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This document details a trivial modification of the bernor package and is
itself a trivial modification of the first part of the document “Monte Carlo
Likelihood Approximation” supplied in the doc directory of that package.

1 Monte Carlo Likelihood Approximation

[Quote from “Monte Carlo Likelihood Approximation”] Let fθ(x, y) be the
complete data density for a missing data model, the missing data being x and
the observed data being y. Suppose we have observed data y1, . . ., yn which
are independent and identically distributed (IID) and simulations x1, . . ., xm
which are IID from a known importance sampling distribution with density h.

The (observed data) log likelihood for this model is

ln(θ) =

n∑
j=1

log fθ(yj) (1)

where

fθ(y) =

∫
fθ(x, y) dx

is the marginal for y. [End of Quote]
We modify this to allow for the possibility that y values are repeated many

times. Suppose the value yj is repeated wj times. Then, purely for reasons of
computational efficiency, we can rewrite (1) as

ln(θ) =

n∑
j=1

wj log fθ(yj). (2)

Note that the sample size is now w1 + . . .+ wn (not n as before).
[Quote from “Monte Carlo Likelihood Approximation”] The Monte Carlo

likelihood approximation for (1) is

lm,n(θ) =

n∑
j=1

log fm,θ(yj) (3a)
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where

fθ,m(y) =
1

m

m∑
i=1

fθ(xi, y)

h(xi)
. (3b)

The maximizer θ̂m,n of (3a) is the Monte Carlo (approximation to the) MLE
(the MCMLE). [End of Quote]

Of course, corresponding to our rewrite of (1) as (2), we now must rewrite
(3a) as

lm,n(θ) =

n∑
j=1

wj log fm,θ(yj) (4a)

where (3b) remains the same (because it does not involve a sum over yj).
Derivatives of (4a) are, of course,

∇klm,n(θ) =

n∑
j=1

wj∇k log fm,θ(yj)

where ∇ denotes differentiation with respect to θ, and derivatives of (3b) remain
as they were given in “Monte Carlo Likelihood Approximation” since (3b) itself
has not changed.

2 Asymptotic Variance

The asymptotic variance of θ̂m,n, including both the sampling variation in
y1, . . ., yn and the Monte Carlo variation in x1, . . ., xm is

J(θ)−1

(
V (θ)

n
+
W (θ)

m

)
J(θ)−1 (5)

where

V (θ) = var{∇ log fθ(Y )} (6a)

J(θ) = E{−∇2 log fθ(Y )} (6b)

W (θ) = var

{
E

[
∇fθ(X | Y )

h(X)

∣∣∣∣ X]} (6c)

where X and Y here have the same distribution as xi and yj , respectively. This
is the content of Theorem 3.3.1 in the first author’s thesis.

The first two of these quantities have obvious “plug-in” estimators

V̂m,n(θ) =
1

w1 + · · ·+ wn

n∑
j=1

wj
(
∇ log fθ,m(yj)

)(
∇ log fθ,m(yj)

)T
(7a)

Ĵm,n(θ) = − 1

w1 + · · ·+ wn

n∑
j=1

wj∇2 log fθ,m(yj) (7b)
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The quantity (6c) has a natural plug-in estimator

Ŵm,n(θ) =
1

m

m∑
i=1

Ŝm,n(θ, xi)Ŝm,n(θ, xi)
T (7c)

where

Ŝm,n(θ, x)

=
1

w1 + · · ·+ wn

n∑
j=1

wj
(
∇ log fθ(x, yj)−∇ log fθ,m(yj)

)
· fθ(x, yj)

fθ,m(yj)h(x)
(7d)

See equations (2.7) and (2.9) in the first author’s thesis.

3 Method of Batch Means

The “Monte Carlo Likelihood Approximation” document goes on about a
“method of batch means” estimator of (6c) In the present context this is almost
unchanged. Equations (7a) and (7b) in that document remain the same. The
only difference is that equation (6d) in that document is replaced by equation
(7d) above.

Putting these together we obtain

S̃m,n,k(θ) =
1

l

kl∑
i=(k−1)l+1

Ŝm,n(θ, xi)

=
1

l

kl∑
i=(k−1)l+1

1

w1 + · · ·+ wn

n∑
j=1

wj

×
(
∇ log fθ(xi, yj)−∇ log fθ,m(yj)

)
· fθ(xi, yj)

fθ,m(yj)h(xi)

which the code, for efficiency reasons, reverses the order of summation

=
1

l(w1 + · · ·+ wn)

n∑
j=1

kl∑
i=(k−1)l+1

× wj
(
∇ log fθ(xi, yj)−∇ log fθ,m(yj)

)
· fθ(xi, yj)

fθ,m(yj)h(xi)
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