
Algorithm for UMP and UMPU Tests in Some

Discrete Exponential Families

Charles J. Geyer

March 31, 2024

1 Introduction

1.1 Background

Geyer and Meeden (2005) introduced the idea of fuzzy (also called abstract
randomized) hypothesis tests and confidence intervals. Their theory is a reinter-
pretation of the classical theory of uniformly most powerful (UMP) one-tailed
tests and the uniformly most powerful unbiased (UMPU) two-tailed tests, which
has been accepted as a key part of the theory of hypothesis tests since it was
introduced by Neyman and Pearson in the 1930’s.

Those hypothesis tests (or the confidence intervals that are dual to them)
are randomized, that is, they involve additional artificial randomization inde-
pendent of the randomness in the data. So two statisticians can analyze exactly
the same data by exactly the same procedure, and arrive at opposite decisions
because of the artificial randomization. Consequently, these procedures are not
widely used in applied statistics.

Geyer and Meeden (2005) argue that this can be fixed by removing the
artificial randomness. They bring in the distinction between a random variable,
which is a theoretical construct described by a probability distribution, and a
realization of the random variable, which is just a number purportedly obtained
from some random process described by that probability distribution. Classical
UMP and UMPU tests (and the confidence intervals dual to them) use realized
artificial randomness. That is why different statisticians get different results
for the same data and same procedure. Geyer and Meeden (2005) just say no.
Leave the randomization abstract. Just describe the distribution of the random
variable, and leave it at that. If users really want realizations, then they can
simulate such themselves.

So Geyer and Meeden (2005) in no way disagree with the classical theory
of UMP and UMPU tests. They only think we should leave the randomization
abstract, so the results of any analysis are unique, and all analysts agree (on
the abstract random variable described by a probability distribution that is the
result).
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1.2 Fuzzy Procedures

A classical randomized test rejects the null hypothesis with probability given
by a critical function φ. When the observed data is x, then we reject the null
with probability φ(x). But, of course, it also depends on the significance level
α and the hypothesized value θ of the parameter under the null hypothesis. So
we, following Geyer and Meeden (2005), write it φ(x, α, θ). By making the test
abstract randomized Geyer and Meeden (2005) mean: describe this function φ
and stop there.

They call these procedures fuzzy with the same meaning as in fuzzy set
theory (Klir, et al., 1997). A set in ordinary mathematics can be described
by its indicator function which is zero-or-one-valued. A fuzzy set in fuzzy set
theory can be described by its membership function which takes values in the
closed interval [0, 1]. Values strictly between zero and one correspond to points
we are unsure whether or not they are in the fuzzy set and the value of the
membership function says how much we think they are in or out.

Statisticians and others familiar with probability theory will note that prob-
ability is also given by numbers between zero and one, and probability also is
thought to describe uncertainty, so is fuzzy set theory just probability theory
under another name? No. The operations of fuzzy set theory (Klir, et al., 1997)
have nothing to do with probability theory. It is really different. But Geyer and
Meeden (2005) do not use any of those operations. They just use some of the
terminology, mainly membership functions. They also use the term crisp.

A fuzzy set is crisp if its membership function is zero-or-one valued (so we
are certain about which points are in the set and which are not, and this is just
like the indicator function of a set in ordinary mathematics). So crisp is just
the fuzzy set theory way of saying ordinary.

So classical confidence intervals (which are ordinary sets) are crisp fuzzy
sets described by zero-or-one-valued membership functions. To have abstract
randomized confidence intervals (dual to classical UMP and UMPU tests) Geyer
and Meeden (2005) need general fuzzy sets described by membership functions
that take values between zero and one.

Geyer and Meeden (2005) say the following about the critical function.

� The function φ( · , α, θ) they call the fuzzy (or abstract randomized) deci-
sion function for the hypothesis test having significance level α and null
hypothesis θ.

� The function 1−φ(x, α, · ) they call the (membership function in the sense
of fuzzy set theory) of the fuzzy confidence interval with coverage 1 − α
and observed data x.

� The function φ(x, · , θ) they call the (distribution function of) the ab-
stract randomized (or fuzzy) P -value for the hypothesis test having null
hypothesis θ and observed data x.

That the function φ(x, · , θ) is a distribution function is Theorem 1 below.
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That the function 1 − φ(x, α, · ) is a membership function is obvious. If φ
takes values in [0, 1]. then so does 1− φ.

Geyer and Meeden (2005) only discuss fuzzy hypothesis tests and confidence
intervals based on UMP and UMPU theory. Their discussants discuss other
kinds. Papers citing Geyer and Meeden (2005) discuss other kinds. Every
randomized test can be described by a critical function as described above, and
then we have the interpretations listed above.

For UMP and UMPU fuzzy confidence intervals, we can also prove that they
are convex in the sense of fuzzy set theory (Theorem 5 below).

1.3 More on Interpretation

For a one-tailed test, including UMP, the null and alternative hypotheses
are

H0 : true unknown parameter ≤ θ (1a)

H1 : true unknown parameter > θ (1b)

for an upper-tailed test, and the same with the inequalities reversed for a lower-
tailed test. The θ in these equations is the θ in the critical function φ(x, α, θ).

For a two-tailed test, including UMPU, the null and alternative hypotheses
are

H0 : true unknown parameter = θ (2a)

H1 : true unknown parameter 6= θ (2b)

and the θ in these equations is the θ in the critical function φ(x, α, θ).
The power function of the test is

p(θ′, θ) = Eθ′{φ(X,α, θ)}

where θ′ varies over the parameter space and θ is fixed at the value hypothesized
under the null hypothesis.

� The exactness property is p(θ, θ) = α for all θ.

� The unbiasedness property is p(θ′, θ) ≥ α, for all θ′ and θ.

� The UMP property is p(θ′, θ) ≥ p̃(θ′, θ) whenever θ′ < θ for a lower-tailed
test, whenever θ′ > θ for an upper-tailed test, and whenever θ′ 6= θ for
a two-tailed test, and all power functions p̃ of other tests in the class
of interest (satisfying exactness for UMP and satisfying exactness and
unbiasedness for UMPU).

When the data are discrete, only a randomized test can have the exactness
property (that’s why randomized tests were invented by Neyman and Pearson).

The interpretation of the fuzzy P -value is simplest. The function φ(x, · , θ)
is a distribution function. Let P denote a random variable that has this distri-
bution. Then the test that rejects the null when P ≤ α is the classical UMP or
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UMPU test. All Geyer and Meeden (2005) are saying in this case is report the
distribution of P and stop there rather than going on to generating a number
that is purported to be a realization of P or comparing that to α and making a
decision. They claim that that distribution (the fuzzy P -value) is just as easy
to interpret as a classical (crisp) P -value if one properly takes into account the
equivocalness of P -values of intermediate size (near 0.05 by convention).

The value of thinking of a fuzzy confidence interval as a fuzzy set comes
from the partial credit interpretation. As good frequentists, we know that the
performance of a confidence interval is measured by averaging over all possible
data. The exactness property is

Eθ{1− φ(X,α, θ)} = 1− α, for all θ.

in which we see that when φ(x, α, θ) is strictly between zero and one, the ex-
pectation gives partial credit for coverage.

Define c(θ′, θ) = 1 − p(θ′, θ). Call it the coverage function for the fuzzy
confidence interval. It is the probability that the interval covers θ when θ′ is the
true unknown parameter value. Then we have the same three properties. Here
we only consider UMPU two-tailed intervals.

� The exactness property is c(θ, θ) = 1 − α for all θ. We have the exact
desired coverage, unlike crisp confidence intervals.

� The unbiasedness property is c(θ′, θ) ≤ 1− α, for all θ′ and θ. The fuzzy
confidence interval has a higher probability of covering the true unknown
parameter value than any other parameter value.

� The UMP property is c(θ′, θ) ≤ c̃(θ′, θ) for all θ′ and θ where c̃ is the
coverage function for any other fuzzy confidence interval satisfying exact-
ness and unbiasedness. The fuzzy confidence interval dual to the UMPU
test has less coverage for any false parameter value than any other fuzzy
confidence interval having the exactness and unbiasednessi properties.

1.4 Computing

So everything depends on the critical function φ(x, α, θ). We want to provide
computation of the critical function for some discrete exponential families that
arise commonly in statistical inference (Section 1.5 below). See Section 1.8 below
for more on UMP and UMPU procedures and critical functions. For more, see
Geyer and Meeden (2005). For even more, see Lehmann (1959).

We want our implementation of the critical function to efficiently vectorize
over a vector of α values for computation of fuzzy P -values and vectorize over
a vector of θ values for computation of fuzzy confidence intervals. More about
computation starting with Section 5 below.

1.5 Families of Distributions

The discrete exponential families we are interested in are
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� the binomial distribution (more strictly, any binomial exponential family
of distributions — different sample sizes determine different exponential
families), needed not only for binomial data but also for comparison of
the distributions of two independent Poisson random variables, two com-
ponents of a multinomial random vector, or the UMP and UMPU com-
petitors of McNemar’s test (Sections 4.1, 4.4, 4.8, and 4.9 below),

� the Poisson distribution (more strictly, the Poisson exponential family of
distributions), needed for Poisson data (Section 4.2 below),

� the negative binomial distribution (more strictly, any negative binomial
exponential family of distributions — the shape parameter is considered
known (otherwise we would not have an exponential family) so different
shape parameters determine different exponential families), needed for
negative binomial data (Section 4.3 below),

� Fisher’s noncentral hypergeometric distribution (more strictly, any ex-
ponential family generated by a hypergeometric distribution — different
numbers of population successes, population failures, and sample sizes de-
termine different hypergeometric distributions, hence different exponential
families), needed for comparison of the distributions of two independent
binomial random variables or the UMP and UMPU competitors of Fisher’s
exact test (Sections 4.5 and 4.7 below), and

� any exponential family generated by a negative hypergeometric distri-
bution, needed for comparison of the distributions of two independent
negative binomial random variates (Section 4.6 below).

The first three of these are well-known and well supported in R with the usual
quartet of d, p, q, and r functions (like dbinom, pbinom, qbinom, and rbinom).
The last two of these do not have full R support (even in a CRAN package). The
next to last does have some literature (Liao and Rosen, 2001) about algorithms
for it and is implemented in R package MCMCpack (Martin, et al., 2022) but
only d and r functions (dnoncenhypergeom and rnoncenhypergeom), which are
insufficient for UMP and UMPU calculation (which need p and q functions too).
The last does not even have that (neither literature nor R implementation).

