ff.). The problem
has three predictor variables plus an intercept, so the log likelihood is

n

L(B) = Hp(ai)yiqwi)liyi

i=1
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where

B
and
0; = Bo + i1 51 + Ti2f2 + i303.

The responses y; are all zero or one. The covariates x;; are arbitrary real
numbers. Here we use a flat prior g(g8) = 1.

A few short runs, the first four lines of the following table, establish that
o = 0.2 is about right.

sample subsample acceptance computer
size spacing o rate (%)  time (sec)
10000 1 1.00 0.0 2.3
10000 1 0.10 2.1 2.1
10000 1 0.01 35.5 2.0
10000 1 0.03 11.9 2.1
10000 1 0.02 18.1 2.1
10000 10 0.02 17.9 18.7
10000 100 0.02 17.9 187.3

Figure 3.1 shows a time series plot for §y. Of the four parameters, this one
has the worst plot. The series hardly looks stationary. We need a longer run,
because we don’t want to fill up the disk, we use a wider spacing. The last line of
the table shows a run of 10 iterations, subsampled at every 100 iterations, so we
only write out 10* samples. We can’t plot more than that anyway. Figure 3.2
is better than Figure 3.1 but not by much. The chain appears more or less
stationary, but has so much autocorrelation that any estimates based on it will
have low precision. Since this run only took three minutes we could increase
the spacing by a factor of 100 again if we were willing to wait several hours for
the results, but we could also think a little bit.

A little though about regression (not about MCMC) comes to the idea that
the problem may be ill conditioned because of correlation among the predictor
variables (a. k. a. collinearity). This leads to high correlation among the regres-
sion coefficients. When we check for that, we see that §y and 33 are fairly highly
correlated (Figure 3.3). This leads to the further idea that if we used orthogonal
predictors, we might get a better behaved sampler. In fact, since the constant
predictor is one of the ones causing trouble, we might just orthogonalize the
other predictors to it, i. e., subtract off their means. This is equivalent to a
change of parameters. Call the new parameters ;. Then we have

Bo + xi1B1 + wiofe + wisfs = By + (w1 — 1)1 + (wi2 — T2) B4 + (wi3 — T3) 55
from which we see

Bi= B i=1,2,3

R R ) (3-19)
Bo = /80 — 18] — 2Py — 517353
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Figure 3.1: Time series plot of Metropolis sampler output for Gy in the four-

parameter logistic regression for the kyphosis data (Chambers and Hastie 1993).
The sampler is the “default” Metropolis with o = 0.02.
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Figure 3.2: Time series plot of Metropolis sampler output for Gy in the

same
model as in Figure 3.1. The only difference is the chain is subsampled with
spacing 100 and runs 100 times as long.
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Figure 3.3: Scatter plot of §y versus (3 for the Metropolis sampler output for

the same run as in Figure 3.2.

Thus we can easily convert back to the original parameters if we so desire. We
may not bother. The coefficient for the constant predictor has to be in the

model, but we are not interested in its actual value.
With this change of parameters, things go much better.

sample subsample acceptance computer
size spacing o rate (%)  time (sec)
10000 1 0.020 334 2.1
10000 1 0.030 22.6 2.1
10000 1 0.040 16.2 2.1
10000 1 0.035 19.0 2.1
10000 10 0.035 18.9 18.6
10000 100 0.035 19.4 185.6

One indication we are doing better is that we get higher acceptance rates for
the same o or, what is the same thing, can take bigger steps with the same
acceptance rate. Figure 3.4 is the analog of Figure 3.1 for the run in line
four of this table. Figure 3.4 looks much better than Figure 3.1. We continue
making longer runs (the last two lines of the table) and then look at the analog
of Figure 3.3. In order to do this we have to transform back to the original

parameterization using (3.19).

It is clear that the transformation has turned a moderately hard problem
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Figure 3.4: Time series plot of Metropolis sampler output for 3y the same logistic
regression data as in 3.1 but using the parameterization (3.19). The length of
run and spacing of samples is the same as in 3.1.
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Figure 3.5: Scatter plot of Gy versus (3 for the Metropolis sampler output for
the same data, same Monte Carlo sample size and same spacing of subsamples
as in Figure 3.3. The only difference is that the parameters (3] were used and
then translated back to the original parameterization.
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into an easy one. We do not continue with the example, because we have
already seen what was to be learned. That we needed a simple trick should not
be surprising, nothing in statistics works “right out of the box.” Why would
MCMC be an exception?

There are no idiot-proof MCMC methods, not even the “default.”

Example 3.4. The Dumbbell Distribution.
This is a toy problem that shows the 20% rule failing.

A few quick runs show us that o = 1.3 is about right according to the 20% rule.
But what o is really optimal?

sample subsample acceptance computer
size spacing 1% rate (%)  time (sec)
10000 1 1.0 30.4 0.2
10000 1 2.0 11.1 0.2
10000 1 1.3 21.6 0.2

Suppose we are trying to estimate the mean of x (the horizontal coordinate).
Of course, we know this is the center of symmetry in this toy problem, but you
have to imagine we don’t know the mean and must estimate it. What o gives
the most accuracy in estimating the mean?

We look at some more runs, this time also estimating the variance in the
central limit theorem o2, (1.10) by the method of batch means (Section 1.6.3)
with 100 batches.

sample subsample acceptance  computer

size spacing o rate (%)  time (sec) o3,

10° 100 1.3 21.3 130.1 407.42
10° 100 2.0 11.4 131.7 170.30
10° 100 3.0 6.2 132.8 93.66
10° 100 4.0 4.0 132.7 55.04
10° 100 5.0 2.9 136.5 47.40
10° 100 6.0 2.3 133.2 39.76
10° 100 7.0 1.8 133.1 38.89
10° 100 8.0 1.5 133.0 44.79

It is clear that ¢ = 1.3 in not optimal and in fact ¢ = 7 is more like it and the
optimal acceptance rate is more like 2% than 20%.

I imagine some reader will now protest that most problems are not like the
“dumbell distribution” so what is the point? I reply by saying that asking the
question like that misses the point. Unlike criminal defendents, math is guilty
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until proven innocent. You are not entitled to assume that “most problems”
are not “like” the dumbell distribution until you have a precise definition of the
class of problems you are talking about and a proof that 20% acceptance rate
(or whatever) is optimal for all problems in the class. As it stands now, we
have a counterexample that disproves the conjecture that 20% is optimal for all
problems. Until someone comes up with a better conjecture, that’s the end of
the story.

I imagine that some readers are still not satisfied. They would be happy to
leave math and rely on practical experience. To them I would say that practical
experience with complicated problems shows they do have bottlenecks like this
toy problem. It is easy for the sampler to move around some parts of the state
space, but hard for the sampler to get from one part of the state space to another
(through a “bottleneck”). Real problems with bottlenecks tend to be so hard
that the kind of experimentation we did here would take a very long time. But
there is every reason to suspect that real problems do exhibit phenomena similar
to the dumbell distribution.

3.2.5 Reversibility of Metropolis-Hastings

We can now write down the transition probability kernel for the Metropolis-
Hastings update. The transition probability has two terms. For accepted pro-
posals, we propose y and then accept it, which happens with probability density

p(z,y) = q(z,y)a(z,y),

where a(x,y) = min(R, 1) is the acceptance probability. Hence for any set A

/ q(z,y)a(z,y)pu(dy)
A

is the part of P(x, A) that results from accepted proposals. If the integral on the
right hand side is taken over the whole state space, it gives the total probability
that the proposal will be accepted. Thus the probability that the proposal is
rejected is

ra)=1- / a(z,y)a(z, y)u(dy).

If the proposal is rejected we stay at x. Hence

Pz, A) = r(2)I(z, 4) + /A o(z, y)a(z, y)p(dy), (3.20)

Where I(x,A) is the identity kernel, which we now recognize as the Markov
kernel that corresponds to “doing nothing.”

We now want to verify that the Metropolis-Hastings update is reversible
with respect to 7.
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Lemma 3.4. Suppose the transition probability kernel of a Markov chain has
the following form

P(x, A) = r(2)I(z, 4) + /A p(,y)(dy), (3.21)

where p(x, -) is a subprobability density for each x and

ria) =1~ [ bl y)n(dy).
Suppose h(x) is an unnormalized density with respect to p and

h(z)p(z,y) = h(y)p(y, z), for all x and y. (3.22)

Then this Markov chain s reversible with respect to the distribution m having
unnormalized density h with respect to .

Proof. What is to be shown is that

//f d2)P(z, dy)
/f n(dz) + //f d2)p(z, y)u(dy).

is unchanged when we interchange f and g (2.25).
The first term is obviously unchanged by 1nterchang1ng fand g. So we work
on the second term, which multiplied by the normalizing constant for h(z) is

//f )p(z, y)p(d)p(dy) = //f y)p(y, x)p(dx) p(dy)
~ [[ 1@t pudpus)

where (3.22) gives the first equality, and interchanging the dummy variables x
and y gives the second. Now, except for the order of integration, the second line
is just the left hand side of the first with f and g interchanged. Reversal of the
order of integration is justified by the Fubini theorem. O

Corollary 3.5. The Metropolis-Hastings update is reversible with respect to the
distribution m having unnormalized density h with respect to p.

Proof. The Metropolis-Hastings kernel (3.20) has the form (3.21) with p(z,y) =
q(z,y)a(x,y). Thus we need only verify (3.22).
The probability that a proposal is accepted is

a(z,y) = min(1, R) = min <1, ZE
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Note that if R <1 then

a(x,y) = Z(z;ZEZJJ; zg and  a(y,z) =
and if R > 1 then
a(x,y) = and aly,z) = Z ;C;Zg’i;

In either case
which is (3.22). O

3.2.6 One-Variable-at-a-Time Metropolis-Hastings

When the state X is a vector X = (X,...,Xy), the Metropolis-Hastings
update can be done one variable at a time, just like the Gibbs update. The
algorithm is essentially the same as before, although some changes in notation
are required because the proposal only changes a single variable and hence
the proposal density ¢(x,y) is not a density with respect to the measure
on the whole space. (Warning: for the rest of the section, subscripts indicate
components of the state vector, not the time index of a Markov chain.)

Suppose p is a product measure gy X - -+ X pg. For a Metropolis-Hastings
update of the i-th variable, we need a proposal density ¢;(z, - ) with respect to
;. The update then works as follows. The current position is z, and the update
changes x to its value at the next iteration.

1. Simulate a random variate y having the density ¢;(x, - ). Note that y has
the dimension of z; not x. Let =, denote the state with x; replaced by y

Ty = (L1, T 1, Yy Tig1 - - - Tq).
2. Evaluate the Hastings ratio

_ h(xy)qz(xwxz)
B ey

3. Do Metropolis rejection: with probability min(1, R) set z = .

Note that, as with the original Metropolis-Hastings update, this update also
stays in feasible states if started in a feasible state.

It is easy enough to go through the statements and proofs of Lemma 3.4 and
Corollary 3.5 making the necessary notational changes to obtain the analogous
results for one-variable-at-a-time Metropolis-Hastings. But we won’t bother,
since variable-at-a-time Metropolis is a special case of the Metropolis-Hastings-
Green algorithm, and we will give proofs for that.
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3.2.7 Why Gibbs is a Special Case of Metropolis-Hastings

Gibbs updates a variable x; from its conditional distribution given the rest.
The unnormalized joint density of all the variables is h(z) = h(x1,...,24). We
know from our slogan about conditioning and unnormalized densities that this
is also an unnormalized conditional density of x; given z_;.

A Gibbs update is a Metropolis-Hastings update in which the proposal den-
sity is @; — h(x1,...,24). Thus

Qi(xay> = h(l’l, sy Li—15 Y, Tty - - - ,Jl‘d)/c

where ¢ is the unknown normalizing constant that makes h a proper condi-
tional probability density. Then using the notation of the preceding section, the
Hastings ratio is

h(xy)gi(zy, ;) _ h(zy)h(z) -1

h(x)Q1(x7y) h($)h($1, s =15 Y L1y - - ,Z‘d)

Thus this Metropolis-Hastings simulates a new value of z; from its conditional
given the rest and always accepts the proposal. Hence it does exactly the same
thing as a Gibbs update.

3.3 The Metropolis-Hastings-Green Algorithm

Metropolis-Hastings-Green is just like Metropolis-Hastings except that mea-
sures replace densities. Why would we want something like that? One reason
is one-variable-at-a-time Metropolis-Hastings in which the whole state space is
R?, but the proposal lies in a one-dimensional subset

Aig ={(@1,.. ., Ti-1,Y,Tit1...2q) ty ER}.

Since the support A; . of the proposal depends on the current position x, the
proposal distribution cannot have a density with respect to one single measure,
that is, it cannot have a density ¢;(z, - ) with respect to 1 we used in the general
Metropolis-Hastings algorithm. That’s why we were forced to use different no-
tation for one-variable-at-a-time Metropolis-Hastings (and would have needed
a different proof of reversibility had we attempted one).

But, as we shall see, there are many other situations in which we want to
make proposals in subsets of the state space that depend on the current position.
In order to describe all of these using the same theory, we need a more general
theory.

3.3.1 Metropolis-Hastings-Green, the Dominated Case

The Metropolis-Hastings-Green (MHG) update (Green 1995) is best de-
scribed as Metropolis-Hastings with measures replacing densities.

e The unnormalized density h is replaced by an unnormalized measure 7.
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e The proposal density ¢(z,y) is replaced by a proposal kernel Q(x, A).
e The Hastings ratio (3.18) is replaced by “Green’s ratio”

_ n(dy)Q(y, dx)
n(dz)Q(z, dy)

Before we can make sense of this we have to clarify what each of these means.

By an “unnormalized measure” we mean a positive real measure. Here we
want an unnormalized measure 7 that is proportional to the desired invariant
distribution , that is, 7 = cr or, written out in more detail, n(B) = cn(B)
for all measurable sets B. Since 7 is a probability measure, ¢ = 7(S), where S
is the state space. Allowing the measure to be unnormalized doesn’t affect the
characterization of reversibility. We say the kernel P is reversible with respect
to the positive measure 7 if (2.24) holds when = is replaced by n. Clearly, a
kernel is reversible with respect to both n and 7 or neither.

The proposal kernel @) needs almost no explanation. When « is the current
position, Q(z, -) is a probability measure used to make the proposal.

Strictly speaking (3.23) is meaningless nonsense. It is shorthand for a Radon-
Nikodym derivative. We will later give precise definitions, for now we adopt the
temporary definition® that (3.23) means

/ / gl y) Rz, y)n(dr)Q(z, dy) = / / oo n(dy)Qy dz)  (3.24)

holds for every function g for which the integrals are defined, in particular for
every indicator function.

There is ambiguity in defining R by (3.24), since R can be arbitrarily re-
defined on a set of measure zero without affecting the values of the integrals.
In many interesting examples the point (z,y) will have measure zero. If we
are allowed to redefine R before each use, the value R(x,y) will be arbitrary
whenever we use it. That’s won’t do at all! In order to have an algorithm we
need to settle on one version of R, that is, one function that satisfies (3.24), and
use that same function always. It doesn’t matter which version we choose, so
long as we stick with our choice ever after.

Now the obvious changes of notation transform Metropolis-Hastings into the
more general MHG update. The current position is x, and the update changes
x to its value at the next iteration.

R(z,y) (3.23)

1. Simulate a random variate y having the probability distribution Q(z, ).

2. Calculate “Green’s ratio” R(zx,y).

3. Do “Metropolis rejection:” with probability min[l, R(x,y)] set z = y.
We see that the conditions we need are

1. For each z we can simulate a random variate with distribution Q(z, -).

2. For each x and y we can evaluate R(x,y).

5The meaning of (3.23) will later be generalized to cases in which (3.24) does not hold.
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Green’s Algorithm

The MHG update really gains power when combined with state-dependent
mixing. The algorithm proposed in Green (1995) used both ideas. There are a
finite or infinite set of proposal kernels Q;(x, A), i € I, which are permitted to
be substochastic. The requirements on the proposal kernels are

o Qi(x,S) is known for all i.

> Qi(z,8) <1, VzeSs

iel

e Foralliel
_ 7(dy)Qi(y, dz)
m(dz)Q;(z, dy)

is known® and it is possible to evaluate R;(z,y) for all z and y.

Ri(z,y) (3.25)

e for each x and 7, it is possible to simulate realizations from the distribution
having the normalized proposal distribution

P, ) = g((msi (3.26)

Then one step of Green’s algorithm, starting from current position x goes
as follows.

1. Simulate a random index i, choosing ¢ € I with probability @;(z, S). With
probability 1 — ", ; Qi(x, S), skip the remaining steps and stay at x.

2. Simulate y ~ P;(x, -) defined by (3.26).

3. Calculate Green’s ratio R;(x,y).

4. Accept y with probability min[1, R;(x, y)].
All of this is just the MHG update described in preceding section combined with
the idea of state-dependent mixing (Section 3.1.8).

3.3.2 Spatial Point Processes
Poisson Processes

A spatial point process is a random process having values that are point
patterns in a region of R?. Both the number of points and their positions within
the region are random. A point process is simple if the locations of points never

6We take the Radon-Nikodym derivative here to have the same meaning here as in the
preceding section, i. e., (3.24) holds with @ and R replaced by Q; and R;. Also we must fix
one version of R; to be used throughout. As promised for the simple MHG update, we will
later generalize to cases in which (3.24) does not hold.
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Figure 3.6: Three realizations of the same spatial point process.

coincide, that is, with probability one the location of every point is different. A
point process if finite if the number of points is finite with probability one. We
will only be interested in finite simple point processes.

The process illustrated in Figure 3.6 is the simplest of all spatial point pro-
cesses, the homogeneous Poisson process, which is simulated as follows.

e Simulate a Poisson random variate N.
e Simulate NV i. i. d. points uniformly distributed in the region.

For the patterns in Figure 3.6, the expected number of points was 8.75 (the
actual numbers are 8, 11, and 6). Any nonnegative number of points is possible,
including zero (the empty pattern) though this may be very rare (probability
1.6 x 10~* in this example). The notch in the side of the region is only to avoid
being square. The region can be any shape.

For any point process on a region A and any measurable subset B of A, let
Np denote the number of points in B. This is a random variable, because it is
a function of the random point pattern. Define A(B) = E(Npg). Then X is a
positive measure on A, called the parameter measure of the process. When the
process is simple, the only case of interest to us, A is also called the intensity
measure of the process.

Any finite, nonatomic’ measure A on a region A determines an inhomoge-
neous Poisson process with intensity measure A, which is simulated as follows.

7

e Simulate a Poisson random variate N with expectation \(A).
e Simulate N i. i. d. points with distribution v defined by
v(B) = A(B)/\(A) (3.27)
It is a remarkable fact about the Poisson process that it has two characteri-
zations that have no obvious connection with each other.

Theorem 3.6. In order that a simple, finite point process be Poisson, it is
necessary and sufficient that there be a finite nonatomic measure \ such that
E(Ng) = XA(B) for each measurable set B.

7A measure is nonatomic if every one-point set has measure zero. A positive measure \ is
finite if A\(A) < oo.
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This combines Theorems 2.4.1T and 2.4.IIT in Daley and Vere-Jones (1988).

Theorem 3.7. In order that a simple, finite point process be Poisson, it is
necessary and sufficient that for any measurable partition By, Bs, ..., By of the

domain, the random variables Ng,, Np,, ..., Np, are independent.

This is Theorem 2.4.VII in Daley and Vere-Jones (1988). That the simulation
method described above satisfies the characterizations in the theorems is left as
an exercise (Exercise 3.5).

Non-Poisson Processes

So far we have gotten away with not precisely specifying the probability
measure for the Poisson process, or even the sample space. This turns out to be
slightly tricky, the issue being whether we consider the points of the pattern to
be ordered or not. Notationally, the easiest to work with is to consider ordered
patterns of points. Then conditional on N4 = n, the n points of the pattern
are an element of A™. This is not the Right Thing because we really want to
consider the points as unordered, in which case the ordered view overcounts by
distinguishing the n! permutations of n points. However, the Wrong Thing can
be made to work as long as we choose probability models that are symmetric
under permutations of the points in a pattern. Then both views will produce
the same answers to all questions that do not explicitly mention the ordering.
For more on this issue, see Daley and Vere-Jones (1988, Section 5.3).

In the “ordered view,” the state space of a finite simple point process in a
region A can be taken to be

o0
S=[JAam
n=0

When there are n points, the state is a vector of a points in A, hence an element
of A". A® is the singleton set {@}. This agrees with the definition of A°
in abstract set theory, where 0 is defined to be the empty set, so A% = A?,
which is the set of all functions from the empty set to A and there is one such
function, the empty function. This notation is felicitous, the empty set being an
appropriate notation to represent the empty point pattern having zero points.
If A is the o-field for A, then the product o-field for A* is denoted A*, and the
natural o-field for S, call it B, is the family of sets B C S such that B N A* is
an element of A*.