1.6 More on Noncentral Hypergeometric

The hypergeometric distribution (Wikipedia contributors, 2023a) is the dis-
tribution of the number of successes in sampling without replacement from a
finite population (that is, just like the binomial distribution except for sampling
without replacement). The probability mass function is

f(x) =

(
K
x

)(
N−K
n−x

)(
N
n

)
where there are K successes for N individuals in the population and x successes
for n individuals in the sample. The support of this distribution is a bit tricky.
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A binomial coefficient
(
m
k

)
must satisfy 0 ≤ k ≤ m, otherwise it is zero, and we

have three binomial coefficients to deal with, so we must have

0 ≤ x ≤ K
0 ≤ n− x ≤ N −K

0 ≤ n ≤ N

Hence in order for the distribution to exist we must have

0 ≤ n ≤ N

and in order for x to be in the support of the distribution we must have

max(0, n− (N −K)) ≤ x ≤ min(K,n)

The exponential family generated by this distribution, sometimes called
Fisher’s noncentral hypergeometric distribution (Fisher, 1935; Cornfield, 1956;
Agresti, 1992; Liao and Rosen, 2001; Wikipedia contributors, 2021) has proba-
bility mass function

fθ(x) =
exθ
(
K
x

)(
N−K
n−x

)
c(θ)

where

c(θ) =

min(K,n)∑
x=max(0,n+K−N)

exθ
(
K

x

)(
N −K
n− x

)
where x is the canonical statistic, θ is the canonical parameter, and c is the
Laplace transform of the hypergeometric distribution.

1.7 More on Noncentral Negative Hypergeometric

The negative hypergeometric distribution (Wikipedia contributors, 2023b)
is like the hypergeometric distribution except with inverse sampling. (Like the
negative binomial distribution, the random variable of interest is the number
of successes before the r-th failure, but like the hypergeometric distribution
sampling is without replacement.) The probability mass function is

f(x) =

(
x+r−1
x

)(
N−r−x
K−x

)(
N
K

)
where there are K successes for N individuals in the population and x successes
and r failures in the sample.

We have three binomial coefficients to deal with, so we must have

0 ≤ x ≤ x+ r − 1

0 ≤ K − x ≤ N − r − x
0 ≤ K ≤ N
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Hence in order for the distribution to exist we must have

0 ≤ K ≤ N and 1 ≤ r ≤ N −K

and in order for x to be in the support of the distribution we must have

0 ≤ x ≤ K

The exponential family generated by this distribution has probability mass
function

fθ(x) =
exθ
(
x+r−1
x

)(
N−r−x
K−x

)
c(θ)

(3)

where

c(θ) =

K∑
x=0

exθ
(
x+ r − 1

x

)(
N − r − x
K − x

)
where x is the canonical statistic, θ is the canonical parameter, and c is the
Laplace transform of the negative hypergeometric distribution.

1.8 UMP and UMPU

The following is mostly taken from Geyer and Meeden (2005).

1.8.1 Significance Level Zero or One

The only test that has significance level zero must reject the null hypothesis
almost surely, hence for all possible values of a discrete test statistic. Thus we
define

φ(x, 0, θ) = 0, for all x and θ. (4)

Similarly
φ(x, 1, θ) = 1, for all x and θ. (5)

In what follows, we need (4) because that will not follow from the equations we
use when α > 0 when the sample space is infinite (although it will be a limit of
those equations). In contrast, we will not need (5) because that will be a special
case of the equations we use when α > 0.

1.8.2 UMP

Lehmann (1959, pp. 68–69) says for a one-parameter model with likelihood
ratio monotone in the statistic T (X) there exists a UMP test having null and
alternative hypotheses

H0 : true unknown parameter ≤ θ
H1 : true unknown parameter > θ
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and critical function φ for size α defined by

φ(x, α, θ) =


1, T (x) > C

γ, T (x) = C

0, T (x) < C

(6)

where the constants γ and C are determined by

Eθ{φ(X,α, θ)} = α.

The description of the analogous lower-tailed test is the same except that all
inequalities are reversed.

1.8.3 UMPU

Lehmann (1959, pp. 126–127) says for a one-parameter regular full expo-
nential family model with canonical statistic T (X) and canonical parameter θ
there exists a UMPU test having null and alternative hypotheses

H0 : true unknown parameter = θ

H1 : true unknown parameter 6= θ

and critical function φ for size α defined by

φ(x, α, θ) =



1, T (x) < C1

γ1, T (x) = C1

0, C1 < T (x) < C2

γ2, T (x) = C2

1, C2 < T (x)

(7)

where C1 ≤ C2 and the constants γ1, γ2, C1, and C2 are determined by

Eθ{φ(X,α, θ)} = α (8a)

Eθ{T (X)φ(X,α, θ)} = αEθ{T (X)} (8b)

That both sides of (8b) are finite is guaranteed by the regular full exponential
family assumption.

1.8.4 Two-Point Sample Space

In case the sample space contains only two points, without loss of generality,
we take T (X) to have a Bernoulli distribution so C1 = 0 and C2 = 1. Let
p = Pr{T (X) = 1}. Then (8a) and (8b) become

γ1(1− p) + γ2p = α (9a)

γ2p = αp (9b)
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which have solution γ1 = γ2 = α. So in this case the UMPU test ignores both
data and the hypothesized value p under the null hypothesis: the test rejects
the null hypothesis with probability α regardless of either of them.

For any randomized test to be unbiased we must have

γ1(1− p) + γ2p ≥ α

for all p and, together with (9a) holding when p is the value hypothesized under
the null hypothesis, this clearly implies γ1 = γ2 = α, so there is only one
unbiased test, and it is, of course, UMP within the class consisting of that
single test.

We only paid this case special attention because, if we don’t know about it,
then it seems odd.

2 Calculating UMP and UMPU

2.1 UMP

In (6) the constant C is clearly any (1−α)-th quantile of the distribution of
T (X) for the parameter value θ. If the event T (X) = C has probability zero,
then the test is effectively not randomized and the value of γ is irrelevant (can
be chosen arbitrarily). Otherwise

γ =
α− Prθ{T (X) > C}

Prθ{T (X) = C}
. (10)

By definition of (1− α)-th quantile

Prθ{T (X) > C} ≤ α ≤ Prθ{T (X) ≥ C}

so (10) is always between zero and one (inclusive).

2.2 UMPU

In (7), if C1 = C2 = C, then γ1 = γ2 = γ also. This occurs only in a very
special case. Define

p = Prθ{T (X) = C} (11a)

µ = Eθ{T (X)} (11b)

Then in order to satisfy (8a) and (8b) we must have

1− (1− γ)p = α

µ− C(1− γ)p = αµ

which solved for γ and C gives

γ = 1− 1− α
p

(12a)

C = µ (12b)
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Thus this special case occurs only when Prθ{T (X) = µ} is nonzero, and then
only for very large significance levels: α ≥ 1−p. Hence this special case is of no
practical importance, although it is of some computational importance to get
every case right, no weird bogus results or crashes in unusual special cases.

Returning to the general case, assume for a second that we have particular
C1 and C2 that work for some x, α, and θ. (We will see how to determine C1

and C2 presently.) With µ still defined by (11b) and with the definitions

pi = Prθ{T (X) = Ci}, i = 1, 2 (13a)

P1 = Prθ{T (X) < C1} (13b)

P2 = Prθ{T (X) > C2} (13c)

M1 = Eθ{T (X)I(−∞,C1)[T (X)]} (13d)

M2 = Eθ{T (X)I(C2,∞)[T (X)]} (13e)

Then (8a) and (8b) become

P1 + γ1p1 + γ2p2 + P2 = α (14a)

M1 + γ1C1p1 + γ2C2p2 +M2 = αµ (14b)

which solved for γ1 and γ2 give

γ1 =
α(C2 − µ) + (M1 − C2P1) + (M2 − C2P2)

p1(C2 − C1)
(15a)

γ2 =
α(µ− C1)− (M2 − C1P2)− (M1 − C1P1)

p2(C2 − C1)
(15b)

If (15a) and (15b) are both between 0 and 1 (inclusive), then C1 and C2

have been correctly determined. So this gives us (implicitly) an algorithm: keep
trying different C1 and C2 until (15a) and (15b) both compute numbers between
0 and 1 (inclusive). More sophisticated algorithms will be developed below.

2.3 Alternative Formulas for UMPU

Geyer and Meeden (2005) give alternative formulas for γ1 and γ2. Define

P12 = Prθ{C1 < T (X) < C2} (16a)

M12 = Eθ{T (X)I(C1,C2)[T (X)]} (16b)

Then

1− γ1 =
(1− α)(C2 − µ) +M12 − C2P12

p1(C2 − C1)
(17a)

1− γ2 =
(1− α)(µ− C1)−M12 + C1P12

p2(C2 − C1)
(17b)

where p1 and p2 are still given by (13a).
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These equations are useful in some theoretical contexts, especially in the
case where C1 and C2 are adjacent atoms so M12 = P12 = 0.

It might be thought that these equations are also computationally useful,
avoiding catastrophic cancellation when their values are near zero. But catas-
trophic cancellation is only avoided if M12 and P12 can be computed without
catastrophic cancellation, which the naive method (subtraction of cumulative
distribution function values) fails to do.

Subtracting µ times (32a) from (32b) gives

Eθ{(X − µ)φ(X,α, θ)} = 0

and this can be rewritten

Eθ{(µ−X)I(−∞,µ)(X)φ(X,α, θ)} = Eθ{(X − µ)I(µ,∞)(X)φ(X,α, θ)} (18)

and this can be used together with either of (32a) or (32b) to determine the
UMPU critical function φ.

Since the expectations in (18) are not easy to compute, (18) may not be
computationally helpful. It does show that UMPU tests are equal tailed, not in
the usual sense of equal probabilities in each tail but rather in the sense of equal
contributions (with opposite sign) to the expectation of X − µ in each tail.

3 Theorems about UMP and UMPU

3.1 Fuzzy P -Values

3.1.1 Continuity, Monotonicity, Piecewise Linearity

A random variable or its distribution is discrete in the sense of probability
theory if it has countable support, in which case the smallest support (event
having probability one) is the set of atoms (points having positive probability),
and we will call that the support.

We will say that a (probabilistically) discrete random variable or its distri-
bution is order discrete if the support, considered as a subspace of the real line,
is a discrete ordered set: for every point x of the support except the least (if
there is a least) there is a next lower point in the support, and for every point x
of the support except the greatest (if there is a greatest) there is a next higher
point in the support. This property holds for all of our distributions of interest
(which are integer valued).

It holds for all discrete distributions of applied statistics as far as I know.
It is easy enough to construct a probabilistically discrete but not order discrete
example. A mixture of an atom at −1 and 1/X where X is Poisson does the
job. No point above −1 is next to it. But I do not know what an example of
such a distribution would be that has a real application.
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Theorem 1. Assume a regular full one-parameter exponential family such that
the canonical statistic is probabilistically and order discrete. For either UMP
or UMPU the function Fx,θ : α 7→ φ(x, α, θ) is continuous, piecewise linear,
nondecreasing on the interval [0, 1], and maps onto the interval [0, 1]. Fx,θ
is strictly increasing near α such that 0 < Fx,θ(α) < 1. Hence Fx,θ is the
distribution function of a continuous random variable having support that is a
subinterval of [0, 1].

For UMP the distribution having this distribution function is uniform on an
interval.

In aid of proving this theorem we state an algorithm (Algorithm 1 below).

Algorithm 1 Computing the UMPU Critical Function

Assume a regular full one-parameter exponential family such that the canoni-
cal statistic is order discrete. For fixed θ, the following computes the critical
function of the UMPU test φ(x, α, θ) for all x and α > 0.

1. Start with α = 1.

(a) If µ given by (11b) is an atom, then φ(x, α, θ) is given by (7) with
C1 = C2 = µ and γ1 = γ2 = γ given by (11a), (12a), and (12b) over
the range of α such that (12a) is between zero and one.

(b) If µ given by (11b) is not an atom, then choose C1 and C2 to be
adjacent atoms such that C1 < µ < C2 and φ(x, α, θ) is given by (7)
with γ1 and γ2 given by (13a), (13b), (13c), (13d), (13e), (15a), and
(15b) over the range of α such that both (15a) and (15b) are between
zero and one.

2. Start with the lowest α for which φ(x, α, θ) was determined in step 1 or a
previous iteration of step 2. At this point, either γ1 or γ2 is zero (or both
are).

(a) If γ1 is zero, then decrease C1 to the next point of the sample space
below the current value and set γ1 = 1.

(b) If γ2 is zero, then increase C2 to next point of the sample space above
the current value and set γ2 = 1.

(c) Now φ(x, α, θ) is given by (12a) with γ1 and γ2 given by (13a), (13b),
(13c), (13d), (13e), (15a), and (15b) over the range of α such that
both (15a) and (15b) are between zero and one.

3. Repeat step 2 until the whole range 0 < α ≤ 1 is covered.

Without the order discrete assumption, it could be that there would be no
next point to select in step 2a or 2b of the algorithm (or even points C1 and C2

to choose in 1b).
In case the sample space is infinite, which among our exponential families of
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interest is for Poisson and negative binomial, step 2 of the algorithm may need
to be repeated an infinite number of times, as it is clear (from the algorithm and
the proof of the theorem) that C1 visits every point of the sample space between
µ and the lower bound (which could be −∞ but is finite for all our exponential
families of interest) and C2 visits every point of the sample space between µ and
the upper bound (which is ∞ for the Poisson and negative binomial families).

Thus, strictly speaking, if one considers termination after a finite number
of steps to be part of the definition of algorithm, this is not an algorithm. But
we will not worry about that. Just consider it a theoretical construction rather
than a computer algorithm. (More on this after the proof.)

Proof of Theorem 1. In the UMP case (10) computes a number strictly between
0 and 1 if and only if α is strictly between Prθ{T (X) > C} and Prθ{T (X) ≥ C}.
On this interval, γ is a linear function of α and goes from 0 to 1. Thus the fuzzy
P -value has the continuous uniform distribution on the interval with endpoints
Prθ{T (X) > C} and Prθ{T (X) ≥ C}, where C is the observed value of T (X).

For UMPU we apply Algorithm 1. What it computes is continuous in α
because steps 2a and 2b do not change the critical function (merely its descrip-
tion) and the other steps change the critical function continuously in α using
(12a) in step 1a or (15a) and (15b) in step 1b or 2c. Moreover, (12a), (15a), and
(15b) are linear and strictly increasing in α. So this proves Fx,θ is continuous,
piecewise linear, and increasing on the open interval where its values are strictly
between 0 and 1. And we have proved that the supremum of its values is 1 but
still have to prove the infimum is 0.

If we ever have C1 < T (x) < C2 at any point in execution of Algorithm 1,
then we have Fx,θ(α) = 0 for the rest of the execution of the algorithm. Thus
the only way we can have Fx,θ(α) > 0 for the whole execution is, if from some
point in the execution onward either step 2a or step 2b is never executed again
(hence the other is executed infinitely often). This can only happen with an
infinite sample space. With the families of interest, all of which are bounded
below, this would mean that C1 is eventually constant for an infinite number of
iterations of the algorithm while C2 →∞. We will do this case; the other case
is similar (just swap left and right on the number line).

By dominated convergence, C2 → ∞ implies P2 → 0 and M2 → 0 (for a
dominating function we can take |T (X)|, which is guaranteed to be integrable
by the model being a regular full exponential family. Plugging those limits into
(14a) and (14b) gives

P1 + γ1p1 = α (19a)

M1 + γ1C1p1 = αµ (19b)

because 0 ≤ p2 ≤ p2 +P2 → 0 and eventually (when C2 is positive) 0 ≤ C2p2 ≤
C2p2 + M2 → 0 and 0 ≤ γ2 ≤ 1. But (19a) and (19b) are the equations for
a lower-tailed UMP test, so the solutions are given by (10) with the inequality
reversed

γ2 =
α− P1

p1
.
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Hence for sufficiently small α this will go negative unless P1 = 0 which implies
that C1 is the lower bound of the sample space, in which case α can decrease
to zero. Thus Algorithm 1 can make α arbitrarily close to zero, and when it
does Fx,θ(α) also gets arbitrarily close to zero. This proves the assertions about
continuity on [0, 1].

As noted before the proof of Theorem 1, Algorithm 1 is not, strictly speaking,
an algorithm because it can need to do an infinite amount of work. However, if
we are only interested in one fixed x rather than all x, the proof of Theorem 1
shows that we do an infinite amount of work only if we are doing a UMPU two-
tailed test and T (x) is a boundary point of its sample space. In that case we will
have to use a convergence tolerance and stop when α gets close enough to zero
in order to have a computer algorithm. (Theorem 2 below helps in choosing the
convergence tolerance.)

However, Algorithm 1 still does more work than necessary.

3.1.2 Endpoint Behavior

The behavior of the (distribution function of the) fuzzy P -value where its
values are near 1 has already been described (Step 1 of Algorithm 1). In either
case (Step 1a or 1b), it is piecewise linear, continuous, and satisfies (5).

For any continuous function, we say a point x in its domain is a knot if the
first derivative or some higher derivative is discontinuous at x. If the function
is given by a formula, the formula is different on each side of the knot. The
way R draws graphs of functions (connecting the dots) these discontinuities are
smoothed out unless the values at the knots are included in the input to the
plot.

Theorem 2. With the assumptions of Theorem 1, in case the canonical statistic
T (x) is on the boundary of the sample space of T (X), which is unbounded (in
the other direction),

φ(x, α, θ)

α
→ 1

Prθ{T (X) = T (x)}
, as α→ 0.

In all other cases φ(x, · , θ) is piecewise linear on [0, 1] with a finite number
of knots, continuous, and satisfies (4).

All of this was proved in the proof of Theorem 1.

3.2 Fuzzy Confidence Intervals

3.2.1 Some Fundamentals of Exponential Families

The probability mass function of the canonical statistic of a discrete expo-
nential family can be written

fθ(x) = exθ−c(θ)λ(x) (20)
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where θ is the canonical parameter, c is the cumulant function, and λ is positive
when x is an atom and zero otherwise. For general (not necessarily discrete)
families, the formula is similar (Geyer, 1990, Section 1.2).

The function c is called the cumulant function of the family. From probabil-
ities summing to one we get

c(θ) = log

(∑
x∈R

exθλ(x)

)
(21)

where the only terms in the sum that contribute are x such that λ(x) > 0,
the atoms of the distribution. We take (21) to define the cumulant function on
the whole real line, writing c(θ) = ∞ if the sum does not exist. Then θ is the
canonical parameter of the exponential family, and

Θ = { θ ∈ R : c(θ) <∞} (22)

is the canonical parameter space of the full exponential family containing the
originally given exponential family (with the probability mass functions of the
family being given by (20)). Cumulant functions are convex (Barndorff-Nielsen,
1978, Theorem 7.1). So the full canonical parameter space (22) is an interval of
real numbers. It need not be the whole real line. For negative binomial (22) is
the half-line (−∞, 0).

The full family is regular if (22) is an open subset of the real numbers.
Derivatives of the cumulant function are cumulants (hence the name). The

first two are

c′(θ) = Eθ(X) (23a)

c′′(θ) = varθ(X) (23b)

(Barndorff-Nielsen, 1978, Theorem 8.1). These equations hold at all θ in the
interior of (22), hence, for a regular full exponential family, for all θ ∈ Θ.

From (23b) we see that, unless the support is a single point, c′′(θ) > 0, so c
is a strictly convex function (Barndorff-Nielsen, 1978, Theorem 7.1). Hence c′

is a strictly increasing on Θ (assuming regular). Hence by the inverse function
theorem, c′ is an invertible function. So

µ = c′(θ) = Eθ(X)

is a one-to-one mapping between the canonical parameter θ and the mean value
parameter µ. And by moment generating function theory and the inverse func-
tion theorem, the mappings both ways are infinitely differentiable (a fact we
will not use in this document). Here we only need that the mappings are both
continuous (which is implied by differentiability), so both map an open interval
to an open interval.

It is not obvious from what we have said so far, but the mean value parameter
space (the range of the function c′ : Θ → R) is the interior of the convex hull
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of the support of the canonical statistic (Barndorff-Nielsen, 1978, Theorems 8.1
and 9.2).

Cumulant functions are lower semicontinuous on R (Barndorff-Nielsen, 1978,
Theorem 7.1). So c(θ) =∞ implies

c(θn)→∞, as θn → θ.

3.2.2 Convexity and Continuity

Lemma 3. In (15a) and (15b), if C1 and C2 are chosen so that C1 6= C2 and
both γ1 and γ2 are strictly between zero and one (so these formulas define the
critical function of a UMPU test), and if the support of the canonical statistic
has more than two points (excluding the case described in Section 1.8.4 above),
then ∂γ1/∂θ > 0 and ∂γ2/∂θ < 0.

Proof. Under the assumptions, we have C1 < µ < C2 by Theorem 1. To simplify
notation assume T (X) = X so we have a standard exponential family, define
j = 3− i, and define

Ain = {x : C1 < x < C2 }
Aout = {x : x < C1 or C2 < x }

(either of these can be empty, but not both by the more than two points as-
sumption).