Now we can write down the probability measure of the Poisson process with
intensity measure A. It is a measure P on (S, B) defined by

~ A\"(BN A"
P(B) = Z ¥C_A(A)7 B e B.
n=0 '

We see that this is the right formula because

Pr(Na = ) = P(a") = * ) e 2 AT
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which is the right formula for N4 to be Poisson with mean A(A), and

P(BNA™) N (BNA")

Pr(X € B[Ny =n) = BT = (A

is just A" renormalized to be a probability measure, which is also the right thing
(the n points are i. i. d. because A" is product measure). It saves a little bit
of ink in formulas if we also define the unnormalized measure p for the Poisson
process that throws away the constant e~ *4) | giving

w(B) = i %, B e B. (3.28)
n=0 '

We now want to consider families of probability distributions for point pro-
cesses defined by families of unnormalized densities { hy : § € © } with respect
to p. The Poisson process is symmetric under permutation of the points in the
point patterns. We want the same property for our new models. Write x = y
if x,y € S are patterns having the same number of points and the same loca-
tions of the points only a different ordering. Then we need to require that our
unnormalized densities satisfy the symmetry requirement

ho(x) = hy(y), whenever x = y. (3.29)

Recall that hg on S is an unnormalized density if it is nonnegative, not
almost everywhere zero, and integrable. The first two are easy to check. The
last is not trivial. The normalizing function for the family is given by

(6) = [ holhutd) = Y- [ ha()x(d)
n=0 " "

if the integral is finite (that’s what we have to check). The normalized density
fo corresponding to hg is given, as usual, by (3.17), from which we see that the
probability of a measurable set B in S is

I & N
/ ho () p(d) TZm /B . )\ (dx) (3.30)

It turns out that for a variety of reasons we will only be interested in processes
that satisfy the following stability condition

Condition 3.8. A process with unnormalized density h with respect to p is
stable if there exists a real number M such that

h(zU&) < Mh(z), forallze S and £ € S. (3.31)

This condition will have other uses later on. For now, it implies that the
normalizing function is finite on ©. First we see that if  has n points, then by
using (3.31) n times, we obtain

hg(xz) < M"h(2)
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and this implies

®) <h@) S [ xn(de) = hie) 3 ML

n=0 n=0

_ MA(A)
" = h(@)e

! an
which is finite. For more on this subject see the chapter by Geyer and the
chapter by Baddeley in (Kendall, Barndorff-Nielsen, and van Lieshout 1998).

Simulating Spatial Point Processes

This section actually discusses a “prequel” of the Metropolis-Hastings-Green
algorithm, a method for simulating spatial point processes due to Geyer and
Mpgller (1994) that, although a special case of Metropolis-Hastings-Green, was
invented prior to it. This is typical of the way theories develop, special cases
first, general theories later.

It is a truism that textbooks and research papers make for bad history, bad
psychology, and bad sociology of science. Textbooks and papers never tell it
like it was and hence are useless for learning about science was done or should
be done. Authors start with a half-baked idea, often a wrong idea. They
work it over, modify it to make proofs easier (or possible!) or interpretations
simpler. Sometimes they make the treatment more abstract and mathematically
sophisticated. By the time an article appears in print, there may be no trace
of the train of thought that lead the authors to their discovery. Result: you
can’t learn about how to do science by reading science (or math). Textbooks
are worse. The start with the distortions of the original authors and add more
of their own. One of the best services the author of a textbook can perform is
to really clean up a subject, eliminating all the blind alleys and presenting a
clear path through the material. But that really distorts the history. It requires
presenting material out of historical sequence and selecting material to present
on the basis of importance to the textbook author’s take on the subject rather
than historical importance. This book is no different, but for once, I'll present
a subject as it really developed.

One way to think of the state of a point process is as a random integer N
and a random N-vector X = (Xi,...,Xx). Before Green (1995) there was
no general method for simulating such a thing, no way to “jump dimensions”.
But if we could put every state on a space of the same dimension, we could
use ordinary Metropolis-Hastings. No finite dimensional space will do, so let’s
pad out the space to R*. Now the state of the point process is a random
nonnegative integer N and a random sequence X = (X1, Xo,...) € R®. The
observable state of the point process is (Xi,..., Xn). The rest of the variables
are junk added to help us apply the Metropolis algorithm. They can be defined
any way we like. A simple definition that turns out to be useful is to define
them to be i. i. d. on the region containing the process.

Starting with a model having unnormalized density hy with respect to the
measure u defined by (3.28), which is proportional to the probability measure
for a Poisson process with intensity measure A\, we want to define a new model
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as one having unnormalized density hg(z,n) with respect to some measure ji on
R*>* x N. We take i to be the measure on R* x N that is »* times counting
measure on N, where v is the measure defined by (3.27), that is, A normalized
to be a probability measure. Then we define hg by

oo (2, m) = ho((z1, ..., zn)) AMA)™

] (3.32)
Since (3.32) does not involve 1 Tpyo, ..., it says that conditional on N = n
the variable X,,; is independent of all other X} and has the distribution v,

which was one property we wanted. It is also clear that for any measurable set
B in A" that

Pr((z1,...,2,) € B&N =n) = l/Bhg(czz))\”(dac)

n!

Comparing with (3.30) we see that this model does capture the same probability
structure as the other.

Now consider a Metropolis-Hastings update of N. The simplest is to propose
to increase N by one with probability % and decrease it by one with probability
% (unless N = 0 already, in which case increase N by one with probability %
and do nothing with probability %) This is a Metropolis proposal: between
each two numbers n and n + 1 there is the same probability of a proposal going
up and a proposal going down (i. e., %) The odds ratio for a move from n to
n+1is

R— he(($1,...,$n+1)) ) )\(A) (333)
hg((l‘l,...,l’n)) n+1
and the odds ratio for a move the other way, from n + 1 to n is the reciprocal
of (3.33), but we usually think of a move from n to n — 1 (the current position
being n). That gives

- hg((xl,...,a:n_l)) on
= ho((z1,...,20))  AA)

One problem with this description of the algorithm is that it seems to require
an infinite state. We can’t allow that! But since the infinite tail past N is
independent of the part of the state we are interested in, we can ignore it and
simulate as needed. When we move from n to n + 1 we get a new X, 1, but
it is independent of the other X; and has distribution ». We can simulated it
when needed in the proposal part of the update.

One update step, starting from current position (z1,...,x,) goes as follows.

(3.34)

1. Flip a coin. On heads try to move from n to n 4+ 1. On tails, try to move
from n to n — 1, unless n = 0, in which case skip the remaining steps
(doing nothing).

2. If going up simulate x,,; independent of the current state and having
distribution v given by (3.27).
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3. Evaluate the odds ratio, (3.33) if going up or (3.34) if going down.
4. Accept the move with probability min(1, R).

There’s no question algorithm has the correct invariant distribution. It’s just
Metropolis. There’s nothing fancy about it except for the somewhat mysterious
and ghostly infinite sequence of random variables that are only used in woofing
about the algorithm, playing no role in the simulation. It seems likely that
most examples of the Metropolis-Hastings-Green algorithm could be treated
something like this, thereby eliminating any need to know what Radon-Nikodym
derivatives are, but then the algorithm would lose its generality and every doable
example would require a special story with its own special ghostly variables.
Better to suffer the measure theory.

So let’s translate our algorithm into Metropolis-Hastings-Green terminology.
We know what the proposal is, going down, we will delete x,,, and going up we
will add a new 41, which will have distribution v given by (3.27). The way
Green’s algorithm works is that one kernel, call it @,, describes both a move
and its “reverse move”. If Q,, describes a move up from A™ to AT, it should
also describe the reverse move down from A"+ to A™. To keep things simple,
we should leave it at that. Then there will be a different @,, for every n > 0.

The next task is to figure out what 7(dz)@Q,(z,dy) is in each case, going
up or down. Going up the current state x can be any element of A", but the
proposal y must agree with x in the first n coordinates, so the pair (z,y) is
concentrated on the set

Dn :{(x,y) 652:1,6An’ yeAn+17 T = Yi, i = ]_,...,71}.
The unnormalized joint distribution of (x,y) is

1(de)Qnw, dy) = hm)u(dx)mAw%

A" (d2) Myn 1)
A4

A" (dy)

= hg(x)

= he(a) (3.35)

Going down the current state x can be any element of A"*! and the proposal
y is deterministic, being the element of A™ that agrees with = in the first n
coordinates, so the pair (z,y) is concentrated on the set ¢(D,,) where ¢ is
the function that swaps coordinates in S2, that is, ¢ : (z,y) — (y,z). The
unnormalized joint distribution of (x,y) is

1(dz)Qn(x,dy) = ho(x)pu(dz)I(z, A"

= hy (l’) 7)\71-‘_1 (d%)

TES (3.36)
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Thus going up Green’s ratio is (3.36) with = and y interchanged divided by
(3.35)
_haly) A4
ho(x) n+1
which is just the expression we had before, (3.33) in slightly different notation.

Similarly going down Green’s ratio is (3.35) with 2 and y interchanged divided
by (3.36)

R(z,y)

~ hely) n+1
R = 5wy 3@

which agrees with (3.34) when we recall that in (3.34) we had changed n to
n— 1.

In calculating Green’s ratio we just “cancelled” the A"*!(dy) terms in the
numerator and denominator. To be very careful, we should have checked that
(3.24) holds, but it obviously does.

A minor blemish on this algorithm is the way it treats the points in the
pattern asymmetrically. Recall that we really consider the points unordered.
We insist that the model have a symmetric density, so that the probability
of a pattern does not depend on the ordering of the points. But the MHG
algorithm described above doesn’t treat the points symmetrically. It always
adds or deletes the last point in the ordering. We can cure this blemish by
composing our MHG update with another basic update, which simply reorders
the n points of the pattern, choosing among the n! orders with equal probability.
This clearly preserves the distribution with unnormalized density hy because we
have required hy to be symmetric. We do not even have to actually permute
the points. The only effect this random permutation has on the MHG updates
is that in steps down a random point rather than the n-th is deleted. This gives
us an algorithm that reflects the symmetry of the model.

As usual, we describe one basic update step starting at a pattern x with n
points

1. Flip a coin. On heads try to add a point. On tails, try to delete one (or
if n = 0 so there are no points to delete, do nothing, skip the remaining
steps).

2. If going up simulate ¢ independent of the current state and having distri-
bution v given by (3.27).

3. Evaluate the odds ratio, (3.33) if going up or (3.34) if going down.

4. Accept the move with probability min(1, R).

3.3.3 Bayesian Model Selection

The Bayesian competitor to frequentist model selection procedures (like all-
subsets regression) involves computing Bayes factors for the various models
under consideration. For a concrete example, consider again Bayesian logistic
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regression (Example 3.3). In that model there were three predictors. There are
23 = 8 different models that can be formed by including or excluding any of
these predictors. One, the full model, which has all three predictors and four
regression coefficients including the intercept, is the one we already analyzed in
Example 3.3. Another, the null model has no predictors and just one regression
coefficient, the intercept, and just fits a Bernoulli model to the data (i. e. the
data Y; are i. i. d. Bernoulli(p) with p the single unknown parameter). Between
these are three models with one predictor and another three with two predictors.
The model selection problem is to select the single model that that best fits the
observed data. The model comparison problem is a bit more vague. It only
asks for comparison of the models, leaving a decision to the user. The Bayesian
solution to either involves Bayes factors.

The parameter spaces for different submodels typically have different dimen-
sions. For our logistic regression example, the parameter spaces have dimensions
between one (for the null model) and four (for the full model). The parameter
spaces for the models have the form R’, where I is a subset of {0,1,2,3} that
contains 0, and are shown in the diagram below.® The parameter spaces of the
logistic regression model selection problem are partially ordered by embedding,
the arrows in the diagram denoting the natural embeddings, which set certain
coordinates to zero, for example, the the arrow going from R{%1.2} to R{0:2}
represents the embedding (5,0, B2) — (Bo, F2)-

8Recall that RS means the set of all functions from S to R, hence an element 8 € R{0:1.3}
is a function from {0, 1,3} to R, which can be specified by giving its values $(0), 3(1) and £(3)
at the points of the domain. If we write 3; instead of 3(¢) we get the more familiar notation
for vectors. An element 8 € R{0:1:3} represents a 3-vector (Bo, B1,33). Notice the value of
the notation. The parameter spaces R1%1:3} and R19:2:3} are different. They index different
models. If we denoted both of them by R3, we would not be able to distinguish them.
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R{0.1,2,3}

Rr{0,1,2} R1{0,1,3} R{0:2,3}
PO
R{0.1} R{0.2} R{0.3}
R{0}

We now need an abstract framework that describes any model selection
problem. Let M be an index set for the models. Corresponding to a model
M € M, there is a parameter space O ;. In the logistic regression problem the
O, are the spaces R! in the diagram. Assume the ©,; are disjoint. Then the
parameter space for the entire problem is the union?

o= [J o
MeM

For each 0 € © there is a data model f(z|), and there is also a prior, which is a
probability measure v on ©. In model comparison, proper priors are de rigeur.
See Bernardo and Smith (1994, pp. 421-424) for the reasons why, and read all
of Chapter 6 in Bernardo and Smith (1994) if you really want to understand
Bayesian model comparison.

The object of Bayesian analysis is, as always, to calculate the posterior. In
the model comparison problem, we are not interested in the posterior distri-
bution of the parameter values #, but only in the posterior probabilities of the

models
M
Jo f o f(x]0)v(d6)

We do not need the denominator, since we are only interested in the relative
probabilities of the models

p(Mlz)oc [ f(x|0)~(do)

Om

p(Mlz) =

9If the ©); were not disjoint, then we would have to use the notion of disjoint union
(Janich 1984, p. 10), which treats the sets as if they were disjoint.
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and not even in them, exactly. The prior v can be divided into two parts: the
marginal for the models v(©j,) and the conditional distribution for € given M

Y(ANOyu)
v(Onm)
If you and I agree about the conditional of 6 given M, but disagree about

the marginals, then our posterior probabilities will be proportional to our prior
probabilities

V(AIM) =

p(Mlz) ocv(On) | f(x]0)y(db|M)
Om
One way to take out part of the subjectivity involved in this inference is to
divide by the prior odds v(©,;). This gives the Bayes factor, which is the ratio
of posterior to prior odds

B - P

=Ty < [, Slon@i)

The integral defines the Bayes factors up to an overall constant of proportion-
ality. Call it the unnormalized Bayes factors

Bu(M) = [ f(x|0)y(d6]M).
Onr

To use the Bayes factors to compare models, you multiply B, (M) by your (or
your client’s) personal prior probabilities v(© /) to obtain your own posterior
model probabilities p(M|x) up to a constant of proportionality. The constant
usually does not matter. For example, the solution to the model selection prob-
lem is to select the model with the highest p(M|z) and this is the same as the
model with the highest v(© ) By (M) because multiplying by a constant does
not change which model is highest. If you need actual probabilities, simply
normalize the unnormalized Bayes factors by dividing by their sum

o V(QM)Bu(M)
p(Mle) = > mem V(Onr) By (M)

To return to our logistic regression model, the data model is the same as
before (Example 3.3). The only difference is that for the submodels we set some
of the regression coefficients 3; to zero. So far we haven’t specified the set M
except to say that it indexes the models. To be specific now, let M be the set
of exponents in the diagram, the subsets of {0,1,2,3} that contain 0. Then
Oy = RM. The prior must be a probability measure on © = J m ©n. Only
measure theory gives us a simple notation for something like that. We might, for
example, choose a normal distribution for the restriction of + to the parameter
space R10:1:2:3} of the full model and obtain the all the restrictions of v to the
parameter spaces of the submodels by conditioning the normal distribution for
the full model to lie in the the parameter spaces of the submodels.'©

10T% be continued. The code for an MHG sampler for this model is yet to be written.
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3.3.4 Metropolis-Hastings-Green, the General Case

The description of the MHG update given in the preceding section is usable
for many problems, but in some respects it is a step backward. It doesn’t include
some ordinary Metropolis updates, such as the one for the dumbell distribution.

Radon-Nikodym Derivatives and Lebesgue Decomposition

This section briefly sketches three important measure-theoretic notions: ab-
solute continuity, Lebesgue decomposition, and Radon-Nikodym derivatives.

If 1 and v are two positive measures on the same measurable space (.59, B), we
say p is absolutely continuous with respect to p if v(B) = 0 implies u(B) = 0.
An alternative terminology is that v dominates pu. A notation indicating this
condition is p < v.

If p < vand v < p, we say that u is equivalent to v and write pu ~ v. Note
that this says only that g and v have the same null sets. It is easy to see that
this is an equivalence relation on the class of all positive real measures.

A function f on S is said to be a density of u with respect v if

1(B) = /B f@)w(dz), BeB, (3.37)

which implies
/ o(a)(dz) = / o) f()v(da)

for any integrable function g. This is a generalization of the usual notion of
a probability density function. When v is Lebesgue measure dxr and p is a
probability measure, f is just the familiar p. d. f. of u.

The Radon-Nikodym theorem (Rudin 1987, Theorem 6.10) says that p < v
implies that p has a density with respect to p. The converse assertion is also
true: if (3.37) holds, then p < v.

The Radon-Nikodym theorem implies the existence of a density, but is it
unique? Since integrals over sets of measure zero are zero, a density can be
redefined arbitrarily on a set of measure zero and still be a density. But an
elementary theorem of measure theory (Rudin 1987, Theorem 1.39(b)) says
that is the only arbitrariness allowed: two densities of p with respect to v must
be equal except on a set of v measure zero. Another way to say this is that if
f is a density of p with respect to v, then f is unique considered as an element
of L'(v).

Because a density f of y with respect to v is unique (in the L! sense), it
makes sense to give it a name and notation as something determined by p and
v. When (3.37) holds, we say that f is the Radon-Nikodym derivative of p with

respect to v and write
dp
'=w

This is just another terminology for (3.37). We are not defining a new operation.
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So now we see where (3.24) comes from. If the measure in the numerator of
(3.23) is absolutely continuous with respect to the measure in the denominator,
then the condition that R(x,y) be a density of one with respect to the other is
(3.24). We now want to generalize to the situation when absolute continuity is
not present.

Measures p and v are mutually singular if there exists a measurable set B
such that pu(B) = 0 and v(B°) = 0 (hence p is concentrated on B¢ and v is
concentrated on B). A notation indicating this condition is 1 L v. In a sense
mutual singularity is the opposite of absolute continuity.

The Lebesgue decomposition theorem (Rudin 1987, Theorem 6.10) says that
if p and v are arbitrary positive real measures on the same state space, then p
can be decomposed as the sum p = p, + pts, where p, < v and pg L v. The
pair (fq, pts) is called the Lebesgue decomposition of p relative to v.

Now we can give the most general notion of a Radon-Nikodym derivative.
If 4 and v are arbitrary postive real measures on the same state space, and
1= g + s is the Lebesgue decomposition of u relative to v, then we often say
that f = du,/dv is the Radon-Nikodym derivative of p with respect to v. Of
course, f is now the density of u, (not ) with respect to v, but that is the best
we can do. The mutually singular part us has no relation to v whatsoever.

With these preliminaries out of the way, let us return to considering what
(3.23) means. We said it was a Radon-Nikodym derivative, but of what mea-
sures? It is obvious that the intention is that n(dz)Q(z,dy) indicate the un-
normalized joint distribution of the current state x and the proposal y. To be
mathematically precise we must define this as a measure p on (5%, B?) by

u(B) = / / Ls(e, y)n(d)Qe.dy), B e B (3.38)

The numerator in (3.23) is the denominator with « and y reversed, but p is a
function of one argument (the set B) rather than two, so we can’t obtain the
measure in the numerator by swapping arguments. Instead we have to proceed
a bit differently, first defining the function ¢ : (z,y) — (y,x) that switches
coordinates in S2. Then the measure in the numerator is j o ¢, defined by

(no@)(B) = plp(B)]. (3.39)
So we finally have a rigorous general definition of Green’s ratio
d(pop)
R = 3.40
i (3.40)

where p is defined by (3.38).
The following lemmas give some useful properties of Radon-Nikodym deriva-
tives that are helpful in calculations.

Lemma 3.9 (Chain Rule). If A < u < v, then
D _d du
dv  dp dv

holds v almost everywhere.
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Corollary 3.10 (Reciprocal Rule). If u ~ v, then

du AN

Y e 41

dv (du> (34D
holds p almost everywhere.

Remark. “u almost everywhere” here is the same as “v almost everywhere”
because p and v have the same null sets. The set on which the right hand side
is undefined because g—" = 0 is a set of v measure zero. Hence we may define the
right hand side arbitrarily for such points so long as we produce a measurable
function (for example, we could set it equal to an arbitrary constant).

Lemma 3.9 and Corollary 3.10 are Problems 32 and 33 of Chapter 8 in
Fristedt and Gray (1997).

Corollary 3.11 (Ratio Rule). If p < & and v < &, then

du e

E_Z (3.42)
dv :

dv %

holds v almost everywhere.

Remark. The set on which the right hand side is undefined because ‘jl—” =0is

a set of v measure zero. Hence we may define the right hand side arbitrarily for
such points so long as we produce a measurable function.

Proof. Let (4, pts) be the Lebesgue decomposition of p with respect to v. Then
e K v <&, so by the chain rule

dpa  dpa dv
¢ dv d¢’
Also du. d
(;LES CTZ =0, ¢ almost everywhere,

because otherwise we would have ps(B) > 0 and v(B) > 0 for some set B, which
contradicts pus L £ By the remark, we need only prove (3.42) when ‘fi—g > 0,

which implies %= = 0 and

dg
dpa dp
CLM . diiq _dg_ dg
- — dv T dv
dv dv d% CTE
and we are done. O

Lemma 3.12. If (g, its) is the Lebesgue decomposition of u relative to v and
(Va,Vs) is the Lebesgue decomposition of v relative to u, then p, L vs, pg ~ vq,

and
dp_ dpa

dv  dv,
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Proof. First, p L v, implies p, L vs. Together with p, < v, this implies
o K Vq. Suppose D is a set such that vs(D) = 0 and v, (D) = 0, the existence
of such a set being guaranteed by the Lebesgue decomposition theorem. Then
if f=dup/dv=du,/dv

a(B) = /B i) + /B  fawla (3.43)

Taking B = D¢, we get uq(D¢) < vy(D€) = 0, so we must have f(z) = 0,
x € D°. Thus the second term on the right hand side of (3.43) is always zero
and f is also a density of pu, with respect to v,. O

Lemma 3.13. If ¢ is a function on the domain of u satisfying ¢ = =1, If
v=pop, and if lia, s, Va, Vs are as in Lemma 3.12, then

Vo =fta®® and V5= f;0p.
Proof. First we note that
Ha © @+ ps 0 = (o + pis) 0 p =V

is a decomposition of v, so what we need to show is

Lo 0 L 1 (3.44a)

Hsop L (3.44b)
What we are given to work with is

fg K 1O (3.44c¢)

fs L pop (3.444d)

(3.44a) is shown by
w(B) =0 <= (nop)(¢[B]) =0 = pa(¢[B]) =0 <= (a0 ¢)(B) =0,

the middle implication being (3.44c¢) and the other implications being ¢ = ¢~
and the definition of functional composition.

Now (3.44d) implies the existence of a set B such that pus(B) = (pop)(B°) =
0. Hence

1

(ks 0 @) (#[B]) = ps(B) = 0
and
1(e[B]%) = w(@[B) = (po@)(B%) =0
and this proves (3.44b). O

Corollary 3.14. Suppose u, po and ¢ are as in the lemma, and & satisfies
Eop=¢ and p <K& Then

d,
dpoyp) GE°ov
- d
du Tg

What does all this tell about MHG calculations? Taking (3.40) as our official
definition of Green’s ratio,
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Metropolis-Hastings-Green is Reversible

We can now write down the transition probability kernel for the Metropolis-
Hastings-Green update. As we saw with Metropolis-Hastings, the transition
probability has two terms. For accepted proposals, we propose y and then accept
it, which happens with probability density a(z, -) with respect to Q(z, - ) where
a(z,y) is again the acceptance probability

a(xz,y) = min[l, R(z,y)].

Hence for any set A
/AQ(%dy)a(w, y)

is the part of P(xz, A) that results from accepted proposals. If the integral on the
right hand side is taken over the whole state space, it gives the total probability
that the proposal will be accepted. Thus the probability that the proposal is
rejected is

ra)=1- / Q. dy)alz, ).

If the proposal is rejected we stay at x. Hence
Pz, A) = r(x)I(z, A) +/ Q(z,dy)a(z, y). (3.45)
A

We now want to verify reversiblity of the MHG update, but first we collect
some simple facts about Radon-Nikodym derivatives.

Lemma 3.15. If u and v are positive real measures, (jq, pis) is the Lebesgue
decomposition of u relative to v, (vq,vs) is the Lebesque decomposition of v
relative to p, then p, <K v, and v, < fiq,

dv  dv,

d — = .
an an ~ dp,

dpa [ dv, -1
dvg B dpg

Proof. Since p, < v and p L vy, we must have p, < v,, and similarly with u
and v reversed. If v, is concentrated on B and v, on B, then u(B¢) = 0, and
if f=du/dv, then

dp _ dpa
dv ~ dv,

Moreover,

Lo (0T V) almost everywhere.

w(B) = [ fa)vi(dz) =0
BC

Hence f = 0, almost everywhere (vs), and

p(a) = [ fawtan) = [ ppan)
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which shows that f = du/dv, = du,/dv,.
Finally, if f = du,/dv, and g = dv,/dp,, then

/f x)Vg(dx) /f ) g (dz)

holds for all measurable B, which implies fg = 1 almost everywhere (u,) (Rudin
1987, Theorem 1.39(b)). This is the same as almost everywhere (v,) because
ltq and v, have the same sets of measure zero. O

Corollary 3.16. If R is defined by (3.40), then R(z,y) = 1/R(y,x) almost
everywhere (.

Proof. Let u, denote the part of u that is absolutely continuous with respect
to o=t and apply the lemma, yielding the conclusion that

d(pa 0 ™) dita
R="F"rY /0 apd S=-— 10
dita d(piq 0 0™1)

RS =1 almost everywhere u,, hence almost everywhere p. Also

/Rdua=(uaw—1)(3)=/ dua=/ Sd(uaw—l):/(Sw) dfta,
B ¢~ 1(B) e~ 1(B) B

the first equality being the definition of R, the second the definition of i, 0~ 1,
the third the definition of S, and the fourth the change of variable theorem for
abstract integration (Billingsley 1979, Theorem 16.12). Since this holds for all
B, we conclude R = S o ¢. O

Theorem 3.17. The Metropolis-Hastings-Green update is reversible with re-
spect to .

Proof. What is to be shown is that

[ s@swni@n Pz
/ e n(dz) / / fa 2)Q(, dy)a(z, y)

is unchanged when we interchange f and g, as in the proof of Lemma 3.4. Again,
the first term is obviously unchanged by interchanging f and g. So we work on
the second term.

/ / F(@)g(w)alz, y)n(dx)Q(z, dy) = / / F)g(@)aly, 2)n(dy)Q(y, de)

- / / F)g(@)aly, ) R(z, y)n(dz)Q(x, dy)
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the first equality from interchanging the dummy variables x and y and the
second being (3.23). In order to finish the proof we only need to show that

a(z,y) = aly,z)R(z,y), x,y€S, (3.46)

which is the “detailed balance for densities” condition analogous to (3.22) that
we need here.
The proof is just like the proof of Corollary 3.5. In the case R(x,y) > 1 we
have
a(z,y)=1 and  a(y,z) = R(y,z) (3.47)

which implies (3.46), and in the case (3.23) less than or equal to one we have
(3.47) with o and y interchanged, which also implies (3.46). Now

/g(m)h(y)a(xay)f(w,y)&(d:vady) = /g(w)h(y)a(%w)f(yyw)ﬁ(dx,dy)
- / g()h(z)a(z,y)f (@, y)€(dy, dz) (3.48)
- / o()h(@)ale, y)  (z, y)E(dz, dy)

where (3.46) gives the first equality, interchanging the dummy variables z and y
gives the second, and the symmetry of ¢ gives the third. We do not need Fubini
here, because there are no iterated integrals.!! O

Exercises

3.1. Prove that Gibbs updates are idempotent (satisfy P? = P).

3.2. Prove that if each kernel P, in Theorem 3.1 is reversible with respect to
m, then so is the kernel Q.

3.3. Verify directly that lines 2 and 3 of (3.2) are equal, that is, count the
number of terms in the double sum, divide by d!- (d — 1) and get d.

11We do need something, because, strictly speaking, the notation &(dx, dy) is meaningless, &
being a measure on S2. What we need is the general change of variable formula for integration,
for any function w, any measure £, and any measurable transformation ¢

Jwewrde= [wagop™

(Billingsley 1979, Theorem 16.12).
A formally correct argument now goes as follows. Let
w(z,y) = g(y)h(z)aly, ) f(y, )

[the last integrand in (3.48)]. Then we can rewrite the second and third equalities in (3.48) as

/(wogo d¢ = /wdﬁogo_l)—/wdg

the first equality being the change-of-variable formula and the second being the symmetry of

€.
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3.4. Explain why p was not required to be a o-finite measure in the definition
of “unnormalized probability density” at the beginning of Section 3.2.1. Show
that if A is an unnormalized density with respect to p and h is strictly positive,
then p is automatically o-finite, it need not be part of the definition. Then
show that even if h is not strictly positive, the restriction of i to the support of
h (i. e., the set {z : h(x) > 0} is o-finite.

3.5. Show that the simulation method described for the Poisson process does
indeed satisfy the characterizations in Theorems 3.6 and 3.7.

3.6. Redo the logistic regression example using the kyphosis data set that
comes with S-PLUS. Calculate posterior means and variances with Monte Carlo
standard errors. The info on the computing info web page may help.

If you are feeling adventurous, do probit instead of logit regression (the C
library functions erf and erfc may help with the probit calculation).

3.7. Show that one-variable-at-a-time Metropolis-Hastings is a special case of
Metropolis-Hastings-Green.

3.8. Formulate the Metropolis-Hastings analog of the hit and run algorithm of
Section 3.1.3. Show that your algorithm is a special case of Metropolis-Hastings-
Green with general state-dependent mixing and hence is valid with no further
proofs. This is not new, see Chen and Schmeiser (1993), but don’t look up the
reference. Reinvent the wheel.



Chapter 4

Stochastic Stability

This chapter discusses asymptotics of Markov chains, or, as Meyn and
Tweedie (1993) call it, the “stochastic stability” of Markov chains. We shall
see that in many respects Markov chains are no so different from independent
samples, and hence Markov chain Monte Carlo is not so different from ordinary
independent-sample Monte Carlo.

In particular, the law of large numbers and the central limit theorem still
hold for many Markov chains, although the conditions that must be verified
in order to know whether they hold are more complicated than in the case of
independent sampling. Whatever one does in independent-sample Monte Carlo
can also be done in MCMC.

The difference between Markov chains and independent sampling is that
with independent sampling there is a tight connection between the size of errors
that can occur and the probability of the relevant events. To take the simplest
possible example, suppose the distribution of interest is 7w and we are interested
in the probability of a set A with 0 < 7(4) < 1. We are to estimate m(A)
by ordinary Monte Carlo using independent simulations X;, X5, ... from 7.
Consider the the probability that all n samples completely miss A giving us a
Monte Carlo estimate of zero for the probability of A. Although the absolute
error is small if 7(A) is small, the relative error is not. The probability of this
error is

[1—=(A)]"

which goes to zero exponentially fast, and what is more important, at a rate
which is determined by 7(A).

If we use MCMC, so X7, Xo, ... is a Markov chain with invariant distribution
7, the situation is qualitatively the same, but may be very different quantita-
tively. We usually have exponential convergence to zero of the probability that
an n-sample entirely misses A. For so-called geometrically ergodic chains, for
m-almost any starting point z the number of iterations s4 that the chain takes
to hit A has a moment generating function, that is, for some r > 1 the expec-
tation of r°4 is finite (Nummelin 1984, Proposition 5.19). Thus by Markov’s

100
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inequality, there exists a constant M < oo such that
Pr(sa>n) < Mr™"

which says the same thing as in the independent case except that we usually
have no sharp bounds for M and r. With independence we know that M = 1
and 7 = 1/[1 — m(A)] will do. For a Markov chain we only know that some
M < oo and r > 1 will do.

This is not of merely theoretical concern. In practical situations, it may take
a very large number of iterations to get a sample that is reasonably represen-
tative of the invariant distribution, and there is usually no simple calculation
that tells us how many iterations are required.

4.1 Irreducibility

The weakest form of stochastic stability is irreducibility. Among other
things, if a Markov chain has an invariant distribution and is irreducible, then
the invariant distribution is unique. Irreducibility also implies that the law of
large numbers holds. It has many other important consequences. One should
never use a chain that is not irreducible for Monte Carlo. Irreducibility is gen-
erally easy to demonstrate. When one cannot demonstrate irreducibility for a
sampling scheme, one should find a different sampling scheme for which one
can demonstrate irreducibility. This is always possible, since there are so many
ways to construct samplers with a specified invariant distribution.

4.1.1 Countable State Spaces

Irreducibility is the one notion that has a different definition for discrete
and continuous state spaces. Since both definitions are widely used, one should
know both. Recall from Sections 2.1.1 and 2.2.1 that for a countable state
space the transition probabilities are described by a matrix P and that the n-
step transition probabilities are given by P™. A Markov chain on a countable
state space is irreducible if for any points z and y in the state space there exists
an integer n such that P™(z,y) > 0, that is, if for some n there is positive
probability that the chain can move from z to y in n steps. The colloquial
version of this is that the chain can get “from anywhere to anywhere” (not
necessarily in one step).

In order to see how this definition works we need an example with a discrete
state space.

4.1.2 The Ising Model

The Ising model is a spatial lattice process. The state is a vector = { ; :
i € W} where W is a subset of vertices of the infinite rectangular lattice Z2,
the set of all pairs of points in the two-dimensional plane R? having integer
coordinates.
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AH—H—&

T T T

In the figure, the circles represent the vertices of the lattice. Associated with
each node 7 there is a random variable z;, and together these random variables
form the state x of the spatial lattice process. Vertices joined by lines are called
neighbors. The relation of being neighbors is denoted by ~, if vertices 7 and j
are neighbors we write 7 ~ j. In the figure, the vertices colored gray are the
neighbors of the vertex colored black. In the infinite lattice, every vertex has
four neighbors. When we look at a finite region W, some vertices have neighbors
outside of W.

The random variables x; making up the state of the Ising model have two
possible values. These are often coded as zero and one, but for reasons of
symmetry —1 and +1 is a better choice. When we illustrate realizations of an
Ising model, we will just show a black and white image each pixel representing
a variable z;.

The probability model for the vector z is a two-parameter exponential family
with unnormalized density

ho(x) = 1t (@)F02t2(2) (4.1)

where the canonical statistics are defined by

€W
and
ta(x) =) mim;. (4.2)
%
i
When the x; take values in {—1,41}, the first canonical statistic is the number
of black pixels minus the number of white pixels, and the second canonical
statistic is the number of concordant neighbor pairs (same color) minus the
number of discordant neighbor pairs (different color). When the z; take values

in {0,1}, and we use the same definitions of the canonical statistics, the same
family of stochastic models are defined but the parameterization is different.
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The notation in (4.2) is deliberately ambiguous about what happens at the
boundary of the region W. There are three different ways in which the boundary
is commonly treated.

The first is to condition on the boundary. The sums in (4.2) extend over all
pairs 7 and j such that one of ¢ or j is in W and the other is either in W or just
outside. The variables z; for j ¢ W are not part of the state of the Markov
chain, they are fixed and can be thought of as another parameter of the model.

The second way is to sum only over pairs ¢ and j that are neighbors and
both in W. Then vertices at the edge of the region have fewer neighbors than
the rest. This method is referred to as “free boundary conditions.”

The third way is to eliminate the boundary altogether by gluing the edges
of the region W together to form a torus. Then the set W is no longer a subset
of the infinite lattice, but each vertex has four neighbors and there is no need
to specify data on a boundary. Using a toroidal lattice is also referred to as
imposing “periodic boundary conditions” because we can think of extending
our finite region to the whole infinite lattice by periodic repetition. All three
kinds of boundary conditions are artificial in one way or another. We will say
more about dealing with boundary conditions presently.

A Gibbs or Metropolis sampler updating one vertex at a time is very simple.
The Gibbs update chooses a new value for x; from its conditional distribution
given the rest, which is proportional to hg(z). The only terms that matter are
those containing z;, hence this conditional has the unnormalized density

ho(wlw_;) = e vitami i s
The only sum required in calculating the unnormalized conditional density is

the sum of the four neighbors of z;, and the only sum required in calculating
the normalized conditional distribution is over the two possible states of x;

ho(@i|r—;)
hg(l’i = 0|£L',7,) + h@(xl = 1“%,1)

p(xilr—;) =

The Metropolis update is simpler still. The proposal y has the sign of x; reversed
and all the rest of the z; unchanged. The odds ratio is

hﬁ’(y) —2013,—2022; 3. x;
R = —e 1% 2Ti D T 4.3
hg(x) (4.3)

This is a symmetric proposal so the proposal is accepted with probability
min(1, R).

4.1.3 Coding Sets

The elementary update steps are combined in any of the usual ways, usually
by fixed scan, random scan, or random sequence scan. A fixed scan can be either
a “raster scan” in which one scans along rows, and the rows follow one another
in order. A better way is a scan by “coding sets” (Besag 1974; Besag, Green,
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Higdon, and Mengersen 1995). If we color the lattice like a checkerboard, the
red squares are one coding set and the black squares the other. The colors here
are not the random variables, they are just a way of describing sets of vertices
of the lattice. The random variables in the red coding set are conditionally
independent given those in the black coding set and vice versa, since no vertex
in the red coding set is a neighbor of any in the black coding set. For i and j
not neighbors we have

ho(z) = eP1@it022i ik 012540225 3005 21 o term mot containing x; or xj

Hence these variables are conditionally independent given the rest by the fac-
torization criterion. If i and j are neighbors, the density contains a term e?2®:%s
and these variables are not conditionally independent.

If a fixed scan updates all of the variables in one coding set and then all
the variables in the other coding set, the order of updating within coding sets
does not matter. While updating the red coding set, no update changes any
neighbor of a red vertex, since no neighbors are red. Thus when a red vertex is
updated it makes no difference how many other red vertices have been updated
since neither the Gibbs nor the Metropolis update rule depends on any variables
except the one being updated and its neighbors. If we had a computer that could
do parallel computations, we could update a whole coding set simultaneously.
Thus when scanning by coding sets there are really only two block variables
(the two coding sets).

4.1.4 Irreducibility of Ising Model Samplers

Irreducibility is simplest for the Gibbs sampler, because anything is possible.
When we update a variable x;, it can receive either of the two possible values.
One of the probabilities may be small, but size of probabilities does not matter
when discussing irreducibility, only whether they are zero or nonzero.

A fixed scan Gibbs sampler can go from any state x to any other state y
in one scan. It is possible (not very likely but the probability is nonzero) that
each i where x; # y; will be changed and each i where x; = y; will be left
unchanged. The same logic applies to any scan chosen by a random sequence
scan. A random scan cannot go from any x to any y in one step, because each
step of the chain only changes one vertex. But if z and y differ at n vertices,
then a random scan could choose to update those n vertices in n iterations,
each update changing the variable. Again, this is not very likely, but all that
matters is whether the probability is nonzero. Thus any Gibbs sampler for an
Ising model is irreducible.

The logic here applies to many samplers besides Gibbs samplers for Ising
models. We say a Markov chain transition probability satisfies a positivity con-
dition if P(x,y) > 0 for all x and y, that is if the chain can go from any state
to any other in one step. Clearly, positivity implies irreducibility, since it says
that P"(x,y) > 0 for the special case n = 1. Just as clearly, positivity is not
a necessary condition, and the implication that positivity implies irreducibility
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is rather trivial. However one often hears that a chain is irreducible “because
the positivity condition holds” so one has to know what positivity means in this
context.

Metropolis samplers are a bit more complicated. The problem is that posi-
tivity does not hold for elementary updates and whether it holds for a scan de-
pends on the scan. When the odds ratio (4.3) is greater than one, the proposal
is always accepted, so the variable being updated cannot remain the same. For
a random scan, this is no problem. The same argument we used for the Gibbs
sampler, says that if z and y differ at n vertices, the random scan could choose
to update those n vertices in n iterations, each update changing the variable,
thus moving from z to y in n steps.

Suppose we have a symmetric Ising model (; = 0) and periodic boundary
conditions. Suppose the lattice size is even, and consider the state composed of
vertical stripes of alternating colors. Each site has two black neighbors and two
white neighbors and ij. 2; = 0. Hence R = 1 and and a Metropolis update
is always accepted. If we do a scan by coding sets, we will go through a whole
coding set and change every vertex in the coding set. This changes the pattern of
vertical stripes of alternating colors to horizontal stripes of alternating colors.
The state of the system is just a 90° rotation of the original state. Hence
the scan through the other coding set does the same thing and changes the
pattern back to vertical stripes. The state is not the same as the original; every
vertex has changed color. But one more complete scan does take us back to the
original state. Although there are 27 possible states if there are 2¢ vertices, the
Metropolis sampler using a fixed scan by coding sets only visits two states, if
started with alternating stripes. It is not irreducible.