Now we can rewrite both (15a) and (15b) as

γi =
α(Cj − µ) + (Mi − CjPi) + (Mj − CjPj)

pi(Cj − Ci)

=
Eθ{(X − Cj)[IAout(X)− α]}

fθ(Ci)(Cj − Ci)

=

∫
(x− Cj)[IAout(x)− α]

Cj − Ci
· fθ(x)

fθ(Ci)
λ(x)

=

∫
(x− Cj)[IAout

(x)− α]

Cj − Ci
· e(x−Ci)θλ(x)

where θ is now the canonical parameter, fθ is the probability mass function,
and λ is a discrete positive measure that does not depend on θ (Section 3.2.1
above).

This equation can be differentiated under the integral sign giving

∂γi
∂θ

=

∫
(x− Ci)(x− Cj)[IAout

(x)− α]

Cj − Ci
· e(x−Ci)θλ(x) (24)

(Ferguson, 1996, Lemma of Chapter 18). The dominating function in Ferguson’s
lemma can be taken to be a constant plus ex(θ−ε) + ex(θ+ε) which is guaranteed
to have finite integral for some ε > 0 by the assumption that we have a regular
exponential family.
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In case i = 1 and 0 < α < 1 in (24) the integrand is positive for x ∈ Aout∪Ain

and zero otherwise. Hence the derivative is positive.
In case i = 2 and 0 < α < 1 in (24) the integrand is negative for x ∈ Aout∪Ain

and zero otherwise. Hence the derivative is negative.

Lemma 4. In (10), if C is chosen so that γ is strictly between zero and one
(so this formula defines the critical function of a UMP upper-tailed test), and if
the support of the canonical statistic has more than one point, then ∂γ/∂θ < 0.

For the UMP lower-tailed test all inequalities are reversed, so ∂γ/∂θ > 0.

Proof. As in the preceding lemma, we rewrite (10)

γ =
Eθ{α− I(C,∞)(X)}

fθ(C)

=

∫
[α− I(C,∞)(x)] · fθ(x)

fθ(C)

=

∫
[α− I(C,∞)(x)]e(x−C)θλ(x)

(with the same notation as in the preceding lemma). This equation can be
differentiated under the integral sign giving

∂γ

∂θ
=

∫
[α− I(C,∞)(x)](x− C)e(x−C)θλ(x) (25)

(with argument about differentiation under the integral sign as in the preceding
lemma). The integrand is negative when x 6= C and zero otherwise. Hence the
derivative is negative.

Theorem 5. With the assumptions of Theorem 1, a fuzzy confidence interval
for the canonical parameter or any increasing function of it (including the mean
value parameter) corresponding to a UMP or UMPU test for a regular full ex-
ponential family whose canonical statistic is probabilistically and order discrete
is convex, and its membership function is continuous.

Let µ denote the mean value parameter and x the observed value of the
canonical statistic. The membership function is nondecreasing for µ < x and
nonincreasing for µ > x. If the maximum less than one, then the maximum
occurs at µ = x where (12a) and (12b) and (15a) and (15b) all hold simulta-
neously. If the maximum of the membership function is one, then µ = x is one
point where it is one.

To say a fuzzy set is convex is to say that each of the level sets {x : I(x) ≥ γ }
of its membership function I are convex (Geyer and Meeden, 2005, Section 1.3).

Note that this does not mean that the graph of the membership function or
any part of it is convex or concave. See examples in Appendix B.

Proof. If the membership function of the fuzzy confidence interval for the canon-
ical parameter θ is convex, then so is the same for any increasing function of θ.
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The mean value parameter is an increasing function of the canonical parameter
(Section 3.2.1 above).

From the lemmas, the negative derivatives are for γ2 for the UMPU test or
for γ of the UMP upper-tailed test. Thus these are decreasing functions of θ. If
they ever decrease to zero, then we can change the representation of the critical
function without changing its value, by increasing C2 or C to the next possible
value and setting γ2 or γ to one.

And similarly for γ1 for the UMPU test or for γ for the UMP lower-tailed
test. These are increasing functions of θ. If they ever increase to one, then
we can change the representation of the critical function without changing its
value, by increasing C1 or C to the next possible value and setting γ1 or γ to
zero.

Thus the critical function φ(x, α, θ) is continuous in θ, and C1 and C2 and
C can only increase as θ increases. Hence the membership function of the fuzzy
confidence interval corresponding to the upper-tailed UMP test is nondecreasing
in θ, for the lower-tailed UMP test it is nonincreasing, and for the two-tailed
UMPU test it may be constant at zero for a while (when C2 < x), then increase
(when C2 = x), then be constant at one for a while (when C1 < x < C2), then
decrease (when C1 = x), then be constant at zero for a while (when x < C1).
But some of these parts may be omitted for certain x (more on this below). For
any of these the fuzzy confidence interval is convex.

The only way we can have φ(x, α, θ) strictly between zero and one is when
x = C1 or x = C2. If the latter, then µ ≤ C2 = x, and the membership function
is decreasing by Lemma 3. If the former, then x = C1 ≤ µ, and the membership
function is increasing by the same lemma. And, of course, the membership
function is constant on intervals where it is equal to zero or one. This proves
the last paragraph of the theorem statement.

So the proof is finished except that we still must look at the case where
the mean value parameter µ crosses a possible value of the canonical statistic.
There we may have (12a) and (12b) holding when µ = C, but have (15a) and
(15b) on either side. So we need to check that we have continuity here. Rather
than (15a) and (15b), it is more convenient to use (17a) and (17b), which in
this case (where C1 and C2 are adjacent and µ is between) become

1− γ1 =
(1− α)(C2 − µ)

fµ(C1)(C2 − C1)

1− γ2 =
(1− α)(µ− C1)

fµ(C2)(C2 − C1)

And these give us 1 − γ1 → (1 − α)/fµ(C1) agreeing with (12a) and γ2 → 0
as µ → C1. The argument for µ → C2 is similar. Thus we do have continuity
when we switch from (12a) and (12b) to (15a) and (15b).

3.2.3 Endpoint Behavior

The UMPU test makes no sense when the null hypothesis is on the boundary
of the mean value parameter space. Why do a two-tailed test when the null
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hypothesis says only one tail is possible?
But equations (7), (8a), and (8b) still make sense and define a test, which is

the limit of tests done for all nearby parameter values hypothesized under the
null hypothesis. Since the probability and the expectation in those equations
are continuous in θ this also characterizes the behavior as θ converges to a
boundary point (which we need to know to calculate fuzzy confidence intervals,
which involve all θ in the parameter space).

Theorem 6. With the assumptions of Theorem 1, if the support of T (X) has
a lower bound and L is the two-point set consisting of the two lowest atoms of
the support, then

1− φ(x, α, θ)→ (1− α)IL{T (x)}, as θ → −∞, (26)

where θ is the canonical parameter. Similarly, if the support has an upper bound
and L consists of the two highest atoms, then (26) holds with −∞ replaced by
+∞.

Proof. We do the case where the support has a lower bound. The upper bound
case is entirely analogous.

Without loss of generality, we assume T (X) = X, and use most of Sec-
tion 3.2.1 above. Because X is bounded below (we assume), the full canonical
parameter space (22) extends to −∞. Because we assume the support of the
distribution has more than one point (23b) cannot be zero, and µ and θ are
strictly increasing continuous functions of each other.

Let L = {s0, s1} with s0 < s1 be the set containing the two lowest points of
the support of X. Let S denote the support. Since

fθ(s)

fθ(s0)
= e(s−s0)θ

λ(s)

λ(s0)

the distribution converges to the distribution concentrated at s0 as θ → −∞ by
monotone convergence.

Now
µ(θ)− s0
fθ(s1)

=
∑

s∈S\{s0}

(s− s0)e(s−s1)θ
λ(s)

λ(s1)

goes to s1 − s0 by monotone convergence as θ → −∞. Hence µ(θ) → s0 as
θ → −∞.

Now
Prθ{T (X) > s1}

fθ(s1)
=
∑
s∈S\L

e(s−s1)θ
λ(s)

λ(s1)

goes to zero by monotone convergence as θ → −∞.
And these facts together imply

Prµ{T (X) = s0} =
s1 − µ
s1 − s0

+ o(µ− s0)

Prµ{T (X) = s1} =
µ− s0
s1 − s0

+ o(µ− s0)

Prµ{T (X) > s1} = o(µ− s0)

(27)
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where µ = µ(θ) is the mean value parameter.
Now we claim that for low enough values of θ the UMPU test is given by

(7) with C1 = s0 and C2 = s1 and γ1 and γ2 given by (17a) and (17b), which
in this case become

γ1 = 1− (1− α)(s1 − µ)

Prµ{T (X) = s0}(s1 − s0)

γ2 = 1− (1− α)(µ− s0)

Prµ{T (X) = s1}(s1 − s0)

and clearly both converge to α as µ→ s0 hence both are between zero and one
for low enough θ or µ and hence define the UMPU test.

This explains the behavior of the fuzzy confidence intervals for the binomial
distribution for the two x values nearest each boundary in Figure 2 of Geyer and
Meeden (2005). As θ → 0, the fuzzy confidence interval 1−φ(x, α, θ) converges
to 1−α for x = 0 or x = 1 and converges to zero for all other x. And as θ → 1,
the fuzzy confidence interval converges to 1 − α for x = n − 1 or x = n and
converges to zero for all other x.

Theorem 7. With the assumptions of Theorem 1, if the support of T (X) has
no upper bound, then C1 and C2 in (7) both go to infinity as the mean value
parameter goes to infinity.

Proof. Since C1 ≤ µ ≤ C2, only the behavior of C1 is at issue. And C1 is a
nondecreasing function of θ by the proof of Theorem 5. Hence either C1 → ∞
as µ→∞ or there is a finite b such that C1 ≤ b for all µ. We start a proof by
contradiction by assuming the latter.

The full canonical parameter space (22) is an open interval (the regular full
exponential family assumption). Let B denote its upper bound, which may be
finite or infinite. We have two different arguments depending on whether B is
finite or not.

First assume B is infinite, if x1 < x2, then

fθ(x1)

fθ(x2)
= e(x1−x2)θ.

As θ →∞ the right-hand side goes to zero. But (for discrete data) probabilities
are bounded by one so

fθ(x)→ 0, as θ → B and µ→∞. (28)

Second assume B is finite, then

fθ(x) ≤ exB−c(θ)

but c(θ)→∞ as θ → B (end of Section 3.2.1 above). So again we have (28).
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Now let A be any event that is bounded above (in the mean value parameter
space, where X also takes values). Then for any nonnegative function g

Eµ{IA(X)g(X)} → 0, as µ→∞

by monotone convergence (because the integrand is decreasing after µ is greater
than any element of A), provided the expectation exists for some µ greater than
any element of A.