A symmetric Ising model with periodic boundary conditions can also fail to
be irreducible when a raster scan is used. For that we need a lattice size that is
odd and a checkerboard pattern.

It seems that fixed scan, Metropolis updates, and discrete state spaces do
not mix well. If one uses Metropolis updates, perhaps it is best to use a random
scan.

4.1.5 Mendelian Genetics

Another stochastic process with a discrete state space is Mendelian genetics.
Consider a pedigree or genealogy of individuals such as that shown in the figure.
The large squares, circles, and diamonds represent individuals (male, female,
and unspecified, respectively). The small dots represent marriages. From each
marriage node lines go up to the parents and down to the children.

Everyone has two copies of genes that are not on sex chromosomes, one
copy inherited from their father and one from their mother. These copies are
not necessarily identical. A number of variants of a gene called alleles are
usually found in any large population. A gene passed from a parent to a child
is equally likely to be either of the two copies of the gene in that parent, the
one inherited from the grandfather or the one from the grandmother. This
specifies the probability distribution of all the genes in the pedigree except for
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the individuals at the top of the pedigree, called founders, whose parents are
not recorded. The usual assumption made about the genes of founders is that
their genes are randomly drawn from the population gene pool. This requires
that the population allele frequencies be specified. Then the probability model
for genes in the pedigree is completely specified.

The random variables of this probability model are usually taken to be the
genotypes of the individuals, which say which alleles an individual has, but
not which parent they were inherited from. Denote the alleles by aq, ..., am,.
Then there are m possible genotypes a;a; where both alleles are the same and
m(m — 1)/2 possible genotypes a;a; where i # j. Denote the population allele

frequencies by p1, ..., pm. Then the founder genes have a multinomial distri-
bution. The probability of genotype a;a; is p? and the probability of a;a; is
2pip;.

Conditional on parental genotypes, the probability distribution genotypes
of children is easy to work out. There are four possible states for the child,
each having probability 1/4. These four possible states are not necessarily
distinguishable depending on the genotypes of the parents. If both parents
have the same genotype ajas, then the child is aja; or asas with probability
1/4 and aqas with probability 1/2. If one parent is aja; and the other is asas,
then the child is ajas with probability one. Other cases can be worked out
similarly.

If we denote the probabilities of founders by p(g) and the conditional prob-
abilities of children given parents by p(g:l9¢(i), gm(:)) Where f(i) and m(i) are
the father and mother of ¢. Then the probability of a vector of genotypes
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g=(g1,---,9m) is given by

I »ilorey gme) I ploo)

children 4 founders i

It is easy to draw independent samples from this distribution. Draw founders
first with the specified probabilities. Then draw every child whose parents
have already been drawn with the specified probabilities, and repeat this step
until everyone has been drawn. A much harder problem is to simulate the
conditional distribution of genotypes given observed on some of the individuals
in the pedigree.

We often cannot see genotypes. A standard example is a recessive genetic
disease like cystic fibrosis or phenylketonuria. There are two alleles, conven-
tionally denoted A and a, the normal allele and the disease allele, respectively.
The possible genotypes are then AA, Aa, and aa. A recessive disease is one
in which one normal gene is enough for normal function, so it is impossible to
distinguish the AA and Aa genotypes from the observable characteristics of the
individual, which are called the phenotype. Individuals with the disease pheno-
type are known to have genotype aa, but individuals with the normal phenotype
can have genotype AA or Aa. Denote these probabilities by p(datalg;). Then
the joint distribution of phenotypes (data) and genotypes is given by

h(g) = [T p@atalg) [ plolosiyome) T1 ple)  (44)

all individuals % children 7 founders 1

The genetics that requires MCMC is to simulate the conditional distribution of
genotypes given data. The unnormalized density is given by (4.4). Probability
models like this with discrete phenotypes and genotypes are called Mendelian,
after Gregor Mendel who formulated the laws of genetics in 1865, to distinguish
them from probability models for continuous traits like height and weight, the
study of which is called quantitative genetics.

A Gibbs sampler for a Mendelian genetics problem is a bit more complicated
than one for the Ising model, but not much. The conditional distribution of one
individual given the rest only depends on that individuals neighbors in the
graph, which are that individuals parents, children, and spouses. In the figure,
the neighbors of the individual colored black are colored gray. As always we
obtain the conditional for one variable given the rest by keeping only the terms
involving that variable.

h(gilg—:) = p(datalg)p(gilgray 9me) [ 2951950 9mii))

children j
of individual 7

if individual 7 is not a founder and

h(gilg—i) = p(datalgi)p(e:) [ »(9il9rG)> 9mii))

children j
of individual 7
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if individual 7 is a founder. A Gibbs update of individual ¢ calculates the unnor-
malized density h(g;|g—;), normalizes it to add to one when summed over the
possible genotypes, and gives g; a new value from this normalized conditional
distribution. If we start in a possible state, one in which all individuals have
genes that could have come from their parents, the Gibbs update is well defined
and always results in another possible state.

4.1.6 Irreducibility of Mendelian Genetics Samplers

Sheehan and Thomas (1993) give the following proof of the irreducibility of
of the Gibbs sampler for a recessive genetic trait. Individuals with the disease
phenotype are known to have genotype aa. We can consider them fixed. The
Gibbs sampler need only update the individuals with normal phenotype. The
positivity condition does not hold. Suppose the sampler uses a fixed scan in
which individual ¢ is updated before his parents. Consider going from the geno-
type in which ¢ and his parents are AA to a genotype in which i is Aa. When i is
updated, his parents have not yet been updated, they are still AA which implies
that ¢ must also be AA, so he cannot change. After his parents have changed,
then he can change, but this takes more than one step of the Markov chain. It
would not help if all individuals were updated after their parents. It would still
take more than one scan to change from any state to any other, though it is a
bit less obvious.

Sheehan and Thomas’s proof uses a path from any state to any other that
goes through the state in which all individuals with the normal phenotype are
Aa. If we start in any possible state, the Gibbs update has two properties
(1) any individual can remain unchanged with positive probability and (2) any
individual whose parents are both Aa has positive probability of being changed
to Aa regardless of the genotypes of any children or spouses. The latter occurs
because an Aa individual could have resulted from a marriage of Aa parents
and can pass either allele to any child. Thus in one scan all founders can be
changed to Aa. In the next scan all children of founders can be changed to
Aa. Succeeding scans can change to Aa any individual whose parents have been
changed to Aa in a previous scan, while leaving everyone else unchanged. After
some number of scans less that the total number of individuals, every individual
is Aa. This shows that any possible state can be taken to this special state with
positive probability. By reversing the path, the chain can go from the special
state to any other possible state.

The Gibbs sampler need not be irreducible for other models. This proof
applies only to models having only two alleles. The ABO blood group has three
alleles A, B, and O. The gene makes red cell surface antigens, proteins that stick
out of the cell membrane of red blood cells and are recognized by the immune
system. The A and B alleles make slightly different proteins and the O allele
is nonfunctional and makes no protein. There are six genotypes AA, BB, OO,
AB, AO, and BO, but only four distinguishable phenotypes AB, A, B, and O,
respectively, both A and B antigens on red cells, only A, only B, and neither.
Consider now the very simple pedigree with two parents and two children. The
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children have blood types AB and O and hence have known genotypes AB and
0O. The blood types of the parents are not known, but each must have passed
an O allele to the OO child and each must have passed an A or a B to the AB
child. Thus the parents are AO and BO, but we don’t know which is which.
The two possibilities are equally likely.

The Gibbs sampler for this problem is not irreducible. The only two indi-
viduals we need to sample are the parents, since the children’s genotypes are
known. When we update the AO parent, the genotype cannot change. The AB
child must get an A allele from some parent, and the other parent, currently
BO does not have one. The same goes for the other parent. A Gibbs sampler
updating one individual at a time cannot work. A different sampler is required.

4.1.7 General State Spaces

Irreducibility for general state spaces is more complicated in theory but
simpler in practice. The theory must deal with the problem that one cannot
“get to” any state if the distribution is continuous. Points have probability zero
and so are never hit. On the other hand, all real applications of MCMC on
general state spaces are irreducible. The practical problems with irreducibility
only arise on discrete state spaces.

As always in general state spaces, we talk about probability of hitting sets
rather than points. If ¢ is a nonzero measure on the state space, a Markov
chain is called @-irreducible if for any point x and any measurable set A such
that ¢(A) > 0 there exists an integer n such that P™(z, A) > 0.

There are equivalent ways to state this condition that use some different
kernels. The kernel

U(z,A) =Y P"(z,4) (4.5)

is the expected number of times the chain visits the set A in an infinite run.
The chain is g-irreducible if U(z, A) > 0 for all  and all p-positive sets A.
The kernel L(z, A) is defined as the probability that the chain started at x ever
hits the set A. A formula for L(z, A) is rather complicated (Meyn and Tweedie
1993, p. 72) and not of immediate interest. What is important is that the chain
is p-irreducible if L(x, A) > 0 for all 2 and all p-positive sets A.

The reason why an arbitrary measure ¢ is used in the definition, rather
than the invariant distribution 7 is that the definition is formulated so as to
apply to arbitrary Markov chains, including those that do not have an invariant
probability distribution. If the chain has an invariant distribution 7, then it is
m-irreducible if it is @-irreducible for any ¢. So for MCMC where we always
construct chains to have a specified invariant distribution m we could always
check m-irreducibility, if we so desired, but we do not have to use w if that is
inconvenient.

If a chain is g-irreducible for any ¢ then there is a mazimal irreducibility
measure 1 having the following properties (Meyn and Tweedie 1993, Proposition
4.4.2)
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(i) The chain is ¢-irreducible.

(ii) A measure ¢’ is an irreducibility measure if and only if it is dominated by
¥, that is, ©(A) = 0 implies ¢'(A) = 0.

(iti) If ¢p(A) = 0 then B = {x: L(z, A) > 0} also has ¢)-measure zero.

The point of the irreducibility measure ¢ is to define a class of null sets which
the chain does not need to hit. The maximal irreducibility measure v is the
irreducibility measure having the smallest class of null sets. The measure itself
is not unique, but the class of null sets of the maximal irreducibility measure is
unique. If the chain has an invariant distribution 7 and is ¢-irreducible, then
the chain is recurrent (Meyn and Tweedie 1993, Proposition 10.1.1), the invari-
ant distribution is unique (Proposition 10.4.4), and the invariant distribution
is a maximal irreducibility measure (Proposition 10.4.9). Any other maximal
irreducibility measure v has the same null sets, ¥)(A) = 0 < 7(A) = 0. We can
always use 7 as the irreducibility measure, but there will be fewer sets to check
if we use another measure ¢ dominated by 7, and this may be more convenient.

Before continuing with general state spaces, let us stop and compare with
the definition for countable state spaces. The definition for countable state
spaces is essentially m-irreducibility in the case where every point has positive
m-probability. All points of w-probability zero must be excluded from the state
space, since if 7({y}) = 0, then by (iii) above, the set B = {z : L(x,y) > 0}
satisfies m(B) = 0. But by the definition of irreducibility for countable spaces B
is the whole state space, which is impossible. Hence we must have 7({y}) > 0
for all y.

If we apply ¢-irreducibility to countable state spaces, can use a measure
 concentrated at a single point y. Thus it is enough to show that that the
chain can go from any point x to one single point y. It is not necessary to
show that the chain can get to any other point, that follows from (iii) above. In
the Mendelian genetics example, it was enough to show that the sampler could
get from any state to the special state in which every individual with normal
phenotype has genotype Aa. The proof could have stopped there.

4.1.8 Verifying v¢-Irreducibility

For most problems on continuous state spaces w-irreducibility is easy to
verify. First consider a sampler that satisfies a very simple positivity condition,
a Metropolis sampler that updates all variables at once with a proposal density
q(z, -) and invariant density h(x) that are everywhere positive. Then

P(z, A) > /A oz, y)a(z, y)u(dy)

so if pu(A) > 0 then P(xz, A) > 0 because the integrand is strictly positive. Hence
the chain is p-irreducible.

Next consider a sampler that updates one variable at a time, but still has ev-
erywhere positive proposals and acceptance probabilities. If there are d variables
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we prove irreducibility by induction on d. The induction hypothesis assumes
that starting at = (x1,...,24) updating x1, ..., x4—1 has positive probability
of hitting any set B of positive Lebesgue measure in R4~!. Write Q;(z, B) for
this probability. The base of the induction, the case d = 1, was proved in the
preceding paragraph. For any set A of nonzero Lebesgue measure in R? and for
any r € RY write z = (z_g4,74) and

Ar ,={xq€R:(x_g,2q) € A}

for the “sections” of A, the possible values of x4 when the other z_; is held
fixed. It is a standard fact of measure theory that the sections are measurable
sets and if A has positive measure then so does A,_, for x_4 in a set of positive
Lebesgue measure. Write Qo (x_g, C) for the probability that x4 € C given x_4.
Then the preceding sentence says Q2(z_q, A;_,) > 0 for z_g4 in a set of positive
Lebesgue measure. Since

Pz, A) = /Ql(x,dx_d)Qg(x_d,Axid)

is the integral of a function Qa(z_g4, A,_,) that is not zero almost everywhere
with respect to a measure Q1 (z, - ), which is nonzero by the induction hypothe-
sis, we have P(x, A) > 0. That proves p-irreducibility where here ¢ is Lebesgue
measure on RY.

Those unfamiliar with measure theory should take my word for it that these
calculations involve only the elementary bits of measure theory that justify re-
placing integrals with respect to area or volume by iterated univariate integrals.
They are only mystifying to the uninitiated.

These calculations have the drawback that they require positivity, something
which we do not want to have to satisfy in general. For example, the first MCMC
simulation ever (Metropolis, Rosenbluth, Rosenbluth, Teller, and Teller 1953)
used the Metropolis algorithm for a point process with a fixed number of points
and the proposal was to move the point to a position uniformly distributed
in a ball around the current position. We would like to be able to show that
simulation to be irreducible as well.

Theorem 4.1. Suppose
(a) The state space of the chain is a second countable topological space.
(b) The state space is topologically connected.
(¢) Every nonempty open set is p-positive.
(d) Ewvery point has a p-communicating neighborhood.

Then the chain is p-irreducible. If all of the conditions hold except (b), then
every connected component is @-communicating.
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Some of these terms need explanation. A topological space is second count-
able if there is a countable family of open sets U such that every open set is
a union of sets in U. Every separable metric space, in particular any subset
of a Euclidean space R?, has this property. A topological space is connected
if it is not the union of disjoint open sets. A set B is p-communicating if for
every -positive subset C' of B and every point x in B, there is an n such that
P"™(xz,C) > 0. This is the same as the definition of p-irreducibility, except that
it is applied to a subset rather than the whole space.

Before proving the theorem, let us see how it works. Consider a Metropolis
sampler for the uniform distribution on any connected open set S in R¢ that
makes a proposal that is uniform in the ball B(z,¢e) of radius e centered at
the current point z. Because the uniform density is constant, the odds ratio
is always zero or one. Every proposal that falls in S is accepted, and every
proposal that falls outside is rejected. Checking the conditions of the theorem,
(a) holds because the state space is a subset of R%, (b) holds by assumption,
(¢) holds if we take S to be the state space, and (d) holds by a variation of the
argument using the positivity condition. For any point x € S there is a ball
B(x,0) contained in S, with 0 < § < /2. Then for any y € B(x,d) we have
B(z,0) C B(y,e). So for any y in B(z,d) and any @-positive C C B(x,d), we
also have C' C B(y,¢), so the proposal hits C' with positive probability. This
says that B(z,9) is a p-communicating neighborhood of x. Thus the theorem
says this sampler is irreducible.

If the state space is not connected, then p-irreducibility may not hold. Sup-
pose the state space consists of two open sets S; and Ss separated by a distance
greater than €. Then the sampler just described is not irreducible. It can never
move from S; to Sy or vice versa.

The interaction of conditions (b) and (d) is delicate. Consider a Gibbs
sampler for the uniform distribution for the open set in R? shown in the figure.
The coordinate axes are horizontal and vertical. The update of the first variable

moves to a position uniform on the intersection of the horizontal line through the
current point with the gray region, and similarly for the update of the second
variable except the line is vertical. Neither update can ever move from one
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square to the other and the chain is not irreducible. If the state space is taken
to be the open set that is the gray region in the figure, it is not connected.
So condition (b) doesn’t hold, since the squares are disjoint and open. We
can make the space connected by adding the point where the squares touch,
but then condition (d) doesn’t hold, since this new point does not have a -
communicating neighborhood. Every neighborhood intersects both squares and
the chain never moves from one square to another.

Proof. If A and B are any p-communicating sets such that ¢(A N B) > 0, then
AU B is p-communicating. The reason is that for any = € A, the chain must
eventually hit AN B, and from there it must hit any ¢-positive C' C B. Formally

U0 [ PadU(.0),
ANB

where U(x, A) is defined by (4.5). For some m, P™(x, A) > 0, because A is -

communicating, and U(y, C') > 0 because B is ¢-communicating. By symmetry,

the same holds if x € B and C' C A. Hence AU B is p-communicating.

Now choose for each point =z € S a @-communicating neighborhood W,
that is an element of Y. This is possible because every neighborhood of z
contains another neighborhood of x that is an element of U and subsets of -
communicating sets are p-communicating. Let W = J Wy. Then W is
countable because U is countable.

Consider two sequences of sets {Vj,} and { Dy} defined recursively as follows.
First, V7 is an arbitrary element of WW. Then, assuming V7, ..., Vi1 have been
defined, we define

k
D= JVi
i=1

and let Vj41 be any element of W satisfying

zeS

Vigr N Dy # @

and
Vg1 € Dy,

If no element of W satisfies the condition, let V11 = @.

By induction Dy 41 is ¢-communicating for each k, because the intersection
of Vi41 and Dy, is nonempty and open and hence p-positive by (c¢). Hence the
argument above shows their union is ¢-communicating.

Let D = U;y—; Dk. Then D is ¢-communicating, because any x € D and
p-positive A C D there is a k such that z € Dy, and (A N Dy) > 0. Hence it
is possible to get from x to A because Dy, is p-communicating.

Now there are two logical possibilities. D = S in which case the chain is
p-irreducible or D and S\ D are disjoint open sets and (b) is violated. Then D
is a p-communicating connected component and the same construction shows
that each connected component is ¢-communicating. O
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If this theorem can’t be used to prove y-irreducibility, then we are really in
the discrete case in disguise. Consider Gibbs samplers for the uniform distribu-
tions on the regions on each side of the figure. The one on the left is irreducible

the one on the right is not. The theorem doesn’t apply to either one, because
neither has a connected state space. The theorem says that each of the squares
is pp-communicating, but topology is no help with the question of whether the
chain can move from one square to another. No general argument is likely to
help. As in with discrete state spaces, a special argument is needed for each
problem.

4.1.9 Harris recurrence

If a chain is ¥-irreducible and has an invariant distribution 7 then there
exists a set N with m(N) = 0 such that L(z, A) =1 for all x ¢ N and all -
positive A and P(x, N) =0 for all 2 ¢ N (Meyn and Tweedie 1993, Proposition
9.0.1). Note that the definition of -irreducibility only requires L(z, A) > 0,
but requires it for all x. Something even stronger is true, not only is any -
positive set A hit with probability one, it is hit infinitely often with probability
one (Meyn and Tweedie 1993, Proposition 9.1.1) when started at any = ¢ N.
This null set NV of starting points from which bad things happen is a nuisance.
The point of Harris recurrence is to eliminate it. A v-irreducible chain is Harris
recurrent if L(x, A) = 1 for all x and all ¢)-positive A. Any ¢-irreducible chain
can be made into a Harris chain by removing the null set N from the state
space. This does no harm since the chain can never hit N from outside V.

Harris recurrence essentially banishes measure theoretic pathology. It would
be very strange if a Markov chain that is an idealization of a computer simula-
tion would be -irreducible but not Harris recurrent. If null sets matter when
the computer’s real numbers are replaced by those of real analysis, then the
simulation cannot be well described by the theory.

Note that any irreducible chain on a countable state space is always Harris
recurrent. Irreducibility requires that we eliminate from the state space all
points of m-measure zero. That having been done, the only remaining m-null set
is empty, and irreducibility trivially implies Harris recurrence. The difference
between 1-irreducibility and Harris recurrence is only an issue in general state
spaces.
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Fortunately, an irreducible Gibbs or Metropolis sampler is always Harris
recurrent under very weak conditions. Tierney (1994) gives the following two
simple propositions. If a Gibbs sampler is ¥-irreducible and P(z, -) is absolutely
continuous with respect to 7, then it is Harris recurrent (Corollary 1). A -
irreducible chain that iterates one Metropolis-Hastings elementary update is
always Harris recurrent (Corollary 2). The condition on the Gibbs sampler
merely says that the chain cannot hit 7-null sets. m(A) = 0 implies P(x, A) = 0.

The situation is only a bit more complicated for Metropolis-Hastings sam-
plers that update one variable at a time. Chan and Geyer (1994) give the
following (Theorem 1). Suppose the invariant distribution 7 has an unnor-
malized density h(x) with respect to Lebesgue measure on R?, each proposal
distribution has a density with respect to Lebesgue measure on R, and all of
the unnormalized conditional densities make sense, that is, h(z) considered as a
function of some of the variables, the rest held fixed, is (1) not identically zero
and (2) integrable with respect to Lebesgue measure on the subspace spanned
by those variables. If the Metropolis-Hastings sampler for each conditional dis-
tribution obtained by updating only a subset of variables is 1-irreducible, then
Metropolis-Hastings sampler for the unconditional distribution is Harris recur-
rent. This sounds complicated, but the conditions are necessary. Assuming each
elementary update is “nice” with no measure theoretic pathology, the only way
a variable-at-a-time Metropolis-Hastings sampler can fail to be Harris recurrent
is if for some starting position x some variable z; has a positive probability of
never being updated in an infinite run of the chain. This cannot happen if the
chain that starts at x and keeps z; fixed is ¥-irreducible, and we need to verify
this for each starting position x and every subset of variables held fixed.

No theorem has been found that establishes Harris recurrence for general
Metropolis-Hastings-Green samplers, but there is a general method involving a
“drift condition” that can be used for any Markov chain. This method will be
explained in Section 4.7.5.

4.2 The Law of Large Numbers

We now return to the law of large numbers mentioned in Section 1.6.1 and
give a precise statement. Suppose we have a Markov chain with invariant dis-
tribution 7 and g is a m-integrable function so the integral

)= Brg(X) = / o) (dz)
exists. Let

1 n
i =~ > (X
i ni=1g()

denote the sample average of g(X) over a run of the Markov chain. We then
have the following two results.
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Theorem 4.2. For a p-irreducible chain with invariant distribution 7, condi-
tional on the starting point x, the sample mean [i, converges almost surely to
1, for m-almost all x.

When @-irreducibility is strengthened to Harris recurrence, the bad null set
of starting points for which convergence fails disappears.

Theorem 4.3. For a Harris recurrent chain with invariant distribution m, the
sample mean [i, converges almost surely to p regardless of the initial distribution
of the chain.

The latter follows from Theorems 17.0.1 and 17.1.6 in Meyn and Tweedie
(1993). The former follows from Birkhoff’s ergodic theorem (Breiman 1968, The-
orem 6.21) together with the condition for a Markov chain to be ergodic given in
Theorem 7.16 in Breiman (1968), which uses the criterion of indecomposability,
which in turn is implied by m-irreducibility (Nummelin 1984, Proposition 2.3).

Again v-irreducibility leaves us with a bad null set of starting points for
which convergence fails. From now on we shall always require the stronger
Harris property and no longer need to mention these null sets.

In the presence of Harris recurrence the law of large numbers says exactly
the same thing for Markov chains as it does for independent sampling. If the
function g(X) is integrable, then the strong law of large numbers holds. There
is almost sure convergence of the sample mean to its expected value with respect
to the invariant distribution.

4.3 Convergence of the Empirical Measure

The empirical measure for a sample X, ..., X,, is the probability measure

17L
= - 6,
" ni:l *

that puts mass 1/n at each of the sample points, where, as always, 0, = I(z, -)
denotes the “Dirac measure” concentrated at x. Since it depends on the sam-
ple, m, is a random probability measure. Probabilities and expectations are
calculated just as with any other probability measure

wn(B):/Bwn(dx):%Zlg(Xi)

and
n

1
Br,9(X) = [ glamaldz) = -3~ 9(X) (4.6)
i=1
Thus we see that the “empirical expectation” (4.6) is just a fancy way of rewrit-
ing a familiar concept, the sample average of a functional g(X) of the Markov
chain.
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Now we want to consider what it means to say the empirical measure 7,
converges in distribution to 7. By the “portmanteau theorem” (Fristedt and
Gray 1997, Theorem 6 of Chapter 18) there are several equivalent ways of saying
this, including

[ st@matan) ~ [ gim(n) (47a)
holds for every bounded continuous function g and

lim inf 7, (O) > 7(O) (4.7b)
n—oo
holds for every open set O. Now we want to prove a theorem that says m,
converges in distribution to 7 almost surely. Because there are two types of
convergence involved, this is confusing. More precisely, the statement is

Pr(wniwr>:1

or for almost all sample paths of the Markov chain 7, 2o

Note that the law of large numbers implies (4.7a) for just one function g
or (4.7b) for just one open set O. The issue is whether there is simultaneous
convergence for all bounded continous functions in (4.7a) and open sets in (4.7b).

Theorem 4.4. Suppose the state space of the Markov chain is a separable metric
space and the chain is Harris recurrent, then m, converges in distribution to w
with probability one.

Let B denote the countable family of sets consisting of open balls with cen-
ters at the points of some countable dense set and rational radii and all finite
intersections of such balls. Then, for almost all sample paths of the Markov
chain,

1 n
™(B) = — > 1p(X;) —»w(B), forall BEB (4.8)
i=1

By Corollary 1 of Theorem 2.2 in Billingsley (1968), (4.8) implies m,, converges
in distribution to . A similar result under different regularity conditions is
proved by Meyn and Tweedie (1993, Theorem 18.5.1).

This theorem is not very deep, being a straightforward consequence of the
law of large numbers, but gives us an important way to think about MCMC.
An n-sample Xy, ..., X, obtained from a single run of the Markov chain ap-
proximates the invariant distribution 7 in the sense described by the theorem.
The empirical distribution for this cloud of points gets closer and closer to 7 as
n goes to infinity.

If Xy, X5, ... are a Markov chain with invariant distribution 7. Then we
often call Xy, ..., X,, an MCMC sample from 7. This bothers many people
because they are so used to the notion of i. i. d. samples that thinking about
any other kind makes their head hurt. It is true X7, X5, ... are not independent.
Nor are they identically distributed unless the initial distribution is 7, and it
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never is because if we knew how to produce even one realization from 7w we
wouldn’t be using MCMC. So if they aren’t independent, and aren’t identically
distributed, and none of them have the distribution 7, how dare we call them

samples from 77 The theorem says. Just like the i. i. d. case we have 7, Lo
almost surely. That’s what’s important.

4.4 Aperiodicity

A very different sort of convergence involves the marginal distribution of X,.
It is usually true that £(X,) — 7 (read “the law of X,, converges to 7). Such
statements are not important in themselves for MCMC. Since MCMC estimates
are sample averages, the important kinds of convergence are the LLN and the
CLT. Convergence of marginals is a side issue.

But it is an important side issue for a number of reasons. First a large part
of Markov chain theory involves questions about convergence of marginals, and
much of this has been imported into the MCMC literature and colors discussions
despite its questionable relevance. Second, Markov chain theory about conver-
gence of marginals is intimately connected with theory about the CLT. The
easiest way to prove the CLT holds is to show “geometric ergodicity,” which is
a form of convergence of marginals. Hence what seems like a detour is actually
taking us toward our goal.

The law of large numbers can hold for a Markov chain even though marginal
distributions do not converge. The simplest example is the deterministic Markov
chain on a two-point state space that alternates between the points. Call the
points 0 and 1 then

X, =n mod 2

if we start at X; =1 and
X,=(Mm+1) mod 2

if we start at X; = 0. The chain is clearly irreducible since it can go from 0
to 1 in one step and from 1 to 1 in two steps. The invariant distribution puts
probability 1/2 at each point by symmetry, or we can check 7P = P directly,
which written out in matrix notation is

(1 ) =

Hence the law of large numbers applies, as can also be checked by direct calcu-
lation. But the marginal distribution of X,, does not converge to 7. It is always
concentrated at one point, either 0 or 1 depending on whether n is odd or even
and what the starting point was.

It is worth pointing out that this is a Metropolis sampler where the proposal
is to go to the other point. The proposal is always accepted because the odds
ratio is always one.

( )
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)
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This example illustrates a general phenomenon. The state space of any -
irreducible Markov chain can partitioned into sets Dy, D1, ..., Dg_1 and N
such that

(i) P(z,D;) =1, when z € D; and j =i —1 mod d.
(i) $(N) =0,

This partition is unique up to null sets if d is chosen as small as possible (Meyn
and Tweedie 1993, Theorem 5.4.4). The chain is said to be aperiodic if d = 1
and periodic if d > 1. In the periodic case the marginals cannot converge, since
if we start with Xy in D7 then we have Pr(X,, € D;) = 1 for i = n mod d.
Since the distributions of X,,, and X, have disjoint supports for m # m mod d,
convergence is impossible.

Fortunately we have the following theorems.

Theorem 4.5. Any t-irreducible sampler that has P(xz,{x}) > 0 for z € A
where P(A) > 0 is aperiodic.

Proof. Assume to get a contradiction that the sampler is periodic. Then we
must have (A N D;) > 0 for one of the D; in the cyclic decomposition of the
state space. But then for x € AN D; we have P(x,D;) > P(x,{z}) > 0. But
the cyclic decomposition requires P(xz, D;) = 0 for € D;. The contradiction
proves the sampler must be aperiodic. O

The theorem wouldn’t be true without any conditions on the sampler, since
our deterministic two-point sampler is Metropolis and not aperiodic.

Theorem 4.6. Any -irreducible Gibbs sampler is aperiodic.

Proof. The argument is taken from Liu, Wong, and Kong (1995, Lemma 3.2).
It uses the point of view that the transition probabilities define an operator
on L?(m). When working with nonreversible samplers, we need L?(m) to be a
complex Hilbert space. A complex function u is an eigenvector of the transition
operator P associated with the eigenvalue A if Pu = Au. A periodic chain always
has an eigenvector u associated with the eigenvalue w = €27/, the d-th root of
unity, given by

d—1
u(z) = whlp, (z) (4.9)
k=0

since
-1

d—1 d—1 d
(Pu)(ac) = Zwkp(ank) = Zwk]‘Dk—l mod d(m) - Zwk+11Dk (l‘) - wu(:c)
k=0 k=0 k=0

For a fixed scan Gibbs sampler, the transition operator is a product of operators
for elementary updates P = P, --- P;. The P; for a Gibbs sampler have the spe-
cial property of being projections, that is they are self-adjoint and idempotent.
We have shown that Gibbs updates are reversible and that this is equivalent to
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the operator being self-adjoint. Idempotent means P? = P;, something we have
also noted: repeating a Gibbs elementary update twice is the same as doing it
once. Thus by the analog of the Pythagorean theorem for Hilbert spaces
2 2 2
l[ull* = | Pull” + (I = P)ul

holds for any function u € L?(r). Hence either || Pul| < [Jul| or ||( — P;)ul| = 0.
The latter implies that P;u = u so u is an eigenvector associated with the
eigenvalue 1. If the latter is true for all 4, then Pu = w, which is false for the
particular u given by (4.9). Hence we must have ||P;u|| < ||u|| for at least one i,
say an ¢ such that Pju = u for j > i. But then

[Pull < [[Puff--- [ Pical - [[Peul] < 1
since || P;|| < 1 for all 4. But this contradicts
[Pull = [[wul| = |w] flul} = 1

So a fixed scan Gibbs sampler cannot be periodic.
Neither can a random scan or a random sequence scan sampler be periodic,
by slight variants of the same argument. O

4.5 The Total Variation Norm

A bounded signed measure is a real-valued countably additive set function
defined on a o-field. Any signed measure p has a decomposition = u™ — u~
as the difference of two positive measures with disjoint supports. The total
variation norm of u is

il = 7 (X) + 1™ (X)
where X is the whole space. An equivalent definition is

lull = sup / fdp. (4.10)
[fI<1

where the supremum is taken over all measurable functions f such that | f(x)| <
1 for all z.
The total variation norm gives bounds for the measure of sets

sup |[pu(A)] < [|p|| < 2sup [u(A)]|
A A

where the sup runs over all measurable sets.

4.6 Convergence of Marginals

Theorem 4.7. For an aperiodic Harris recurrent chain with invariant distri-
bution ™ and any initial distribution A

— 0, asn — oo (4.11)

=l = | [ saoypnio, ) - x
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Moreover, the left hand side is nonincreasing in n.

This is Theorem 13.3.3 and 13.3.2 in Meyn and Tweedie (1993).

If X¢ has the distribution A, then AP™ is the marginal distribution of X,.
The theorem says this marginal distribution converges to 7 in total variation.
A trivial corollary is that this marginal converges in distribution to m, since
convergence in total variation implies convergence in distribution.

In the special case where A is the measure concentrated at the point z, (4.11)
reduces to

|P"(x, -) —m| — 0, as n — 0o (4.12)

4.7 Geometric and Uniform Ergodicity

4.7.1 Geometric Ergodicity

A Markov chain is said to be geometrically ergodic when the convergence in
(4.12) occurs at a geometric rate, that is when there is a constant p < 1 and a
nonnegative function M (x) such that

|P"(x, -) — x| < M(z)p"™ for all n. (4.13)

When this happens, something a bit stronger is actually true, and Meyn and
Tweedie (1993) take this as the definition. A Harris recurrent Markov chain
with invariant distribution 7 is geometrically ergodic if there exists a constant
r > 1 such that

e}
ZT"HP"(JC, -) — || < oo, for all . (4.14)
n=1

Note that for this series to be summable, each term must go to zero, which
implies (4.13) holds with p = 1/r.
The total variation convergence in (4.13) implies that

|P"(z,C) = w(C)| < M(x)p"
holds for any set C. In fact, something stronger is true, but we need some
preliminary definitions before we can state it.
4.7.2 Small and Petite Sets

A set C is small if there is an integer m, a real number § > 0, and a
probability measure  on the state space such that

P™(x, A) > 6Q(A), x € C and A a measurable set. (4.15)

If Q(C) = 1, this is referred to as a “minorization condition” for for the m-step
transition kernel P™. It is a deep theorem of Jain and Jamison (1967) that any
i-irreducible chain has -positive small sets.
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Small sets are not a convenient notion if the chain is periodic, since any small
set must be contained in one of the D; in the partition defining the periodic
behavior. So Meyn and Tweedie (1993) define a closely related concept of “petite
set.” If a(n), n =0, 1, ... defines a probability distribution on the nonnegative

integers, then
(o]

Ko(z,A) = a(n)P"(x,A) (4.16)
n=0

is the kernel of the Markov chain having the following update mechanism: gen-
erate a random integer N with distribution a, run the original chain N steps.
This gives a random subsample of the original chain. The sample is “with re-
placement” if a(0) > 0 so that N = 0 is possible. A set C' is petite if there is
a sampling distribution a, a § > 0, and a probability measure () on the state
space such that

Kq(x,A) > 6Q(A), z € C and A a measurable set. (4.17)

Every small set is petite (use the sampling distribution concentrated at m)
and if the chain is aperiodic and irreducible every petite set is small (Meyn
and Tweedie 1993, Theorem 5.5.7). The only difference between the concepts is
when the chain is periodic. In MCMC we have little interest in periodic chains,
but it does no harm to use the more general term, following Meyn and Tweedie.

Petite sets can be rather large. For any -irreducible chain, there is an
increasing sequence C7; C Cy C - - of petite sets that covers the state space. So
7(C;) increases to 1 as i — oo.

4.7.3 Feller chains and T-chains

A Markov chain on a topological state space is called a Feller chain if P(-,O)
is a lower semicontinuous function for every open set O. The requirement that
the kernel P be lower semicontinuous can be expressed as

liminf P(x,,0) > P(x,0), whenever x,, — .
n
Meyn and Tweedie (1993) call a Markov chain a “T-chain” if the following
conditions hold

(i) There exists a sampling distribution a and a kernel T'(z, A) such that
T(-,A) is a lower semicontinuous function for any measurable set A.

(ii) For each x, the measure T'(z, -) is nonzero.

The point of the concept is the following (Meyn and Tweedie 1993, Theorem
6.0.1) if every compact set is petite then the chain is a T-chain and conversely
if the chain is a T-chain then every compact set is petite. So if we can verify
that a chain is a T-chain, we immediately have a wealth of petite sets.
Verifying that a chain is a T-chain usually a simple application of Fatou’s
lemma. Consider a Gibbs sampler. Say x is the current state and y is the
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state after one fixed scan, and suppose that all of the elementary updates have
densities, then the density of y given x has the form

P3(yslye, y1)p2 (Y23, y1)p1 (Y1 |73, 22)

when there are three variables, and similarly for other numbers of variables.
Suppose for each fixed value of y the integrand is a lower semicontinuous function
of x, which in this case happens when x5 +— ps(y2|z3, y1) is lower semicontinuous
and (z3,x2) — p1(y1|Ts, x2) is lower semicontinuous. Then by Fatou’s lemma

liminf P(x,, A)
= lim inf /// p3(y3ly2, y1)p2(Y2|Tn 3, Y1)P1 (Y1 |Tn,3, Tn,2) dy1 dya dys
n A
> /// lim inf [ps (ys|y2, y1)p2 (Y203, y1)P1 (Y1 |Tn.3, Tn,2)]| dyr dyz dys
A n

= /// P3(yslye, y1)p2(y2|T3, y1)p1(y1|ws, 22) dy: dya dys
A
= P(x,A)

So the kernel itself is lower semicontinuous, and the chain is actually Feller as
well as being a T-chain.

Now consider Metropolis-Hastings algorithm, this time with only two vari-
ables to keep the equations shorter. Here we throw away the rejection part
of the kernel, since it need not be lower semicontinuous. Let T'(z, A) be the
probability that the chain moves from x to A and every proposal in the scan is
accepted. Then P(z, A) > T(x, A) and

lim inf T'(x,,, A) > liminf// P2(Y2|Tn,2, y1)P1 (Y1 Tn,2, Tn,1) dyr dyo
n n A
> // lim inf [p2 (y2|2n,2, y1)P1 (Y1 20,2, Tn1) | dys dya
A n

:// p2(yelre, y1)p1(y1|r2, 21) dy1 dy2
A
=T(z, A)

and T'(z, A) is lower semicontinuous if the p; are lower semicontinuous func-
tions of their x arguments, just as with the Gibbs sampler. Now the p; have
the Metropolis form (3.2.5). These will be lower semicontinuous if both the
proposal and acceptance densities are lower semicontinuous functions of their
x arguments. Since x appears in both the numerator and denominator of the
Hastings ratio, the only simple condition that assures this is that unnormalized
density h(x) is actually a continuous function of z and that the proposal density
q(x,y) is separately continuous in x and y. We also have to verify part (ii) of
the definition of T-chain, which held trivially for the Gibbs sampler. T'(z, -)
will be a positive measure for each x if every possible elementary update has
positive probability of being accepted.
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Verifying that a Metropolis-Hastings-Green sampler is a T-chain is more
difficult. The fact that the proposals are discontinuous with respect to Lebesgue
measure means that we have to consider more than a single elementary update
step. That was also the case with Gibbs and Metropolis, but what constitutes
a “full scan” in a Metropolis-Hastings-Green sampler is unclear.

4.7.4 Absorbing and Full Sets

A set S is said to be absorbing if P(z,S) =1 for all x € S. A set S is said
to be full if ¢(S¢) = 0, where ¢ is a maximal irreducibility measure. When the
chain has an invariant distribution 7, a set S is full if 7(S) = 1. Every absorbing
set is full if the chain is v-irreducible (Meyn and Tweedie 1993, Proposition
4.2.3).

If the chain is started in an absorbing set S it never leaves. Thus it makes
sense to talk about the chain restricted to .S. Restriction to an absorbing set
does not change the kernel except to restrict the domain.

If the chain is ¢-irreducible and started outside of .S, the law of large numbers
says that almost all sample paths hit S and never leave. Moreover since 7(5) =
1, the part of the state space outside S is uninteresting from the standpoint of
Markov chain Monte Carlo. We don’t want any samples from a set of m-measure
Z€ero.

4.7.5 Drift Conditions

How do we verify geometric ergodicity? The basic tool is a so-called “drift
condition.” We say a Markov chain satisfies the geometric drift condition if
there exists a measurable function V(x) > 1, possibly taking the value +oo but
finite at some z, a petite set C', and constants A < 1 and b < oo such that

PV (z) < AV (x) + ble(x), for all x (4.18)

where
PV(z) = / P, dy)V(y) = E[V(X))| X = ]

If V(x) = oo the drift condition is satisfied vacuously for that x.