It follows that as µ→∞

Eµ{I(−∞,µ)(X)φ(X,α, µ)} → 0

Eµ{XI(−∞,µ)(X)φ(X,α, µ)} → 0

REVISED DOWN TO HERE
hence from (8a) and (8b)

Eµ{I(µ,∞)(X)φ(X,α, µ)} → α

Eµ{XI(µ,∞)(X)φ(X,α, µ)}/µ→ α

so

Eµ

{(
X

µ
− 1

)
I(µ,∞)(X)φ(X,α, µ)

}
→ 0

3.2.4 Summary

Fuzzy confidence intervals (more precisely, the membership function thereof,
but we won’t be pedantic about that here) behave as follows.

� If the support of the canonical statistic has two points, then the fuzzy con-
fidence interval is constant, equal to 1−α for all values of the parameter.
Henceforth we assume the sample space has more than two points.

� If the observed value x of the canonical statistic is as low as possible, then
the fuzzy confidence interval starts at 1−α (when µ is as low as possible)
and decreases to zero (at some point where µ is not as high as possible).
And is zero thereafter (by convexity).

� If the observed value x of the canonical statistic is the next to lowest
possible, then the fuzzy confidence interval starts at 1 − α (when µ is as
small as possible) and increases. Depending on the value of α it may go
all the way up to one, or may not. If it is less than one for all values of the
parameter, then it reaches its maximum when x = µ and equations (12a)
and (12b) hold. Unless x is one of the two highest points of the support,
the fuzzy confidence interval decreases to zero and is zero thereafter.
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� If the observed value x of the canonical statistic is not either of the two
lowest possible values or either of the two highest possible values, then the
fuzzy confidence interval starts at zero (when µ is as small as possible),
stays at zero for a while, and then increases (as µ increases). Depending
on the value of α it may go all the way up to one, or may not. If it is less
than one for all values of the parameter, then it reaches its maximum when
x = µ and equations (12a) and (12b) hold. After reaching the maximum,
it decreases to zero, and is zero thereafter.

Appendix B has concrete examples of this behavior.

3.3 Models With Nuisance Parameters

UMP and UMPU theory extends to multiparameter exponential families
when the parameter of interest θ is one of the canonical parameters (Lehmann,
TSH, 1st ed., pp. 134–136).

Suppose the family has densities of the form

1

c(θ,η)
exp

(
θT (x) +

k∑
i=1

ηiUi(x)

)

with respect to some measure on the sample space. Then the situation is exactly
the same as described above except that the reference distribution of the test is
the conditional distribution of T (X) given U(X), which (a standard fact about
exponential families) depends only on θ and not on the nuisance parameter η.

3.3.1 UMP Tests With Nuisance Parameters

Now there exists a UMP test having null hypothesis H0 = {ϑ : ϑ ≤ θ },
alternative hypothesis H1 = {ϑ : ϑ > θ }, and significance level α, and its
critical function φ is defined by

φ(x, α, θ) =


1, T (x) > C[U(x)]

γ[U(x)], T (x) = C[U(x)]

0, T (x) < C[U(x)]

(29)

where the functions γ and C are determined by

Eθ{φ(X,α, θ) | U(X)} = α. (30)

Everything is exactly the same as for the one-parameter case except for the
conditioning on U(x). The only point of the discussion is that the test is UMP
whether considered conditionally or unconditionally.

As before, the UMP upper-tailed test is obtained by reversing all the in-
equalities above.
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3.3.2 UMPU Tests With Nuisance Parameters

Now there exists a UMPU test having null hypothesis H0 = {ϑ : ϑ = θ },
alternative hypothesis H1 = {ϑ : ϑ 6= θ }, and significance level α, and its
critical function φ is defined by

φ(x, α, θ) =



1, T (x) < C1[U(x)]

γ1[U(x)], T (x) = C1[U(x)]

0, C1[U(x)] < T (x) < C2[U(x)]

γ2[U(x)], T (x) = C2[U(x)]

1, C2[U(x)] < T (x)

(31)

where the functions γ1, γ2, C1, and C2 are determined by

Eθ{φ(X,α, θ) | U(X)} = α (32a)

Eθ{T (X)φ(X,α, θ) | U(X)} = αEθ{T (X) | U(X)} (32b)

Again, the point is that the test is UMPU whether considered conditionally
or unconditionally.

4 Calculations For Distributions

4.1 Binomial

Let X ∼ Bin(n, p) with 0 < p < 1.
All of the quantities in (15a) and (15b) are easily calculated (in R) except

possibly M1 and M2. Actually, as Lehmann points out (TSH, 1st, ed., pp. 128–
129), these are also easy to calculate

M1 =

C1−1∑
x=0

x

(
n

x

)
px(1− p)n−x

=

C1−1∑
x=1

x

(
n

x

)
px(1− p)n−x

= np

C1−1∑
x=1

(
n− 1

x− 1

)
px−1(1− p)n−x

= np

C1−2∑
y=0

(
n− 1

y

)
py(1− p)n−1−y

and the last sum is just a binomial probability for the Bin(n−1, p) distribution,
that is, M1 is calculated in R (with the obvious definitions of the variables) by

n * p * pbinom(c1 - 2, n - 1, p)
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Let’s check that this does not crash for small values of C1.

n <- 10

p <- 2 / 3

c1 <- seq(0, n * p)

c1

## [1] 0 1 2 3 4 5 6

m1 <- n * p * pbinom(c1 - 2, n - 1, p)

m1

## [1] 0.0000000000 0.0000000000 0.0003387018 0.0064353334 0.0552083863

## [6] 0.2828159664 0.9656387068

And compare with obvious calculation

m1.too <- cumsum((c1 - 1) * dbinom(c1 - 1, n, p))

all.equal(m1, m1.too)

## [1] TRUE

Similarly, exchanging successes and failures,

M2 = np

n−1∑
y=C2

(
n− 1

y − 1

)
py(1− p)n−1−y

So M2 is calculated by

n * p * pbinom(c2 - 1, n - 1, p, lower.tail = FALSE)

Try that out too

n <- 10

p <- 2 / 3

c2 <- seq(n, n * p) |> rev()

c2

## [1] 7 8 9 10

m2 <- n * p * pbinom(c2 - 1, n - 1, p, lower.tail = FALSE)

m2

## [1] 2.5145218 0.9537841 0.1734153 0.0000000

And compare with obvious calculation
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m2.too <- rev(cumsum(rev((c2 + 1) * dbinom(c2 + 1, n, p))))

all.equal(m2, m2.too)

## [1] TRUE

4.2 Poisson

Let X ∼ Pois(µ) with 0 < µ.
Again, all of the quantities in (15a) and (15b) are easily calculated except

possibly M1 and M2. Do they work like the binomial case? Yes!

M1 =

C1−1∑
x=0

x
µx

x!
e−µ

=

C1−1∑
x=1

x
µx

x!
e−µ

= µ

C1−1∑
x=1

µx−1

(x− 1)!
e−µ

= µ

C1−2∑
y=0

µy

y!
e−µ

and the last sum is just another Poisson probability, that is, M1 can be calcu-
lated in R (with the obvious definitions of the variables) by

mu * ppois(c1 - 2, mu)

and M2 by

mu * ppois(c2 - 1, mu, lower.tail = FALSE)

4.3 Negative Binomial

Let X ∼ NegBin(r, p) with 0 < p < 1. Like R we consider the sample space
to start at zero rather than r. This also allows for non-integer r. The densities
of the family have the form

f(x) =
Γ(x+ r)

Γ(r)x!
pr(1− p)x

Note that if we are to have an exponential family r cannot be an unknown
parameter! The only unknown parameter is p.
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Again, all of the quantities in (15a) and (15b) are easily calculated except
possibly M1 and M2. Do these work like the binomial and Poisson cases? Yes!

M1 =

C1−1∑
x=0

x
Γ(x+ r)

Γ(r)x!
pr(1− p)x

=

C1−1∑
x=1

x
Γ(x+ r)

Γ(r)x!
pr(1− p)x

=

C1−2∑
y=0

Γ(y + 1 + r)

Γ(r)y!
pr(1− p)y+1

=
1− p
p

C1−2∑
y=0

Γ(y + 1 + r)

Γ(r)y!
pr+1(1− p)y

M1 can be calculated in R (with the obvious definitions of the variables) by

(1 - p) / p * pnbinom(c2 - 2, r + 1, p)

and M2 can be calculated by

(1 - p) / p * pnbinom(c1 - 1, r + 1, p, lower.tail = FALSE)

4.4 Two Independent Poisson Random Variables

Let Xi ∼ Pois(µi) with 0 < µi, for i = 1, 2 be independent random variables.
We wish to compare the means µ1 and µ2. We cannot just test or produce fuzzy
confidence intervals for a function pulled out of the air, such as µ1 − µ2. The
parameter we test must be canonical.

The canonical statistics of this exponential family are X1 and X2 and the
corresponding canonical parameters are ψi = log(µi). Linear functions of canon-
ical parameters are again canonical so we can test or produce fuzzy confidence
intervals for ψ1 − ψ2 = log(µ1/µ2).

Introduce new parameters

ψ1 = η + θ

ψ2 = η

Then
X1ψ1 +X2ψ2 = X1θ + (X1 +X2)η = T (X)θ + U(X)η

Where

T (X) = X1

U(X) = X1 +X2

(33)

It is a standard result that the conditional distribution of T (X) given U(X)
is

X1 | X1 +X2 ∼ Bin

(
X1 +X2,

µ1

µ1 + µ2

)

26



So the theory says we do the UMP or UMPU test based on this distribution with
µ1/(µ1 +µ2) as the parameter of interest (Lehmann, TSH, 1st ed., pp. 140–142,
gives further details).

4.5 Two Independent Binomial Random Variables

Let Xi ∼ Bin(ni, pi) with 0 < pi < 1, for i = 1, 2 be independent random
variables. We wish to compare the proportions p1 and p2. We cannot just test
or produce fuzzy confidence intervals for a function pulled out of the air, such
as p1 − p2. The parameter we test must be canonical.

The canonical statistics of this exponential family are X1 and X2 and the
corresponding canonical parameters are ψi = logit(pi). Linear functions of
canonical parameters are again canonical so we can test or produce fuzzy con-
fidence intervals for ψ1 − ψ2.

As in the Poisson case we see that we can base the test on the conditional
distribution of T (X) given U(X), where these variables are defined by (33). This
distribution is (Lehmann, TSH, 1st ed., pp. 142–143) the exponential family
generated by the hypergeometric distribution, which is called Fisher’s noncentral
hypergeometric distribution (Section 1.6 above). It has canonical parameter

θ = log

(
p1(1− p2)

(1− p1)p2

)
So the theory says we do the UMP or UMPU test based on this distribution
with θ as the parameter of interest

4.6 Two Independent Negative Binomial Variables

Let Xi ∼ NegBin(ri, pi) with 0 < ri and 0 < pi < 1, for i = 1, 2 be
independent random variables. As in Section 4.3 we are using the convention
that the sample space starts at zero. We wish to compare the proportions p1
and p2. We cannot just test or produce fuzzy confidence intervals for a function
pulled out of the air, such as p1−p2. The parameter we test must be canonical.

The canonical statistics of this exponential family are X1 and X2 and the
corresponding canonical parameters are ψi = log(1 − pi). Linear functions
of canonical parameters are again canonical so we can test or produce fuzzy
confidence intervals for ψ1 − ψ2.

As in the Poisson case we see that we can base the test on the conditional
distribution of T (X) given U(X), where these variables are defined by (33).
This distribution is not fully explained in Lehmann, although the r1 = r2 = 1
case is the subject of a homework problem in the second edition.
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Let’s see what happens. The joint distribution of the X’s is

f(x1, x2) =

2∏
i=1

Γ(xi + ri)

Γ(ri)xi!
prii (1− pi)xi

= exp(x1ψ1 + x2ψ2)

2∏
i=1

Γ(xi + ri)

Γ(ri)xi!
prii

= exp(tθ + uη)
Γ(t+ r1)

Γ(r1)t!

Γ(u− t+ r2)

Γ(r2)(u− t)!
pr11 p

r2
2 (34)

where

t = x1

u = x1 + x2

θ = ψ1 − ψ2 = log

(
1− p1
1− p2

)
η = ψ2 = log(1− p2)

We want to consider the conditional distribution of T (X) given U(X). Thought
of as a function of t for fixed u and dropping all terms that do not contain t
and θ we get

fθ(t | u) =
1

c(θ)
exp(tθ)

Γ(t+ r1)Γ(u− t+ r2)

t!(u− t)!
, t = 0, . . . , u, (35)

where c(θ) is chosen to make probabilities sum to one.
Equations (35) and (3) agree except the following changes of variable names

(35) (3)
t x
r1 r

u+ r2 N − r
u K

Thus we have indeed arrived at the exponential family described in Section 1.7
above.

4.7 Testing Independence in a Two-by-two Table

This is the UMP/UMPU competitor for Fisher’s exact test. The data consist
of a matrix Xij , i = 1, 2, j = 1, 2, that has a multinomial distribution with
sample size n and cell probability matrix pij , i = 1, 2, j = 1, 2. This is also
called a two-by-two contingency table.

The canonical statistics are the Xij , but the canonical parameters are not
uniquely defined in terms of the pij because the model is really only three
dimensional, not four, because the Xij sum to n.
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As is well known, this is a three-dimensional exponential family, the canoni-
cal statistics being any three of the four Xij , the fourth being determined from
the other three by the requirement that the Xij sum to n.

In this problem (Lehmann, TSH, 1st ed., pp. 143–146) the marginals are the
statistics for the nuisance parameters, and we can consider any other statistic
linearly independent of the marginals and the sum of all cells as the statistic of
interest. Lehmann chooses

T (X) = X11

U1(X) = X11 +X12

U2(X) = X11 +X21

(36)

The conditional distribution of T (X) given the marginals U1(X) and U2(X)
is well known. It is the hypergeometric distribution involved in Fisher’s exact
test under the null hypothesis of independence and under general null hypotheses
is the exponential family generated by the hypergeometric we encountered in
Sections 1.6 and 4.5. The canonical parameter is

θ = log

(
p11p22
p12p21

)

4.8 Different Answers to the Same Question in a Poll

This section and the next give the UMP/UMPU/fuzzy competitors to the
analysis of correlated binomial proportions in Wild and Seber (pp. 343–350).
The first considers different answers to the same question on a poll. This is a
multinomial problem. Say the categories of interest have counts X1 and X2,
then we know

X1 | X1 +X2 ∼ Bin

(
X1 +X2,

p1
p1 + p2

)
and so the UMP/UMPU/fuzzy procedures are based on this distribution.

4.9 Answers to Different Questions in a Poll

Here again, like in Section 4.7, we have a two-by-two table with data Xij and
cell probabilities pij but the question of interest is different. Now we are inter-
ested in just the opposite question, whether the marginals differ. This in a sense
(a rather vague sense) interchanges the role of interest and nuisance parameters,
what were interest parameters in Section 4.7 are now nuisance parameters and
vice versa.

Ordinarily, this would be nonsense. There is exactly one interest parameter.
The rest (in this case two) must be nuisance parameters. So, strictly speaking,
they cannot be interchanged. But a two-by-two table has a redundant canonical
statistic: there are four Xij but they sum to n so only three are linearly inde-
pendent. So if we add the redundant statistic to the statistics corresponding to
parameters of interest we two sets of two that can be interchanged.
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It is clear that (36) could have been written with subscripts 1 and 2 inter-
changed, which would make X21 the statistic of interest. This tells us that here
we should condition on X11 and X22 leaving either X12 or X21 as the statistic
of interest. Thus in this case the UMP/UMPU/fuzzy procedure is based on the
distribution

X12 | X11, X22 ∼ Bin

(
n−X11 −X22,

p12
p12 + p21

)
And in hindsight we see that we have invented the conditional, exact, UMP

or UMPU competitor of McNemar’s test (Lindgren, Statistical Theory, pp. 381–
383).

5 Algorithms

5.1 Jobs

The obvious solution to our problems is to provide a function that calculates
φ(x, α, θ) for each family of interest and for UMP and UMPU.

Probably such a function should follow the usual recycling rule, documented,
for example, on the help page for dbinom, pbinom, qbinom, and rbinom

The length of the result is determined by n for rbinom, and is the
maximum of the lengths of the numerical arguments for the other
functions.

The numerical arguments other than n are recycled to the length
of the result. Only the first elements of the logical arguments are
used.

But rather than following this rule and only this rule, we should also return
values at the knots (which users cannot specify because they don’t know where
they are).

� For fuzzy P -values, which are piecewise linear, there should at at least be
an option to return only the knots and values at the knots, because that
is all R needs to plot the function.

� Since probability density functions are more easily interpreted than cu-
mulative distribution functions, there should also be an option to return
the derivative of the fuzzy P -value, which is undefined at the knots and
constant between knots. Of course, the derivative between two knots is
given by rise over run (the difference of the values at those two knots
divided by the difference of the knots, but that may involve catastrophic
cancellation, and the computer should be more accurate).

� Fuzzy confidence intervals are constant on the interval where they are
equal to one (the core) so we can save memory both for the returned R
object, and any plots made from it, by not returning any values in the core
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(even if asked for by the user), at least as an option. Instead we return
the endpoints of the core, and the values (one) at these points.

The set where a fuzzy confidence interval is nonzero is called its support
(not to be confused with the concept of support in probability theory
(where the probability mass function is nonzero). We can also save mem-
ory by returning the endpoints of the support, the values there (perhaps
zero) and the boundaries of the parameter space and the values there (per-
haps zero) and points and values for no other points outside the support.

Finally on the intervals where the fuzzy confidence intervals (where the
membership function is nonlinear) we need to return the membership func-
tion values on a grid of parameter values and we need users to specify the
density of points in the grid rather than the number of points because the
users do not know the lengths of these intervals of rise and fall. Moreover,
we need to insert the parameter values and membership function values at
knots because users don’t know those either, and not including the knots
will make plots not show the knots.

When we return values of the function at points not specified by the user,
we will also have to return those α values (for a fuzzy P -value) or θ values (for
a fuzzy confidence interval). Thus we will return a list, and we might as well
return a list specifying everything: φ(x, α, θ), x, α, θ, and the distribution and
type of test (lower, upper, two-tailed), or, in the case of wanting the PDF of
the fuzzy P -value, ∂φ(x, α, θ)/∂α rather than φ(x, α, θ).

We need make no special allowance for fuzzy decision functions φ( · , α, θ),
since the usual R behavior will accomodate that.

The package should also supply the usual d, p, q, and r functions (like
dbinom, pbinom, qbinom, and rbinom) for the noncentral hypergeometric, and
noncentral negative hypergeometric distributions.

5.2 Parameters

As seen in Algorithm 1 and various theorems, testing whether x = µ or not is
important. We will not be able to do this with exact arithmetic if µ is calculated
rather than provided by the user. Thus we should use µ as the parameter if at
all possible.

� For the binomial distribution, we should use µ = np as the parameter
rather than p, which R uses for dbinom and friends. If we have to multiply
n times p, that will not be exact arithmetic, so the test may be in error.

� For the Poisson distribution, µ is already the usual parameter.

� For the negative binomial distribution, µ is already an optional parameter
in dnbinom and friends. And the C interface provided to R packages has
C functions dnbinom_mu, pnbinom_mu, qnbinom_mu, rnbinom_mu that use
µ as a parameter.
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� For the noncentral hypergeometric distribution we have the problem that
we do not have a formula expressing the mapping between canonical and
mean value parameters. So we may have to use the canonical parameter
for it. Exception: for θ = 0 we know µ = nK/N in the notation of
Section 1.6, that is, when we have regular hypergeometric rather than
noncentral hypergeometric. Since this is a widely used null hypothesis, we
want to special case this.

� Similarly, for the noncentral negative hypergeometric distribution we also
must use the canonical parameter, except when θ = 0 when we know
µ = rK/(N −K + 1) in the notation of Section 1.7.

REVISED DOWN TO HERE

5.3 Package Version 0.1

After a great struggle, a very simple algorithm was decided on for calculating
φ(x, α, θ) for the binomial distribution. Given α and θ, calculate the appropriate
c1, c2, γ1, and γ2 as follows.

First handle the special cases where α is zero or one and θ is on the boundary
of the parameter space, using Theorem 6 above and the obvious fact that φ is
identically equal to one when α = 1 and identically equal to zero when α = 0.

When in the general case 0 < α < 1 and θ not on the boundary choose some
c1 and c2 such that c1 ≤ Eθ{T (X)} ≤ c2. We pick the c1 and c2 that give, with
randomization, an equal tailed test, in the hope that this is close to correct.

Then we go into an infinite loop that does the following.

� Calculate γ1 and γ2 using the current guesses for c1 and c2 and equations
(15a) and (15b) above. If the results satisfy 0 ≤ γ1 ≤ 1 and 0 ≤ γ2 ≤ 1,
then we are done and stop the loop.