A weaker drift condition is useful in establishing Harris recurrence. A
Markov chain satisfies the positive drift condition if there exists a measurable
function V(x) > 1, possibly taking the value +oo but finite at some z, a petite
set C', and a constant b < oo such that

PV(z) <V(zx) —1+blc(z), for all = (4.19)

If the chain is t-irreducible, any solution V' (z) of the geometric drift condi-
tion satisfies

(i) The set S ={z:V(x) < oo} is absorbing and full.

(ii) V is unbounded off petite sets.
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(iii) [V dr < oc.

by Lemma 15.2.2 and Theorem 14.3.7 in Meyn and Tweedie (1993), and any
solution V(z) of the positive drift condition satisfies (i) and (ii) by Lemmas
11.3.6 and 11.3.7 in Meyn and Tweedie.

Condition (ii) means that every sublevel set {z : V(x) < r} is petite, for
any r € R. Combining that with the fact that there is an increasing sequence of
petite sets C; whose union is the whole space, we see that V(x) goes to infinity
at infinity where “infinity” means away from petite sets.

Condition (i) means that the set S satisfies w(S) = 1, so although V(z) is
allowed to take the value co, it can only do so on a 7w-null set, and we can restrict
the chain to the absorbing set S.

Since condition (ii) must hold for any solution of the drift condition, it
does no harm to impose it as a requirement. This gives a simpler equivalent
formulation (Meyn and Tweedie 1993, Lemma 15.2.8). A Markov chain satisfies
the geometric drift condition if there exists a measurable function V(z) > 1
unbounded off petite sets, possibly taking the value 400 but finite at some z, a
petite set C, and constants A < 1 and L < oo such that

PV(x) <AV (x)+ L. for all = (4.20)

For any function V' > 1 define the V-norm by
Iy = sup [ . (4.21)
[fISV

Note the resemblance to the alternative definition (4.10) of the total variation
norm. The only difference is that here the supremum is over all functions f
dominated by V. The total variation norm is the special case V = 1.

The geometric drift condition implies (Meyn and Tweedie 1993, Theorem
15.0.1) that there are constants r > 1 and R < oo such that

> P (@, ) =7y <RV(z)  for all o (4.22)

n=1

holds for all z. This, of course, says nothing about x such that V(z) = oo.

Comparison with the definition of geometric ergodicity (4.14) shows that
(4.22) is stronger except that geometric ergodicity requires that the right hand
side be finite for all x, which is not so in (4.22) when V(z) = co. But if we
restrict the chain to the absorbing full set S = {z : V(z) < oo}, the geometric
drift condition implies that the chain restricted to S is geometrically ergodic.

If the chain is v-irreducible and there is an everywhere finite solution to the
positive drift condition, then the chain is Harris recurrent (Meyn and Tweedie,
Theorem 11.3.4). The geometric drift condition implies the positive drift con-
dition, so an everywhere finite solution to the geometric drift condition also
implies Harris recurrence.

Thus in practice the nuisance of V' being infinite at some points does not
arise. One verifies the geometric drift condition using a V' that is everywhere
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finite. Why then allow for the possibility V(x) = oco? For every geometrically
ergodic chain, there is a V satisfying the geometric drift condition (Meyn and
Tweedie 1993, Theorems 15.4.2 and 15.0.1), but the solution may take the value
400 at some points. Thus not only can one establish geometric ergodicity by
verifying the geometric drift condition, but one loses nothing by taking this
approach. If the chain is geometrically ergodic, then there is a function V' that
makes the geometric drift condition hold. Similarly, for every Harris recurrent
chain, there is a V satisfying the positive drift condition (Meyn and Tweedie
1993, Theorem 11.0.1). Whether one can actually find such a function is another
question, of course.

Further comparison shows that (4.22) is much stronger than (4.14) when
V' is everywhere finite, because of the appearance of the V-norm rather than
the total variation norm in (4.22) and also because of the explicit formula for
the dependence of the right hand side on x. Thus verifying the geometric drift
condition implies something stronger than mere geometric ergodicity. One might
call this V-geometric ergodicity, but Meyn and Tweedie apply that name to the
situation where the left hand side of (4.22) is only known to be finite for all x.
The still stronger (4.22) is called V-uniform ergodicity.

4.7.6 Verifying Geometric Drift
Bivariate Normal Gibbs

Verifying geometric drift ranges from the easy to the extremely difficult.
To start, let us consider the Gibbs sampler for a bivariate normal distribution.
Of course, one doesn’t need MCMC to sample this distribution. This is a toy
problem that makes a useful simple example for demonstrating a variety of
techniques.

We may as well consider a symmetric normal distribution in which the two
variables have the same variance o2 and mean zero. Their correlation is p. Then
the conditional distribution of Y given X is normal with mean pX and variance
72 = 02(1 — p?), and vice versa. Since both updates use the same distribution,
this Gibbs sampler is essentially an AR(1) time series, which is defined by
Zp = pZn_1 + e where e Normal(0,72). The bivariate state of a fixed-scan
Gibbs sampler for the bivariate normal is formed by taking consecutive pairs
(Zp, Zyny1) from the univariate AR(1) time series.

Thus we can find out many things about this Gibbs sampler by looking in
the time series literature. In particular, it is well known that this sampler is
not only geometrically ergodic but satisfies much stronger properties. But let
us, work through establishing the drift condition.

Since second moments are easy to calculate, we first try V(z,y) = 1 +
axz® + by? for some positive constants a and b. This is clearly unbounded off
compact sets, and compact sets are petite because this is a Gibbs sampler with
continuous update densities. Suppose we update y last in the scan, so in order
to take a conditional expectation PV for the whole scan, we first take the
conditional expectation given x which gives a function of = alone and then take
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a conditional expectation given y, where this y is the value in the preceding
scan. The first conditional expectation gives

E(VIX) =1+ az® + b(p*2? + 72) = (a + bp*)2? + constant

From (4.20) we see there is no need to keep track of constants. Then the second
conditional expectation gives

PV (z,y) = (a+ bp?)p*y? + constant
Thus we have geometric drift if we can choose a and b so that
(a+bp*)p* < b,

which happens if
a<b(p~?—p?)

For example, if p = .99 then b = 1 and a = .04 will do.

A Theorem of Roberts and Tweedie

Roberts and Tweedie (1996) give a general theorem on geometric ergodicity
of Metropolis samplers on R that iterate a single elementary update with a
“random walk” proposal of the form ¢(z,y) = f(y — x) where f is any density
satisfying f(z) = f(—x). They use a drift function of the form V (z) = h(x)~'/2,
where h(z) is the unnormalized density of the invariant distribution. The condi-
tions under which a drift function of this form can be used to establish geomet-
ric ergodicity can be roughly stated as h(x) must have exponentially decreasing
tails and asymptotically round contours. These conditions are violated by many
models of practical interest, but the paper does show how the technical issues
involved in proving geometric ergodicity using drift conditions are attacked.
Presumably similar methods can be used with drift functions specifically tai-
lored to the problem to establish geometric ergodicity for problems for which
this specific choice does not work.

4.7.7 A Theorem of Rosenthal

Establishing the geometric drift condition tells us that a chain is geometri-
cally ergodic (even V-uniformly ergodic) but doesn’t tell us anything about the
constants r and R in (4.22). By combining the geometric drift condition with a
minorization condition like (4.15) we can say something about these constants.

Theorem 4.8. Suppose V(x) > 0 is an everywhere finite function and satisfies
a geometric drift condition

PV(x) <AV +1L, for all x. (4.23)
for some A <1 and some L < oo. Suppose that the minorization condition

Pz, -) > 0Q(), for all x with V(x) < d (4.24)
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holds for some § > 0, some probability measure QQ, and some d satisfying

2L
_ 4.2
d> = (4.25)

Then for 0 <r <1 and any initial distribution v of the Markov chain

k L
||VPk . 7TH < (1 o 5)rk + (a—(l—f)Ar) (1 + ﬁ + EVV(X))

where
gt LALLM A 1+2(\d+1L)
1+d

This is Theorem 12 in Rosenthal (1995a, 1995b). The drift condition (4.23)
is slightly different from the ones previously described, but if V satisfies (4.23)
then 1+ V satisfies (4.18) with C = {z : V(x) < d} which is petite because
of the minorization condition (4.24) and a slightly larger A\. Note that (4.25)
implies that a~! < 1, but A is always greater than one and may be very much
larger. Thus it may be necessary to choose r very close to zero in order that
a~ (1= A" be less than one and the right hand side go to zero as k — oo.

Bivariate Normal Gibbs Again

Let us see how this works with the Gibbs sampler for the bivariate normal.
First we must redo the drift condition calculation Section 4.7.6 keeping track
of the constants to obtain L. But consideration of the minorization condition
shows us that we can use a different drift function.

Since the conditional distribution of (X,Y") at time ¢ only depends on the
distribution of Y at time ¢ — 1 (using a fixed scan that updates = and then y),
the minorization condition will hold for all x if it holds for any x hence sets of
the form R x A are petite and we may as well use a function of y alone. Let us
use V(z,y) = by

Then

PV(x,y) = b[r* + p*(7% + p*y?)]

Hence PV < AV + L with
A=p
and
L=bm*(1+p").

Thus we must choose d satisfying

2072 (1 2 2072
P U B
1—0p 1— p?

The small set on which the minorization condition needs to hold is

C={(z,y): V(z,y) <d},
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which is of the form R x A with

A={y:lyl <\/d/b}.

The conditional distribution of X and Y at time ¢ + 1 given Y; = yo has the

density
L e (_ (y - p$)2> Lo (_ (z — pyo)Q)
V2rT 272 2T 272

Taking the inf over all yo such that |yo| < d/b gives
| (y—peP\ 1 (2] + pi/b)?
— —_— 4.26
27T P < 272 27T b 272 (4.26)

Integrating with respect to y gives

ECE. pd/b>2>

2T 272

and then integrating with respect to x gives

§ =20 (fﬁ) <20 <p 1_2p2) : (4.27)

where @ is the standard normal cumulative distribution function, that is, (4.26)
is a proper probability distribution times ¢.

Note that if p is very close to one, then (4.27) is extremely small. If p = .99,
then § < 3.28 x 10723, On the other hand, if p = .9, then § < 0.0035, which
is not so bad. The parameters to be chosen are b, d, and r which together
determine the bound. Some experimentation seemed to show that b = 1 and
d = 12.4, just a little above its lower bound 2b/(1 — p?) = 10.526, were about
optimal. This makes a~! = 0.9518 and A = 20.900. If we now choose r so the
two rate constants (1 — §)” and a~(*=") A" are about equal, we get r = 0.0160
making (1 —§)" = o=~ A" = 0.999976. Hence

|lvP* — 7| < (0.999976)" (2 + % + EVV(X)> = 7.263158(0.999976)F
if we start at any point where V(X) = bY? = 0.

Thus when p = .9 we get a useful bound. It does say that to reduce the total
variation norm to .01 we need 270,000 iterations, which is rather conservative,
but is doable.

If p = .99 the bound is completely useless. It gives on the order of 10723
iterations to reduce the bound much below one, and that is completely beyond
any foreseeable available computer power. It is also ridiculously conservative. It
is possible to use a minorization condition on the n-step kernel P™ rather than
on P, which would give a better bound. But this would draw the wrong lesson
from this toy problem. In problems of real practical interest, it is rarely, if ever,
possible to say anything useful about n-step transition probabilities. Hence the
appropriate lesson here seems to be that this theorem can be used to prove fast
convergence, but that when convergence is moderately slow the bound becomes
so conservative as to be useless.
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4.7.8 Uniform Ergodicity

When the bound in the definition of geometric ergodicity is uniform, that is
when there is a constant R < oo such that

Z’I"RHPTL({L‘7 -) — 7| <R, for all . (4.28)
n=1

we say the chain is uniformly ergodic. This implies

sup ||P"(x, -) — «|| — 0, as n — oo, (4.29)
all
which Meyn and Tweedie take as the definition of uniform ergodicity. This
makes sense because (4.29) also implies (4.28) by Theorems 16.2.1 and 15.0.1
in Meyn and Tweedie (1993).

Uniform ergodicity is implied by the geometric drift condition if the drift
function V' is bounded. Since any solution V' of the geometric drift condition is
unbounded off petite sets, boundedness of V' implies that the whole state space
is petite. Conversely, if a chain is uniformly ergodic, then the whole state space
is petite and there exists a bounded solution of the geometric drift condition
(Meyn and Tweedie 1993, Theorem 16.2.1).

Thus we obtain a very simple criterion for uniform ergodicity, that the whole
state space be petite. In particular, if the chain is a T-chain and the state space
is compact, then the chain is uniformly ergodic. No drift condition actually
need be verified. For example, any Markov chain on a finite state space is uni-
formly ergodic. The chain is trivially a T-chain because 2 — P(z, A) is trivially
continuous for each A, since any function on a discrete space is continuous. The
entire space is compact because any finite set is trivially compact. But this
criterion also applies to more complicated examples. The Gibbs or Metropolis
samplers for the Strauss process with a fixed number of points n are T-chains by
the Fatou’s lemma argument of Section 4.7.3. The state space is compact, since
it is a closed and bounded subset of R*" (or in the case of periodic boundary
conditions a compact manifold of dimension 2n). It is also easy to show the
minorization condition directly: 0 < s(z) < n(n — 1)/2 implies that h(z) is
bounded and bounded away from zero and that this in turn implies that there
is a d > 0 such that P(xz, A) > du(A) for all points  and all measurable sets A,
where 1(A) is the Lebesgue measure of A.

It is possible that a chain can be uniformly ergodic when the whole state
space is not compact. A trivial example is independent sampling. A sequence
X1, Xo, ... of independent, identically distributed random variables with distri-
bution 7 is trivially a Markov chain with invariant distribution 7 and transition
probability kernel P(xz, A) = w(A), for all z, and this is trivially a minorization
condition for the whole space.

A nontrivial example of this phenomenon is a hierarchical Poisson model for
data on pump failures at a nuclear power plant used by Gaver and O’ Muirc-
heartaigh (1987) who used empirical Bayes calculations that did not involve
MCMC. Gelfand and Smith (1990) used this as an example where a fully Bayes
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analysis could be done using the Gibbs sampler. Tierney (1994) showed that
this Gibbs sampler is uniformly ergodic, even though the state space is an un-
bounded region of R and hence noncompact.

In general, however, one has no right to expect a Markov chain on a non-
compact state space to be uniformly ergodic. For example, any sampler for
the unconditional Strauss process that adds or deletes at most one point per
iteration cannot be uniformly ergodic. Write S™ as before for the set of all
realizations with exactly m points. Then for any n > 0 and any z € S™*"+!

1P™(x, ) = 7l| = [P (2, 5™) = =(S™)] = w(5™)
Since the chain cannot get from S™*"+1 to S™ in only n steps. Hence

sup [P (z, -) = || = w(S™)

all

for all n, the left hand side cannot converge to zero, and the chain is not uni-
formly ergodic.

Another simple example is the Gibbs sampler for the bivariate normal. From
the standard theory of AR(1) time series we know that the conditional distribu-
tion of Y,, given Yy = ¥ is normal with mean p®"y. The unconditional variance
of Y,, is 02 and the conditional variance given Y; = y must be less since condi-
tioning reduces variance. Hence for y > 0

Pr(Y, < 0]Yy = y) < ®(p™"y/0) (4.30)

In order for the chain to be uniformly ergodic this must be bounded uniformly in
y, more precisely, for any € > 0 there is a n. such that |®(p?"y/o)—7m(Y < 0)| <€
whenever n > n, for all y. Clearly, this can’t hold since (Y < 0) =  and (4.30)
converges to 1 as y — oo.

4.8 The Central Limit Theorem

The assertion of the Markov chain central limit theorem (leaving aside mo-
mentarily the question of whether it is ever true) is the following. As when we
were discussing the law of large numbers, define for any function g(X)

B = Ewg(X)
and

i=1

Then the law of large numbers says that fi,, converges almost surely to p, and
we know this holds for any initial distribution for any Harris recurrent chain
with invariant distribution 7. The Monte Carlo error fi,, — y, how far a Monte
Carlo estimate of p based on a run of the chain of length n is from the true
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value, converges to zero as the run length n goes to infinity. The central limit
theorem asserts

Vi (jin = 1) == N(0,02). (4.31)

Root n times the Monte Carlo error converges in distribution to a normal dis-
tribution with mean zero and some variance o2, so fi,, +£1.960//n is an approx-
imate 95% confidence interval for the unknown true value u. In real problems
there is never any way to calculate o2, but it can be estimated from the same
run of the chain that produced the estimate fi,,. This is a familiar situation.
Even with independent, identically distributed samples we rarely know the true
variance, use the sample standard deviation s in place of ¢ in calculating the
confidence interval.

One simple result about the central limit theorem is that if the chain is Harris
recurrent, then if (4.31) holds for any initial distribution then it holds for every
initial distribution (Meyn and Tweedie 1993, Theorem 17.1.6). Since the initial
distribution does not effect the asymptotics, there is no harm in pretending that
the initial distribution is the invariant distribution 7, which allows us to make
connections with the theory of stationary stochastic processes.

A stochastic process X1, Xo, ... is stationary if for any positive integers n
and k

(X1, X0) 2 (Xnsts oo X))

meaning that the left hand side is equal in distribution to the right hand side.
Any consecutive block of variables of length k has the same distribution. A
Markov chain is a stationary stochastic process if X; has the invariant distri-
bution 7. Thus we can obtain a Markov chain central limit theorem from limit
theorems for general stationary processes, including theorems about stationary
time series.

4.8.1 The Asymptotic Variance

The variance ¢? in the limiting distribution in the central limit theorem
cannot simply be Var, g(X) as it would be for independent sampling. The
variance of the left hand side in (4.31) is

02 =nVar (ji,) = % ZVar(g(Xi)) + % Z Z Cov(g(X;),9(X;))

Since the initial distribution makes no difference to the asymptotics, we may
assume stationarity, in which case

Yo = Var(g(X;))

is the same for all 7 and

Ve = Cov(g(Xi), g(Xitr)) (4.32)
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is the same for all k. (4.32) is called the lag k autocovariance of the stationary

time series g(X1), g(X2), .... Thus stationarity implies
5 —n-k
02 =79+2 kz::l — - (4.33)
and o2 converges to N
d=v+2) % (4.34)
k=1

as n — oo if the series on the right hand side is summable. We can expect
(4.34) to be the asymptotic variance if everything is well behaved.

4.8.2 Geometrically Ergodic Chains

The necessary conditions for such theorems involve so-called “mixing coef-
ficients.” There are several varieties of which we will look at three, so-called
([-mixing, p-mixing, and ¢-mixing. The reader should be warned that the def-
initions given here apply only to Markov chains and that the definition for a
general stationary process is slightly different, for which see Bradley (1986).

[-Mixing
The mixing coefficient G(n) is defined for a Markov chain by

I J
ﬁ(n) = %supzz | PI‘(XO S Ai &Xn S B]) — F(AZ)’T['(BJH
i=1 j=1
where the supremum is taken over all partitions Ay, ..., A; and By, ..., By of

the state space by measurable sets.
This mixing coefficient is related to the total variation norm as follows. An
alternative definition of the total variation norm of a signed measure p is

J
il = sup D u(B))]
j=1

where again the supremum is over all measurable partitions of the state space.
Thus

J
Z|Pn(vaj) —n(By)| < |[P"(z, -) ==,
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for all measurable partitions By, ..., By and
J J
S IP" (s By) = w(A)r(By)| = S| [ 1P By) = w(Blm(d)
j=1 j=1174:

J
3 /A 1P (e, By) = (B ()

< [ 1P (e ) = (o)

i

SO

I J
Bln) =3 > |P"(Ai, By) — m(Ai)w(B;)]

i=1 j=1

1
%Z/A, 1P, -) = wllm(dw)

- %/HP”(Q@, ) — 7||w(dx)

IN

If the Markov chain is geometrically ergodic then (4.22) and [V dr < co imply
there is an r > 1 such that

Z r"B(n) < 0.

n=1

so B(n) goes to zero exponentially fast. This implies a central limit theorem.
A chain is said to be S-mixing if 3(n) — 0 and S-mixing exponentially fast if
B(n) < Ap™ for some A < 0o and p < 1.

Theorem 4.9. If a Markov chain is geometrically ergodic, then it is 3-mizing
exponentially fast. For any function g such that [|g|*T¢dr < oo for some
e > 0 the central limit theorem (4.81) holds for the stationary chain, and the
asymptotic variance is given by (4.34). If the chain is Harris recurrent the
central limit theorem holds for any initial distribution.