� Otherwise, we change c1 or c2, the one corresponding to the γi that violates
the constraints worst. If this γi is negative, we move the ci out by one
(i. e. decrease c1 or increase c2) and if this γi is greater than one, we move
the ci in by one.

Actually we don’t do an infinite loop, because we have no theorem that says
this algorithm converges, so we have a maximum iteration count (default 10)
and just give up when it is reached. In the examples we have done, there has
been no need to increase the iteration count.

See ump/src/umpubinom.c for an example of this algorithm. See ump/

tests/umpub.R for the tests it passed.

5.4 Package Version 0.3

An attempt to implement the density of abstract randomized P -values and
test the implementation shows that equations (15a) and (15b) are no good.
They exhibit catastrophic cancellation for small alpha.
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[block of text with several equations moved]

This seems to work better, but honesty compels us to admit that this formula
also is subject to catastrophic cancellation. Perusal of the source code reveals
several ad hoc bits of code that deal with special cases in which the code without
the adhockery fails due to catastrophic cancellation or other problems with the
inexactitude of floating point arithmetic.

It is fair to say that our code is far from an elegant and provably correct
solution to this problem. We think Algorithm 1 would actually be better than
the one we used in all respects except that it takes time proportional to the
sample size, which was deemed unacceptable (perhaps wrongly).

5.5 Other Distributions

We could perhaps do Poisson and negative binomial similarly to the way
version 0.3 does the binomial, but that will not do for the other two distributions
of interest. For the noncentral hypergeometric we follow Liao and Rosen (2001)
except they do not say how to calculate CDF, so we need to worry about that.

In fact, we think, all distributions of interest can be calculated following Liao
and Rosen (2001) (whether we actually want to do that or not) so we discuss
that.

5.5.1 Recursion

All of the distributions of interest satisfy a recursion relation. Define

rθ(x) =
fθ(x)

fθ(x− 1)

Then for the binomial exponential family of distributions

rθ(x) =

(
n
x

)
px(1− p)n−x(

n
x−1
)
px−1(1− p)n−x+1

=
(x− 1)! (n− x+ 1)! p

x! (n− x)! (1− p)
=

(n− x+ 1)eθ

x

and for the Poisson exponential family of distributions

rθ(x) =
µxe−µ/x!

µx−1e−µ/(x− 1)!
=
µ

x
=
eθ

x

and for the negative binomial exponential family of distributions

rθ(x) =

(
r+x−1
x

)
pr(1− p)x(

r+x−2
x−1

)
pr(1− p)x−1

=
(r + x− 1)! (x− 1)! (1− p)

(r + x− 2)!x!
=

(r + x− 1)eθ

x
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and for the noncentral hypergeometric exponential family of distributions

rθ(x) =
exθ
(
K
x

)(
N−K
n−x

)
e(x−1)θ

(
K
x−1
)(

N−K
n−x+1

)
=

(x− 1)! (K − x+ 1)! (n− x+ 1)!(N −K − n+ x− 1)! eθ

x! (K − x)! (n− x)! (N −K − n+ x)!

=
(K − x+ 1)(n− x+ 1)eθ

x(N −K − n+ x)

and for the noncentral negative hypergeometric exponential family of distribu-
tions

rθ(x) =

(
x+r−1
x

)(
N−r−x
K−x

)
eθ(

x−1+r−1
x−1

)(
N−r−x+1
K−x+1

)
=

(x+ r − 1)! (N − r − x)! (x− 1)! (K − x+ 1)! eθ

x! (K − x)! (x+ r − 2)!(N − r − x+ 1)!

=
(x+ r − 1)(K − x+ 1)eθ

x(N − r − x+ 1)

and these recursions are the fundamental idea of the method of Liao and Rosen
(2001).

5.5.2 Unimodality

For binomial
d

dx
log rθ(x) = − 1

n− x+ 1
− 1

x

(note that n−x ≥ 0) so rθ(x) is a decreasing function of x and all distributions
in the family are unimodal.

For Poisson
d

dx
log rθ(x) = − 1

x

so rθ(x) is a decreasing function of x and all distributions in the family are
unimodal.

For negative binomial

d

dx
log rθ(x) =

1

r + x− 1
− 1

x
= − r − 1

x(r + x− 1)

(note that r ≥ 1) so rθ(x) is a decreasing function of x and all distributions in
the family are unimodal.

For noncentral hypergeometric

d

dx
log rθ(x) = − 1

K − x+ 1
− 1

n− x+ 1
− 1

x
− 1

N −K − n+ x
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(note the denominator of each fraction is positive) so rθ(x) is a decreasing
function of x and all distributions in the family are unimodal.

For noncentral negative hypergeometric

d

dx
log rθ(x) =

1

x+ r − 1
− 1

K − x+ 1
− 1

x
+

1

N − r − x+ 1

= − r − 1

x(x+ r − 1)
− N −K − r

(K − x+ 1)(N − r − x+ 1)

(note that 1 ≤ r ≤ N −K and 1 ≤ x ≤ K) so rθ(x) is a decreasing function of
x and all distributions in the family are unimodal.

5.5.3 Modes

Thus for each distribution the largest x such that rθ(x) ≥ 1 is the unique
mode if rθ(x) > 1 for that x, whereas x and x− 1 are both modes if rθ(x) = 1
for that x.

To simplify notation, for all distributions, we write ρ = eθ and we write mθ

for the mode.
For binomial

rθ(x) =
eθ

x
mθ = bρc

For Poisson

rθ(x) =
(n− x+ 1)eθ

x
mθ = b(n+ 1)ρ/(1 + ρ)c

For negative binomial

rθ(x) =
(r + x− 1)eθ

x
mθ = b(r − 1)ρ/(1− ρ)c

For noncentral hypergeometric

rθ(x) =
(K − x+ 1)(n− x+ 1)eθ

x(N −K − n+ x)

so to find the mode we need to solve the quadratic equation

(K − x+ 1)(n− x+ 1)ρ = x(N −K − n+ x)

for x. This equation can be rewritten

ρ
(
x2 − (K + n+ 2)x+ (K + 1)(n+ 1)

)
= x2 + (N −K − n)x

or
(ρ− 1)x2 −

(
(K + n)(ρ− 1) +N + 2ρ

)
x+ ρ(K + 1)(n+ 1) = 0
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A Algorithm for Fuzzy P -Values

Here we are interested in x fixed at the observed data and θ fixed at the
value hypothesized under the null hypothesis.

We know from Algorithm 1 that C1 ≤ µ ≤ C2. Hence if T (x) ≤ µ, we have
φ(x, α, θ) strictly between 0 and 1 if and only if C1 = T (x).

Then in (14a) and (14b) p1 and P1 and M1 are fixed (because C1 and θ are
fixed), from which we see

P1 + γ1p1 ≤ α
M1 + γ1C1p1 ≤ αµ

so

α ≥ max

(
P1,

M1

µ

)
So now we need a guess about what C2 may be. Because of discreteness, we

have no way to calculate except by trial and error. Start with an approximately
equal-tailed interval, that is,

P1 ≈ P2

P1 + p1 ≈ p2 + P2

For example, we could set C2 to be the 1− P1 quantile.
The next step is to use (15a) and (15b) to see if we have a solution, that is,

if there is any range of α for which these equations both evaluate to something
between 0 and 1, that is, α such that

0 ≤ α(C2 − µ) + (M1 − C2P1) + (M2 − C2P2)

p1(C2 − C1)
≤ 1

0 ≤ α(µ− C1)− (M2 − C1P2)− (M1 − C1P1)

p2(C2 − C1)
≤ 1

both hold. We should put in the assumption that C1 < C2. In case we have
T (x) = µ, the fuzzy P -value is given by (12a) with C1 = C2 = C = µ and
p1 = p2 = p.

−(M1 − C2P1)− (M2 − C2P2)

C2 − µ
≤ α ≤ p1(C2 − C1)− (M1 − C2P1)− (M2 − C2P2)

C2 − µ
(M2 − C1P2) + (M1 − C1P1)

µ− C1
≤ α ≤ p2(C2 − C1) + (M2 − C1P2) + (M1 − C1P1)

µ− C1

Try an example, Poisson, execute algorithm 1.

fuzzy.pval <- function(mu) {
stopifnot(is.numeric(mu))
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stopifnot(is.finite(mu))

stopifnot(length(mu) == 1)

stopifnot(mu > 0)

C1 <- floor(mu)

C2 <- ceiling(mu)

save <- c(C1, C2, 1, 1, 1) |> rbind(deparse.level = 0)

colnames(save) <- c("C1", "C2", "gamma1", "gamma2", "alpha")

if (C1 == C2) {
p <- ppois(C1, mu)

alpha <- 1 - p

gamma <- 1 - (1 - alpha) / p

save <- rbind(save, c(C1, C2, gamma, gamma, alpha))

C1 <- C1 - 1

C2 <- C2 + 1

save <- rbind(save, c(C1, C2, 1, 1, alpha))

}
gamma1 <- 1

gamma2 <- 1

repeat {
p1 <- dpois(C1, mu)

p2 <- dpois(C2, mu)

P1 <- ppois(C1 - 1, mu)

P2 <- ppois(C2, mu, lower.tail = FALSE)

M1 <- mu * ppois(C1 - 2, mu)

M2 <- mu * ppois(C2 - 1, mu, lower.tail = FALSE)

L1 <- (- (M1 - C2 * P1) - (M2 - C2 * P2)) / (C2 - mu)

L2 <- ((M2 - C1 * P2) + (M1 - C1 * P1)) / (mu - C1)

alpha <- max(L1, L2)

gamma1 <- (alpha * (C2 - mu) + (M1 - C2 * P1) + (M2 - C2 * P2)) /

(p1 * (C2 - C1))

gamma2 <- (alpha * (mu - C1) - (M2 - C1 * P2) - (M1 - C1 * P1)) /

(p2 * (C2 - C1))

save <- rbind(save, c(C1, C2, gamma1, gamma2, alpha))

if (L1 > L2) {
C1 <- C1 - 1

gamma1 <- 1

} else {
C2 <- C2 + 1

gamma2 <- 1

}
save <- rbind(save, c(C1, C2, gamma1, gamma2, alpha))

if (alpha < 1e-5) break

}
as.data.frame(save)

}
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fuzzy.pval(5.55) |> zapsmall()