This follows from a well-known stationary process central limit theorem
(Ibragimov and Linnik 1971, Theorem 18.5.3). This connection between ge-
ometric ergodicity and mixing conditions was noted by Chan and Geyer (1994).
Chan and Geyer only showed that geometric ergodicity implies a weaker form
of mixing called a-mixing, but the proof of the stronger S-mixing is essentially
the same, and B-mixing is need for some forms of empirical process central limit
theorems (Arcones and Yu 1994; Doukhan, Massart, and Rio 1994).

It is possible to have 02 = 0, in which case the interpretation is that /7 (fi, —
) converges in distribution to the degenerate distribution concentrated at the
origin, which is the same thing as convergence in probability to zero. An example
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of such behavior is the periodic chain on two states mentioned in Section 4.4.
The average over a full period is the same as the average over the stationary
distribution. Thus /i, is exactly x for even n and off by at most 1 max(g(0), g(1))
for odd n. So fi,, — = O(1/n) and v/n(ji, — p) converges to zero.

The Liapunov condition [ | g|?*T¢dnr < oo can be suppressed, by considering
the actual function V' used in the geometric drift condition.

Theorem 4.10. If a Markov chain is V -uniformly ergodic, then for any func-
tion g such that g?> <V the central limit theorem (4.31) holds for the stationary
chain, and the asymptotic variance is given by (4.34). If the chain is Harris
recurrent the central limit theorem holds for any initial distribution.

This is Theorem (17.5.4) in Meyn and Tweedie (1993). A very similar result
is given by Chan (1993).

Which of the two theorems one uses depends on what what one knows. If it
is not known whether g has 2 4+ ¢ moments, then Theorem 4.10 or the similar
theorem in Chan (1993) must be used. If one wants central limit theorems for
many functions, all of which are known to satisfy the Liapunov condition, then
Theorem 4.9 will be more useful, since there is no need to find a different drift
condition for each function g.

p-Mixing

A stronger mixing condition is p-mixing. The mixing coefficient p(n) is
defined for a Markov chain by

p(n)=sup Cor(u(X;),v(X;1n))

w,vEL? ()

4.35
oy [Vr(BIX) (4.35)
uweL2(r) Var(u(Xz))

A chain is p-mixing if p(n) — 0, as n — oo.
Thinking of P as an operator on the Hilbert space LZ(7) as in Section 2.2.3

we have 1P
nu "
= [|P".

p(n) =
u€L3(m) Hu”
The nth p-mixing coefficient is just the norm of P". Because |P|| < 1 (shown
in Section 2.2.2) if ||P™]| < 1 for any m

[P < Py

and so if a chain is p-mixing, then it is p-mixing exponentially fast.

In (4.35) it is usual to consider only real functions u and v, so L?*(7) is
considered a real Hilbert space. In defining the spectrum it is necessary to
consider it a complex Hilbert space, but this makes no difference since P takes
real functions to real functions, which implies ||P(u + iv)||? = || Pul|? — || Pv]|?,
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so the supremum over real functions is the same as the supremum over complex
functions.

For any bounded operator T" on a Hilbert space, the spectrum of T is the set
of complex numbers A such that 7" — AI is not invertible. If the state space is
finite, so P is a matrix, then the spectrum of P is the set of right eigenvalues of
P, the set of X such that Pu = Au for some vector u. We have already seen that
complex numbers are needed in the proof of theorem 4.6. If a chain is periodic
with period d, then e?™/¢ is an eigenvalue, and this is complex if d > 2. If the
chain is reversible, so P is self-adjoint, then the spectrum is real.

If the state space is not finite, the notion of eigenvalues and eigenvectors may
be insufficient to describe the spectrum. A function can fail to be invertible for
two reasons, either it is not one-to-one or it is not onto. For a linear operator on
a finite-dimensional vector space, these two collapse into one, but in general A
can be in the spectrum of P because P — AI is not one-to-one, which means that
(P —AI)u = 0 has a nonzero solution u and u is an eigenvector of P (also called
eigenfunction to emphasize that u is a function on the state space) or P — AT
is not onto, which means that there is a v that is not of the form (P — AI)u for
any u in L3().

The spectrum of a bounded operator T' is always a compact subset of the
complex plane. The supremum of |A| for all A in the spectrum is called the
spectral radius r(T). It is always true that r(T') < ||T||, so for a transition
probability operator P which has [|[P| < 1, the spectrum is a closed subset
of the unit circle in general and a closed subset of the interval [—1,+1] for
self-adjoint P. A more precise bound is given by the spectral radius formula

r(P) = lim | P"|"".

If a chain is not p-mixing, then ||P™|| = 1 for all n and r(P) = 1. If the chain is
p-mixing, then there are constants A < co and b < 1 such that p(n) < Ab™ and

r(P) < lim AYnp = < 1.
So a chain is p-mixing if and only if the spectral radius of P considered to be a
operator on LZ(r) is strictly less than one.

A method of demonstrating p-mixing has been devised by Schervish and
Carlin (1992) and Liu, Wong, and Kong (1995). The connection between these
methods and p-mixing was pointed out by Chan and Geyer (1994). These
methods can only be applied to Gibbs samplers or other Metropolis-Hastings
schemes in which all proposals are accepted for reasons explained by Chan and
Geyer (1994).

The condition that a Markov chain be p-mixing is overly strong for obtaining
a central limit theorem. What is important is that the spectrum not contain
the point 1, that is, that the operator I — P, called the Laplacian operator of
the chain be invertible. Clearly p-mixing implies this (r(P) < 1 implies that 1
is not in the spectrum).
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Theorem 4.11. If a Markov chain has an invertible Laplacian operator, then
the central limit theorem (4.31) holds for the stationary chain, and the asymp-
totic variance is given by (4.84). If the chain is Harris recurrent the central
limit theorem holds for any initial distribution.

This is a simple corollary of a theorem of Gordin and Lifsic (1978) as is
pointed out by Chan and Geyer (1994).

¢-Mixing

A stronger mixing condition is known as ¢-mixing. For a Markov chain
this is equivalent to a condition known a Doeblin’s condition (Bradley 1986,
p. 175) which is equivalent to uniform ergodicity (Meyn and Tweedie 1993,
p. 384). Thus another method of establishing p-mixing is to establish uniform
ergodicity. If the chain is uniformly ergodic, then the central limit holds for all
functions in L?().

4.9 Estimating the Asymptotic Variance

A central limit theorem is not much use without a method of estimating
the asymptotic variance o2. Three methods are presented in this section and a
fourth method in the next section.

4.9.1 Batch Means

Given a Markov chain X7, Xs, ... and a function g for which there is a central
limit theorem (4.31), fix an integer m, let [ be the smallest integer greater than
or equal to m/n and define the batch means

kl

R 1
Hn ke T Z 9(Xi), k=1,....m—1
i=(k—1)xl+1

fin,m = ; Z g(Xz)

e l(m N 1) i=(m—1)xl+1

It follows from the functional central limit theorem (Meyn and Tweedie 1993,
Section 17.4) that the m batch means /i, , are asymptotically independent and
identically distributed Normal(yu,o?). Hence large sample confidence intervals
for ;1 can be constructed using Student’s ¢ distribution. If # and s? are the
sample mean and standard deviation of the batch means then z £1¢,/95/\/m is
a 100(1 — )% confidence interval for p, where ¢, /5 is the appropriate ¢ critical
value for m — 1 degrees of freedom.

How does one choose the batch length [? A good recommendation (Schmeiser
1982) is that the number of batches should be small, no more than thirty. Using
t rather than normal critical values correctly adjusts for a small number of
batches, but nothing adjusts for batches that are too small. So the batches



CHAPTER 4. STOCHASTIC STABILITY 138

should be as large as possible. One might use as few as ten batches if one were
worried about the batches being too small.

4.9.2 Overlapping Batch Means

Although the theory of batch means is very simple, it is inefficient compared
to a simple modification called overlapping batch means (Meketon and Schmeiser
1984; Pedrosa and W. 1993). For any batch length [, define

LIt
fintg =7 Y ogXi),  j=1,..n-1+1
i=j
d
o I n—I+1
ooy = n_i+1 ; (Antj — fin)? (4.36)

It follows from the central limit theorem for fi,, and uniform integrability, which
always holds under exponentially fast S-mixing that 672171 converges to o2 in
probability as n — oo and [/n — 0. Hence fi,, £ 1.966,,;/+/n is an asymptotic
95% confidence interval for u.

How does one chose the batch length for overlapping batch means. Now the
choice is more difficult. In order for 672171 to be a consistent estimator [ must be
“large” and [/n must be “small.” There seem to be no good criteria for choosing
[ unless n is very large, in which case a wide range of choices should be good

enough. If n is “small” then no choice of [ will be good.

4.9.3 Examples
Bivariate Normal Gibbs

One nice property of the Gibbs sampler for the bivariate normal distribution
is that we can calculate its asymptotic variance exactly. Suppose we want to
calculate the expectation of g(X,Y) =Y. For the stationary chain, the Y;, have
variance o2 (not the variance in the central limit theorem but the marginal
variance of Y) and correlation Cor(Y;,Yi1x) = p?*, thus the variance in the
central limit theorem is

Var(Y; —|—QZCOV Y;,Yigp) =0 <1—|—22p2k>

k=1
2
_ 2 P
=0 (1+21_p2>
o (140
o
1—p2

Figure 4.1 shows a run of length 10,000 of a Gibbs sampler for the bivariate




139

CHAPTER 4. STOCHASTIC STABILITY

BERrTE NN

ST e

e

[LPRCP R

aule g e s = e
AAR T L]

4000 6000 8000 10000

2000

iteration

Figure 4.1: Output of the Gibbs sampler for the bivariate normal distribution

with mean zero, variance one, and correlation p = .99. The starting position was
(0,0) and the run length 10,000. The statistic plotted is the second component

of the state vector.
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Figure 4.2: Overlapping batch means for the output shown in Figure 4.1. 9501
batches of length 500. Squares mark the 20 nonoverlapping batch means used
in the ordinary batch means analysis.

normal distribution with a rather high correlation p = 0.99. The second variable
Y of the state (X,Y") of the Markov chain is plotted.

Recall that in Section 4.7.6 we were able to show that this sampler is geomet-
rically ergodic, hence a central limit theorem exists for any function satisfying
a Liapunov condition and for Y in particular, but we were unable to get a tight
bound on the convergence rate of the sampler in Section 4.7.7. A glance at
Figure 4.1 shows that a run length of 10,000 is not long enough for the sampler
to make many excursions to the extremes. The sample does have 0.0267 of its
points above 42 and 0.0154 below —2 as compared to 0.025 for the invariant
distribution 7 (which is standard normal), but only seven excursions above 1.96
make an appreciable contribution to the empirical expectation 0.0267 and only
four excursions below —1.96 make an appreciable contribution to the empirical
expectation 0.0154. So this Markov chain sample behaves something like an
independent sample of size smaller than ten.

Figure 4.2 shows the batch means for batches of length 500. The ordi-
nary batch means method uses the means of the twenty nonoverlapping batches
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marked by squares in the figure. The mean and sample standard deviation are
0.145 and 0.484 giving a 95% confidence interval for the true mean pu = 0 of
0.145 4 2.093 - 0.484/+/20 = (—0.082,0.371).

The estimated variance from the overlapping batch means is 81.27, which
gives a confidence interval 0.145 4+ 1.96 - 1/81.27/10000 = (—0.032,0.321). The
correct theoretical value of the asymptotic variance is (14 p?)/(1— p?) = 99.50.
Much of the underestimation of variance by the overlapping batch means esti-
mator results from [, not being u. If p were used (4.36) in place of fi,, the
estimate would be 95.14. There is, however, no way to correct for this, no way
to widen the interval to account for something like degrees of freedom.

Conditional Strauss Process

Figure 4.3 shows a run of length 100,000 of a Metropolis sampler for a
Strauss process with a fixed number of points. The distribution is bimodal with
one mode near s(x) = 175 and another near s(x) = 825. Realizations in the
low mode look much like those of a Poisson process. The points are almost
independent. Realizations in the high mode have one cluster containing most of
the points and a few scattered points outside. The Strauss process is not a very
interesting model for clustering. It only serves as an interesting simple example
of a spatial point process.

For this run, the mean of the canonical statistic s(x) is 523.5 and the method
of overlapping batch means with batch lengths of 2,000 estimates 0 = 38981764
giving a confidence interval of 523.5 + 38.7 for the true expectation of s(x).

4.9.4 Time Series Methods

A family of methods that are more complicated than batch means but also
provide more information estimate the lagged autocovariances ~; in (4.34) di-
rectly using the obvious estimator

n—k
M= > [9(X0) = fin][9(Xir) = fin]

i=1
This estimate is biased downwards, and one might think that dividing by n — k
rather than n would give a better estimate, but as we shall presently see, the
estimates for large k are already too noisy and must be downweighted still
further. Priestley (1981, pp. 323-324) discusses this in more detail. A naive
estimate of 02 would be (4.34) with 4, plugged in for v, but it has long been
known that this estimator is not even consistent (Priestley 1981, p. 432). For
large k the variance of 4 is approximately

. 1 -
Var(f;) =~ <v§ +23 %i) (4.37)
m=1

(Bartlett 1946), assuming [ g*dr < oo and sufficiently fast mixing (p-mixing
suffices). Figure 4.4 shows the estimated autocovariance function, v as a func-
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Figure 4.3: Metropolis sampler for the Strauss process with fixed number of

50 defined by (??) with canonical parameter § = .126. The

vertical coordinate is the canonical statistic s(z) which is the number of neighbor

points n(x)

The run of length 100,000 was started at a realization of the Poisson
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0). The plot only shows every fifth point, though all points were

process (3

used in analyses.
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Figure 4.4: Empirical autocovariance function for the Metropolis sampler in
Figure 4.3. The dotted lines are £1.96 times the asymptotic standard deviation
of v, given by (4.37).

tion of k, with “large k confidence intervals calculated from (4.37) for the run
shown in Figure 4.3.

In order to get an estimator of o2 that is even consistent, it is necessary to
downweight the 4, for large k.

5% =40 +2 ) w(k)in (4.38)
k=1

where w is some weight function, called a lag window, satisfying 0 < w < 1.
Many weight functions have been proposed in the time-series literature. See
Priestley (1981, p. 437 ff. and p. 563 ff.) for a discussion of choosing a lag
window.

Typically one expects the autocovariance function to decline smoothly to
zero and to be positive for all &, so it would seem that one could just truncate
the sequence 7, where it goes negative, but autocovariances can be negative, and
usually nothing is known about the true autocovariance function of a sampler,
so this approach is less than rigorous, except in one special case, when the chain
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Figure 4.5: Plot of yor +725+1 versus k for the Metropolis sampler in Figure 4.3.

is reversible. Geyer (1992) noted that the function 'y, = o +Y2r41 is a strictly
positive, strictly decreasing, and strictly convex function of k if the chain is
reversible.

Thus for reversible chains it is rigorously correct to use any of the following
three estimators based on using one of the three known properties of the “big
gamma” function. The initial positive sequence estimator is the sum

M

o2 =40+ 251 + Y T (4.39)
k=2

where M is the largest integer such that the I, are strictly positive for k = 2,
M.

The bulge in the figure above lag 450 is not like the behavior of a true “big
gamma” function, so it makes sense to further to reduce the estimated I'y so
that they are nondecreasing

.y

f,gmon) = min (f‘l, . ,f‘k>
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and then replace I by fgncn) in (4.39). This gives the initial monotone sequence
estimator.

The smaller bulges that make Figure 4.5 nonconvex can also be eliminated
by taking the function k — f,(:on) to be the greatest convex minorant of I'y, .. .,
['ar, 0, and replacing I'y, by f‘,(fon) in (4.39). This gives the initial convex sequence
estimator. For any function g, the greatest convex minorant is supremum of all
convex function h < g. It can be constructed by the pool adjacent violators
algorithm (Robertson, Wright, and Dykstra 1988, pp. 8-11).

For the run shown in Figure 4.3, the initial positive sequence estimator is
44.97x10°, the initial monotone sequence estimator is 42.91 x 10%, and the initial
convex sequence estimator is 42.47 x 10°. Recall that the overlapping batch
means estimator was 38.98 x 10%, which now seems too small. Increasing the
batch length from 2,000 to 10,000 makes the overlapping batch means estimator
47.53x109%. The choice of batch size can make a large difference in the estimator.

So which should one use, batch means, overlapping batch means, a lag win-
dow estimator using a window from the time series literature, or one of the
initial sequence estimators? Ordinary batch means is the simplest and performs
reasonably well. Overlapping batch means is better (Meketon and Schmeiser
1984). Unfortunately there is no good way to choose the batch length, one just
chooses it to be reasonably long and hopes that is good enough. Any attempt
to make a good choice by some adaptive procedure makes batch means more
complicated than time series methods. The initial sequence methods provide a
reasonable default lag window estimator, but do require that one use a reversible
chain.

The choice of method is not as important as the choice to use some method.
Variance calculations are still a rarity in the MCMC literature. Some have
argued that because the do not diagnose “nonconvergence” there is no point
in using them, that is, when i is very badly estimated because the run is far
too short, then the estimate of o2 will be a gross underestimate. The same
argument could be applied to all uses of confidence intervals—since they don’t
tell you when they fail to cover the true parameter value there is no point in
using them—which is obvious nonsense. The right way to think about variance
calculations is that they are the only way to say anything quantitative about the
accuracy of an MCMC sampler or about the relative accuracy of two MCMC
samplers. The following quotation from Geyer (1992) is still good advice.

It would enforce a salutary discipline if the gold standard for com-
parison of Markov chain Monte Carlo schemes were asymptotic vari-
ance (asymptotic relative efficiency) for well-chosen examples that
provide a good test of the methods. Experience shows that it is easier
to invent methods than to understand exactly what their strengths
and weaknesses are and what class of problems they solve especially
well. Variance calculations seem to be the only sufficiently stringent
standard for such investigations.



CHAPTER 4. STOCHASTIC STABILITY 146

4.10 Regeneration

A very different method for estimating Monte Carlo error uses regeneration.
A set « in the state space is said to be an atom if

P(z,-)=P(y, -), for all z,y € a. (4.40)

This says the transition probabilities are the same from every point in the atom.
Let 79, 71, ... denote the times of visits to the atom, that is X; € « if and only if
j = 7; for some i. The 7; are called regeneration times because the past history
of the chain is forgotten. Because of (4.40) the future paths started from any
two states in the atom have the same probability laws. In particular, segments
of the sample path between regeneration times

X'ri,+13 v 7X7'i+17

which are called tours, are independent and identically distributed.
If we are interested in calculating the expectation of a function g, the sums

T

Zi= > g(Xx), i=12...
k=7;_1+1

over the tours are independent and identically distributed random variables, as
are the tour lengths

Ni:TifTi_l, Z:1,2,

If the chain is Harris recurrent and the atom has positive probability under
the invariant distribution, the atom is said to be accessible. An accessible atom
is visited infinitely often with probability one, and there is an infinite sequence
of regenerations. By the renewal theorem

and by an analog of Wald’s lemma in sequential sampling
E(Z) = B(N)u (4.41)

where = E;(g(X)) (Nummelin 1984, pp. 76 and 81).
Another way to see this uses the identity

1 E+1
- laXi =
nZ (%) 70+ N1+ -+ Ni

By the law of large numbers for Markov chains, the left hand side converges
to m(«). By Harris recurrence, 7y is almost surely finite. Hence by the law of
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large numbers for independent random variables, the right hand side converges
to 1/E(N;). Then

1 1 & i+ -+ 7
- Xi)=— Xi) +
3

and the same argument shows that the left hand side converges to p and the
right hand side converges to E(Z;)/E(N;). It is not clear that this argument
can be made noncircular, since the usual proofs of the law of large numbers and
facts about Harris recurrence use regeneration, but it does help understand the
phenomenon.

If Z; — puN; has finite variance 72, then there will be a central limit theorem

for B
. Zy i+t Zg

P = —

= 4.42
nr  Ni+---+Ng (442)

Write v = E(N;). Then

- - 2
VE(jig — p) = M 2, Normal (0, 7—2>
k 14
by Slutsky’s theorem. The condition that Z; — ulNV; have finite variance is a
necessary and sufficient condition for the central limit theorem for vV/k(Zy, — )
and hence is the weakest possible condition for a Markov chain central limit
theorem. Being a necessary condition, it holds whenever there is a central
limit theorem, such as when the chain is geometrically ergodic and g satisfies
a Liapunov condition, but there seem to be no tools for verifying the condition
other than those that apply in the absence of regeneration. When the geometric
drift condition has been established with a drift function V' that is bounded on
the atom « and satisfies g < V, then both Z; and N; have finite variance by
Theorem 14.2.3 in Meyn and Tweedie (1993).

If we average over a fixed number of complete tours, the numerator and
denominator in (4.42) have the correct expectations by (4.41). The estimator [
has a slight bias because the expectation of a ratio is not the ratio of the expec-
tations, but the bias is asymptotically negligible and usually small in practice
if the number of tours is large.

This property of the numerator and denominator have the correct expecta-
tions is preserved if we take a random number K of complete tours, so long as
K is a stopping time, that is, the decision to stop at time k is made using only
information available at time k, in particular it does not make use of (Z;, V;)
for ¢ > k. Then if Z; and N; have finite variance

E (i Zl-> = uE (i Ni> (4.43)

Var (ZK:(Zi - uM)) = E(K) (4.44)

i=1
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(4.43) is the analog of Wald’s lemma with random stopping, and (4.44) says that
the natural estimate of 72 would have an unbiased numerator and denominator
if the true value of pu were used the deviations. These follow from

(Z Z) = uE(K)
E (i Ni> = vE(K)
p =1
Var (Z Z; — KW> = Var(Z;)E(K)
x
Var (Z N; — Ku> = Var(N;) E(K)
i=1

K K
Cov (Z Z; — K v, Z N; — Ku) = Cov(Z;, N;)E(K)

i=1 i=1

which in turn follow from Theorem 5.3 and Remark 5.7 in Chapter I of Gut
(1988).

The law of large numbers and the central limit theorem continue to hold
for random stopping. If K(t), t > 0 is a family of positive-integer-valued ran-
dom variables such that K(t) — +oo almost surely as ¢ — oo (not necessarily
stopping times), then

i) —— s t — o0.
This follows from Theorem 4.1 in Chapter I of Gut (1988). If Z; and N; have
finite variance then

2
~ D T
K(t) (fircty — p) — Normal (07 1/2)
follows from Theorem 3.1 in Chapter I of Gut (1988) and the delta method.

4.10.1 Estimating the Asymptotic Variance
From (4.44)

K
Z (Zi — Nijig)* (4.45)

is an approximately unbiased estimate of 72, only approximately unbiased be-
cause we have plugged in [ix for ;1 and because the expectation of a ratio is not
equal to the ratio of the expectations when K is random. A consistent estimator

of v is, of course
1 X
=D N
i=1
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Then 6% = 77 /0% estimates the variance in the central limit theorem. This
simple estimate has fairly good properties. It is analogous to the ratio estimator
in finite population sampling.

Another possibility, discussed by Ripley (1987, pp. 160-161) is to jackknife
the estimator pg. This will generally produce similar answers to the simple
ratio estimator, leading to the conclusion that the biases are unimportant. See
Section 4.10.7 for an example.

4.10.2 Splitting Markov Chains

Any Markov chain on a discrete state space has accessible atoms. Any point
with positive probability is one since (4.40) is satisfied trivially when « only
contains one point. But that is not much help unless the atom has fairly large
probability so the regeneration rate 7(«) is fairly large. And how does one find
atoms for a chain with a continuous state space?

Nummelin (1978) and Athreya and Ney (1978) independently invented a
method for constructing atoms for Markov chains on general state spaces. The
method is used throughout the modern theory of Markov chains on general
state spaces, which is laid out in the books by Nummelin (1984) and Meyn
and Tweedie (1993). Mykland, Tierney, and Yu (1995) apply the technique
to Markov chain Monte Carlo. The construction below follows Mykland, Tier-
ney, and Yu (1995) who followed Nummelin (1984). The terminology has been
changed to follow Meyn and Tweedie.

Suppose that we have a Harris recurrent Markov chain satisfying the fol-
lowing minorization condition: for some nonnegative measurable function s and
some probability measure v such that [sdr >0

Pz, A) > s(x)v(A) for all points « and measurable sets A. (4.46)

This is similar to the minorization conditions (4.15) used in the definition of
small sets and (4.24) used in Rosenthal’s theorem, but it is more general in
replacing a constant § with a function s(x). It is also less general than (4.15)
in that one must minorize the kernel P rather than an iterated kernel P™.

Condition (4.46) allows the following construction of a chain on an enlarged
sample space, called the split chain, that has an atom and that is related to the
original chain by marginalization. We add to the state space a {0, 1}-valued
variable S, that is the indicator of the atom. Thus the state of the split chain
is the pair (X,S) where X takes values in the original state space.

The transition law of the split chain is described as follows. Note that if
is whole state space 1 = P(x, E) > s(x)v(E) = s(x), so 0 < s < 1. At time ¢
the state of the split chain is (X, S;). If S; = 1 then X1, is generated from
the distribution v, otherwise X;;1 is generated from the distribution

P(Xy, ) = s(Xe)v(-)
1-— S(Xt)

(4.47)

which is a normalized probability distribution because of the minorization condi-
tion (4.46). Then generate a Uniform(0, 1) random variable U and set Sy =1
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if U < s(X¢41) and otherwise set S;y; = 0. It is clear that the distribution of
(X441, St+1) does not depend on the value of X; when S; = 1. Thus the set of
points @ = { (X, S) : S =1} is an atom of the split chain.

Moreover, the sequence X7, Xo, ... is a Markov chain with kernel P, since

PI‘(Xt+1 S A‘Xt = l‘)

x, A) — s(x)v(A)
1—s(z)

= PI‘(St = 1|Xt = Jf)l/(A) + PI‘(St = 0|Xt = Jf) P(

Pz, A) — s(z)v(A)
1—s(x)

= s(x)v(A) + (1 = s(z))
= P(x,A)

So we have not disturbed the distribution of the X component of the state
(X, S). The split chain has an invariant distribution in which X has the marginal
distribution 7 and the conditional distribution of S given X has the density s(x)
with respect to 7. The probability of the atom is thus [ sdr and the atom is
accessible.

Because of the Markov property, the S’s are conditionally independent given
the X'’s and the conditional distribution of S; given all the X’s depends only
on X; and X411 (Nummelin 1984, p. 62)

r(z,y) =Pr(S; = 11Xy =2, X441 =vy)

_ s(@)v(dy)
P(x,dy)’

where the last term is a Radon-Nikodym derivative. For every x such that
s(x) > 0, the measure P(x, -) dominates v and hence v has a density f, with
respect to P(x, ). Then r(z,y) = s(z) f2(y)-

We could thus simulate the split chain by first simulating X;, Xo, ... using
the original transition mechanism, and then go back later and simulate S; as
independent Bernoulli random variates with success probability (X, X;41).

4.10.3 Independence Chains

Tierney (1994) proposed a simple special case of the Metropolis-Hastings
algorithm called “independence” chains, something of a misnomer, because the
proposals are independent, not the samples. The method proposes a new state
y from a density ¢(y) that does not depend on the current state x. Thus the
Hastings ratio (3.18) becomes

R = Mw)a®) (4.43)

hx)a(y)’
where h(x) is an unnormalized density of the invariant distribution, both h and
q being densities with respect to the same measure p.
It is not clear that this idea is interesting used by itself. It should be com-
pared to importance sampling using ¢(x) as an importance distribution, which



CHAPTER 4. STOCHASTIC STABILITY 151

will be explained in Section ??. But no comparison seems to have been done,
and it is not clear that independence chains have any advantage over impor-
tance sampling. Roberts and Tweedie (submitted) show that an independence
chain is geometrically ergodic if and only if A(x)/q(z) is bounded, in which case
importance sampling is guaranteed to work well too.

4.10.4 Splitting Independence Chains

Mykland, Tierney and Yu (to appear) give the following simple recipe for
splitting independence chains. Let ¢ be an arbitrary positive constant. Define

wie) = 2,
s(z) —Kmin{w(cx),l},

vtay) = gomin{ 21} atuputay

where K is chosen to make v a probability measure. Without knowing K it
is impossible to simulate the split chain by simulating S; from its conditional
distribution given X; and X;,; from its conditional distribution given X; and
S¢. Thus Mykland, Tierney and Yu (to appear) propose a method of simulating
Sy from its conditional distribution given X; and Xy, which differs a bit from
the general scheme described in Section 4.10.2 in that we only set S; = 1 when
the Metropolis update from X; to X,y is not a rejection. It uses the function

max § ot wigy [ w(z) > ¢ and w(y) > ¢,
ra(z,y) = { max @, @ , w(z) <cand w(y) < ¢, (4.49)
1, otherwise.

The overall update then goes as follows. Given X; = z, propose a y with density
¢ and accept the proposal with probability min(R, 1) where R is given by (4.48),
that is Xy = y if the proposal is accepted and X1 = x otherwise. If the
proposal is not accepted, set S; = 0. If the proposal is accepted, set S; = 1
with probability r4(z,y) given by (4.49) and S; = 0 otherwise. Note that S; is
generated after X1, which can be confusing if one is not careful.

Since this scheme does not refer to the normalizing constant K, it can be
carried out. Although it works for any positive ¢, Mykland, Tierney and Yu (to
appear) claim that it will be more efficient if ¢ is chosen to be near the center
of the distribution of the weights w(X) when X has the invariant distribution.
This does not appear to be correct. See Section 4.10.6.

The chain can be started with an arbitrary value for X; or it can be started
at the regeneration point by setting Sy = 1 and sampling X; from v. This can
be done without knowing the normalizing constant K by rejection sampling.
Repeatedly simulate a y with density ¢ and a Uniform(0,1) random variate u

until v < min {@, 1}. Then y has the distribution v. Set X; = y.
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4.10.5 Metropolis-rejected Restarts

The independence proposal idea does have interesting application to restart-
ing Markov chains (Tierney 1994). Restarting a Markov chain is an old idea of
questionable validity that will be discussed further in Section ??. If a Markov
chain is very slowly mixing, then it seems to make sense to “restart” the Markov
chain at some other point of the state space rather than wait for it to get there
by itself. But this changes from an algorithm that converges, however slowly,
to a known invariant distribution to an algorithm with unknown and generally
unknowable properties. One thing is clear from Theorem 4.7, restarting always
increases the distance from the marginal distribution of X; to the invariant
distribution 7.

If, however, one wants to do something with restarts, it is not clear that they
should ever be accepted without Metropolis rejection. If one attempts a restart
y, then doing a Metropolis rejection with the Hastings ratio (4.48) preserves the
invariant distribution and, if done at the beginning or end of each scan, preserves
the Markov chain structure as well. We call this method Metropolis-rejected
restarts. It is merely the composition of the original update mechanism with
Tierney’s “independence chain” update. It gives at least some of the benefits of
restarting with none of the drawbacks.

4.10.6 Splitting Metropolis-rejected Restarts

Let @ denote the kernel for the split independence chain update described
in Section 4.10.4. It updates the state (X, S). Let P denote any other kernel
that preserves the same invariant distribution for X, which we trivially extend
to an update rule for (X,S) by leaving S alone. Then the composite kernel
QP preserves the invariant distribution of the split chain, and the times ¢t when
S; = 1 are regenerations, because then the update of X by the @ kernel does
not depend on the value of X;.

Formally @ moves from (X¢, S;) to an intermediate state (X', 5’), and P
moves from (X', 5") to (X¢41,St+1). Since P doesn’t change S, we have S’ =
Si+1. In practice, though, our mechanism for the split independence chain
update does not produce (X', S;11) given (X4, S;). Instead it produces X’ and
Sy given X;. We cannot produce S; until we have produced the X’ for the next
iteration. Thus the algorithm goes as follows.

Set So =1
Generate 2’ from v by rejection sampling
fort=1,2,...do
Simulate z from P(z/, -).
Simulate y from ¢
Simulate v Uniform(0,1)
Calculate R given by (4.48)
if (u < R) then
=y
Simulate w Uniform(0,1)
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Calculate 74 (z,y) given by (4.49)
if (u <7ra(z,y)) then
s=1
else
s=0
end if
else
=z
s=0
end if
Set X; = x and S; = s.
end do

The looping is a bit confusing if not explained. P is done at the top of the
loop, though it is supposed to follow ). The reason it that the loop begins
in the middle of the iteration. At the top of the loop we have X; | = x and
X' =2’ and S;_1 = s. The loop begins by using P to generate X; = x. Then
it generates the 2’ for the next iteration so it can generate the s = S; for this
iteration. At the bottom of the loop we output (X, S;). The only state used in
the following iteration is x’.

The code starts at the regeneration point. Sy = 1. The value of Xj is
irrelevant, since the conditional distribution of X following a regeneration is
independent of the previous value. In order to do this the first value of X’
cannot be generated by the same code as used in the loop, we must generate a
sample from v using rejection sampling as described at the end of Section 4.10.4.
This gives the z’ value needed at the top of the loop.

4.10.7 Splitting the Strauss Process

The scheme of the preceding section is implemented for the Strauss process
with a fixed number of points in the program regen. c described in Appendix ?7.
The restart distribution is the binomial process (all points independently and
uniformly distributed). Thus the density ¢ is constant and the Hastings ratio
for the Metropolis rejected restarts is simply

h(y)

h = eplBl) — )
where we are now using ¢(x) to denote the canonical statistic, number of neigh-
bor pairs to avoid confusion with the splitting function s(z). (4.49) can also be
simplified to

exp{—fminft(z) — ¢, t(y) — |}, t(z) > and t(y) >,
ra(z,y) = { exp{—Fminlc’ — t(z),c —t(y)]}, t(z) < and t(y) <,
1, otherwise.
(4.50)
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where ¢ = (logc) /beta. To start off the simulation we need one realization from
v which is sampled by repeatedly simulating realizations x from the binomial
process and uniform random variates v until

u < exp{f[t(z) - ¢]}.

The same process with 5 = .126 and n(z) = 50 as in Figure 4.3 was used.
Since realizations from the binomial process only resemble realizations in the low
mode of the Strauss process with ¢(z) around 175, the first run of the sampler
was done with ¢ = 175. About 45% of accepted restarts were regenerations,
but the overall regeneration was only 2.9% because few restarts were accepted.

During this run, both the state x at the time of the attempted restart,
the proposed restart y, and an indicator of whether the restart was accepted
were written out. This permitted estimation of the expected regeneration by
averaging r4(x,y) over iterations in which a restart was accepted. Figure 4.6
The figure shows that using ¢’ = 162 should increase the regeneration rate to
66.2% of accepted restarts. Note that this is nowhere near the center of the
distribution of #(x) under the invariant distribution, which is about 480. If ¢/
were set there, the sampler would not regenerate at all. The prediction from
this calculation was borne out by another run with ¢/ = 162 in which 66.8% of
accepted restarts were regenerations for an overall regeneration rate of 4.6%.

This run proceeded to the first regeneration point after 100,000 iterations
which was iteration 100,488 during which there were 4,628 tours, giving a mean
tour length 21.7 (standard error 1.27). Taking u to be the expectation of the
canonical statistic t(z), the estimator was i = 448.36. The estimator (4.45) was
72 = 6.67 x 10® giving an estimator 62 = 6.67 x 10%/21.7% = 1.42 x 106 for the
variance in the central limit theorem and +/62/4,628 = 17.49 for the standard
error of fi.

For comparison we computed the time-series estimators using the same run,
which gave 18.01 for the standard error of /i using the initial positive sequence
and monotone sequence estimators and 17.98 using the convex sequence estima-
tor.

Another comparison used the jackknife. This procedure makes a bias cor-
rection to fi giving 449.33 for the estimator of p. The estimated standard error
is 17.66. The bias correction made by the jackknife is only 0.2the same as that
calculated by the simple ratio estimate.

To see how well the estimation did we ran the sampler about nine times
longer giving a total of 41,488 tours, including the run already used for esti-
mation. This gave a new estimate ji = 479.12 with standard error 6.34. The
difference between the two estimates is 30.76, which is about 1.7 estimated
standard errors. So the Estimation of standard errors seems to have worked
well.
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Figure 4.6: Expected regeneration rate versus the constant ¢’ (4.50) for the
Metropolis sampler with split Metropolis-rejected restarts for the Strauss pro-
cess with 50 points 8 = .126. The horizontal coordinate is ¢’ and the vertical
coordinate is the estimated fraction of accepted restarts that will be regenera-
tions.



Appendix A

Measure-theoretic
Probability

A.1 Discrete, Continuous, and Other

A.1.1 Discrete

A discrete probability space consists of a finite or countable set S, called the
sample space, and a nonnegative function p on S satisfying

> (@) =1,
zeS

called the probability mass function. An event is a subset of S. For any event
A the probability of A, written P(A) is defined by

P(A) = pla).
z€A

The map A — P(A) is called the probability measure defined by p.
If g is a real-valued function on the sample space, then

E{g(X)} = g()p(x)
€S

is called the ezpectation of the random variable g(X), provided (in the case that
S is not finite) that the summand on the right hand side is absolutely summable,
so the order of summation does not matter.
Note that
P(A)=FE{14(X)} (A1)

where 14 denotes the so-called indicator function of the event A, defined by

1, z€A

La(@) = {O x¢ A
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Hence the slogan
Probability is a trivial special case of expectation.

The set of all functions f for which expectations exist is denoted

A.1.2 Continuous

A continuous probability space consists of a nonnegative function f on some
Euclidean space R? satisfying
[ t@yar=1.

called the probability density function. If g is a real-valued function on R?, then

B{g(X)} = / 9(2)p(x) da

is called the ezpectation of the random variable g(X), provided (in the case that
S is not finite) that the integrand on the right hand side is absolutely integrable.

A.2 Measurable Spaces

Probability theory is a special case of a subject called measure theory. Both
theories start with a set S. In probability theory, S is called the sample space
or state space, the term we use when talking about Markov chains. In measure
theory, S has no special name.

In elementary probability theory, subsets of S are called events, and proba-
bilities are defined for all events, P(B) is the probability of the event B. Thus
a probability is a “set-function” B +— P(B) that takes subsets of S to real num-
bers. In general probability theory, more or less the same definition is used, but
there is a problem, called the “problem of measure.” The first issue any math-
ematical theory must deal with is whether the mathematical objects it woofs
about (in this case probabilities) exist. Lacking such an existence theorem, there
is no guarantee that the entire theory is not literally much ado about nothing,
an elaborate discorse about elements of the empty set.

The set of all subsets of S is called the power set of S and is denoted
P(S). With this notation, a “set-function” becomes an ordinary function. A
probability is a map from P(S) to R that satisfies certain axioms, which will be
met presently, as soon as we get past the problem of measure, which can now
be stated: do there exist any maps P : P(S) — R that satisfy the axioms of
probability? It is philosophically interesting that whether the existence problem
has a solution depends on one’s views on the foundations of mathematics. If one
sticks to elementary set theory based on the so-called Zermelo-Frankel axioms,
the problem of measure is a famous unsolved problem. If one adds to the
elementary axioms the so-called aziom of choice then problem can be solved,
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but the resolution is negative: there do not exist any probabilities on R or R9.
But the axiom of choice has itself been the subject of vigorous debate for 100
years with no resolution of the argument about whether it should be included
in the axioms. If instead of the axiom of choice one instead adds as an axiom
Cantor’s continuum hypothesis, one arrives at the same conclusion by another
route, that probabilities on R or R? do not exist. Thus we are left with the very
unsettling conclusion that we aren’t sure whether probabilities exist or not, but
we certainly can’t assert their existence.

The way to avoid the existence problem was found by Lebesgue, who pro-
posed that instead of defining probabilities for all sets, we only define them for
a family B of subsets of S. Thus a probability is a map P : B — R satisfying
the axioms of probability. We need B to have two properties.

e 3 is large enough to be useful. It contains all of the events B for which
we want to define P(B).

e B3 is small enough to avoid the problem of measure. We need to be able
to prove that probabilities exist.

It turns out that the right definition of B is the following. A family B of a
set S is a o-field if it satisfies the following axioms

Axiom 1. S € B.

Axiom 2. B € B implies B¢ € B.

Axiom 3. If By, By, ... are in B and B; N B; = @ when i # j, then (J;°| B;
is in B.

In words B contains the whole space S and is closed under complements and

countable unions. Axioms 1 and 2 together imply @ € B. Axioms 2 and 3
together with DeMorgan’s laws

o0 o0
(ﬂ Bi) = U By
i=1 i=1
imply that B is also closed under countable intersections.

A measurable space is a pair (S, B), where B is a o-field for S. This defi-
nition is, of course, completely redundant because S is the largest element of
B, so knowing B tells you S. Thus the phrase “let (S,B) be a measurable
space” merely establishes notation. The point of the pairing is to establish both
notations, S and B at once.

If (S, B) is a measurable space, a probability measure on S is a map P : B —
R, satisfying

Axiom 1. P(B) >0, for all B € 5.
Axiom 2. P(S) =1.

Axiom 3. If By, By, ... are in B and B; N B; = & whenever i # j, then
P(UZ, Bi) = X272, P(By).
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