## C1 C2 gamma1 gamma2 alpha

## 1 5 6 1.000000 1.000000 1.000000

## 2 5 6 0.243182 0.000000 0.713101

## 3 5 7 0.243182 1.000000 0.713101

## 4 5 7 0.000000 0.874227 0.655882

## 5 4 7 1.000000 0.874227 0.655882

## 6 4 7 0.334237 0.000000 0.444193

## 7 4 8 0.334237 1.000000 0.444193

## 8 4 8 0.000000 0.625582 0.360329

## 9 3 8 1.000000 0.625582 0.360329

## 10 3 8 0.529017 0.000000 0.253865

## 11 3 9 0.529017 1.000000 0.253865

## 12 3 9 0.000000 0.190822 0.151960

## 13 2 9 1.000000 0.190822 0.151960

## 14 2 9 0.834218 0.000000 0.131821

## 15 2 10 0.834218 1.000000 0.131821

## 16 2 10 0.212287 0.000000 0.064880

## 17 2 11 0.212287 1.000000 0.064880

## 18 2 11 0.000000 0.447612 0.043891

## 19 1 11 1.000000 0.447612 0.043891

## 20 1 11 0.627556 0.000000 0.029147

## 21 1 12 0.627556 1.000000 0.029147

## 22 1 12 0.172113 0.000000 0.012388

## 23 1 13 0.172113 1.000000 0.012388

## 24 1 13 0.000000 0.233640 0.006407

## 25 0 13 1.000000 0.233640 0.006407

## 26 0 13 0.761252 0.000000 0.004788

## 27 0 14 0.761252 1.000000 0.004788

## 28 0 14 0.301782 0.000000 0.001828

## 29 0 15 0.301782 1.000000 0.001828

## 30 0 15 0.111659 0.000000 0.000655

## 31 0 16 0.111659 1.000000 0.000655

## 32 0 16 0.038732 0.000000 0.000221

## 33 0 17 0.038732 1.000000 0.000221

## 34 0 17 0.012645 0.000000 0.000070

## 35 0 18 0.012645 1.000000 0.000070

## 36 0 18 0.003899 0.000000 0.000021

## 37 0 19 0.003899 1.000000 0.000021

## 38 0 19 0.001139 0.000000 0.000006

## 39 0 20 0.001139 1.000000 0.000006

fuzzy.pval(5) |> zapsmall()

## C1 C2 gamma1 gamma2 alpha
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## 1 5 5 1.000000 1.000000 1.000000

## 2 5 5 0.000000 0.000000 0.384039

## 3 4 6 1.000000 1.000000 0.384039

## 4 4 6 0.166667 0.000000 0.532087

## 5 4 7 0.166667 1.000000 0.532087

## 6 4 7 0.000000 0.860000 0.488220

## 7 3 7 1.000000 0.860000 0.488220

## 8 3 7 0.360119 0.000000 0.308575

## 9 3 8 0.360119 1.000000 0.308575

## 10 3 8 0.000000 0.483733 0.224323

## 11 2 8 1.000000 0.483733 0.224323

## 12 2 8 0.625083 0.000000 0.161168

## 13 2 9 0.625083 1.000000 0.161168

## 14 2 9 0.050972 0.000000 0.076549

## 15 2 10 0.050972 1.000000 0.076549

## 16 2 10 0.000000 0.857946 0.069680

## 17 1 10 1.000000 0.857946 0.069680

## 18 1 10 0.422786 0.000000 0.034677

## 19 1 11 0.422786 1.000000 0.034677

## 20 1 11 0.055812 0.000000 0.014071

## 21 1 12 0.055812 1.000000 0.014071

## 22 1 12 0.000000 0.687136 0.011117

## 23 0 12 1.000000 0.687136 0.011117

## 24 0 12 0.509686 0.000000 0.005453

## 25 0 13 0.509686 1.000000 0.005453

## 26 0 13 0.196033 0.000000 0.002019

## 27 0 14 0.196033 1.000000 0.002019

## 28 0 14 0.070012 0.000000 0.000698

## 29 0 15 0.070012 1.000000 0.000698

## 30 0 15 0.023337 0.000000 0.000226

## 31 0 16 0.023337 1.000000 0.000226

## 32 0 16 0.007293 0.000000 0.000069

## 33 0 17 0.007293 1.000000 0.000069

## 34 0 17 0.002145 0.000000 0.000020

## 35 0 18 0.002145 1.000000 0.000020

## 36 0 18 0.000596 0.000000 0.000005

## 37 0 19 0.000596 1.000000 0.000005

Looks like that works. Now we need a function that works for just one x.

fuzzy.pval.too <- function(mu, x) {
stopifnot(is.numeric(mu))

stopifnot(is.finite(mu))

stopifnot(length(mu) == 1)

stopifnot(mu > 0)

stopifnot(is.numeric(x))

40



stopifnot(is.finite(x))

stopifnot(length(x) == 1)

stopifnot(x >= 0)

stopifnot(x == round(x))

# special case x == mu

if (x == mu) {
p <- ppois(x, mu)

alpha <- 1 - p

return(list(alpha = c(alpha, 1), df = c(0, 1)))

}

# regular case mu < x

if (x > mu) {
C2 <- x

p2 <- dpois(C2, mu)

P2 <- ppois(C2, mu, lower.tail = FALSE)

M2 <- mu * ppois(C2 - 1, mu, lower.tail = FALSE)

# guess C1

C1 <- qpois(P2, mu)

p1 <- dpois(C1, mu)

P1 <- ppois(C1 - 1, mu)

M1 <- mu * ppois(C1 - 2, mu)

L1 <- (- (M1 - C2 * P1) - (M2 - C2 * P2)) / (C2 - mu)

L2 <- ((M2 - C1 * P2) + (M1 - C1 * P1)) / (mu - C1)

U1 <- (p1 * (C2 - C1) - (M1 - C2 * P1) - (M2 - C2 * P2)) / (C2 - mu)

U2 <- (p2 * (C2 - C1) + (M2 - C1 * P2) + (M1 - C1 * P1)) / (mu - C1)

alpha <- c(max(L1, L2), min(U1, U2))

gamma2 <- (alpha * (mu - C1) - (M2 - C1 * P2) - (M1 - C1 * P1)) /

(p2 * (C2 - C1))

gamma2 <- zapsmall(gamma2)

return(list(alpha = alpha, df = gamma2))

}
}

fuzzy.pval.too(5, 5)

## $alpha

## [1] 0.3840393 1.0000000

##

## $df

## [1] 0 1

fuzzy.pval(5.55) |> subset(C2 == 8) |> zapsmall()

## C1 C2 gamma1 gamma2 alpha
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## 7 4 8 0.334237 1.000000 0.444193

## 8 4 8 0.000000 0.625582 0.360329

## 9 3 8 1.000000 0.625582 0.360329

## 10 3 8 0.529017 0.000000 0.253865

fuzzy.pval.too(5.55, 8)

## $alpha

## [1] 0.2538648 0.3603289

##

## $df

## [1] 0.0000000 0.6255818

B Fuzzy Confidence Interval Examples

First example (Figure 1 below), note that when observed x is as low as
possible (zero for binomial), the fuzzy confidence interval starts at 1− α as per
Theorem 6. Also note that in this case the core (set where membership function
is equal to one) is empty.

library(ump)

p <- seq(0, 1, length = 1001)

phi <- umpu.binom(0, 10, p, 0.05)

xmax <- min(p[phi == 1])

xmax <- 1.1 * xmax

plot(p, 1 - phi, xlim = c(0, xmax), ylim = 0:1,

xlab = "success probability", ylab = "", type = "l")

Second example (Figure 2 below), note that when observed x is adjacent
to its minimum value (one for binomial), the fuzzy confidence interval starts
at 1 − α as per Theorem 6 and goes up from there until it reaches one, and is
nonincreasing thereafter. In this example, the core is nonempty.

phi <- umpu.binom(1, 10, p, 0.05)

xmax <- min(p[phi == 1])

xmax <- 1.1 * xmax

plot(p, 1 - phi, xlim = c(0, xmax), ylim = 0:1,

xlab = "success probability", ylab = "", type = "l")

Third example (Figure 3 below), another one just like the previous one except
that the coverage probability is less, so the behavior is more extreme.

phi <- umpu.binom(1, 10, p, 0.5)

xmax <- min(p[phi == 1])
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Figure 1: Binomial Fuzzy Confidence Interval, x = 0, n = 10, alpha = 0.05
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Figure 2: Binomial Fuzzy Confidence Interval, x = 1, n = 10, alpha = 0.05
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Figure 3: Binomial Fuzzy Confidence Interval, x = 1, n = 10, alpha = 0.5

xmax <- 1.1 * xmax

plot(p, 1 - phi, xlim = c(0, xmax), ylim = 0:1,

xlab = "success probability", ylab = "", type = "l")

Fourth example (Figure 4 below), another one just like the previous one
except that the coverage probability is less again, so the behavior is even more
extreme. For this one the coverage probability requested is so low that the core
is empty. In order to have exactly 25% confidence, the membership function
cannot go up to one. The membership function reaches its maximum value at
µ = x as per Theorem 5.

phi <- umpu.binom(1, 10, p, 0.75)

xmax <- min(p[phi == 1])
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Figure 4: Binomial Fuzzy Confidence Interval, x = 1, n = 10, alpha = 0.75

xmax <- 1.1 * xmax

plot(p, 1 - phi, xlim = c(0, xmax), ylim = 0:1,

xlab = "success probability", ylab = "", type = "l")

Fifth example (Figure 5 below), now the observed x is not either of the
two lowest possible values or either of the two highest. So the fuzzy confidence
interval has the typical behavior: as µ and θ increase from one end of the
parameter space to the other, the fuzzy confidence interval is zero for a while,
then increases smoothly to one, then is one for a while (the core), then decreases
smoothly to zero, then is zero the rest of the way.

phi <- umpu.binom(4, 10, p, 0.05)

xmax <- max(p[phi < 1])
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Figure 5: Binomial Fuzzy Confidence Interval, x = 4, n = 10, alpha = 0.05

xmin <- min(p[phi < 1])

xmax <- 1.1 * xmax

xmin <- xmin / 1.1

plot(p, 1 - phi, xlim = c(xmin, xmax), ylim = 0:1,

xlab = "success probability", ylab = "", type = "l")

Sixth example (Figure 6 below), another one just like the previous one except
that the coverage probability is less, so the behavior is more extreme.

phi <- umpu.binom(4, 10, p, 0.5)

xmax <- max(p[phi < 1])

xmin <- min(p[phi < 1])

xmax <- 1.1 * xmax
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Figure 6: Binomial Fuzzy Confidence Interval, x = 4, n = 10, alpha = 0.5

xmin <- xmin / 1.1

plot(p, 1 - phi, xlim = c(xmin, xmax), ylim = 0:1,

xlab = "success probability", ylab = "", type = "l")

Seventh example (Figure 7 below), another one just like the previous one
except that the coverage probability is less again, so the behavior is even more
extreme. For this one the coverage probability requested is so low that the core
is empty. In order to have exactly 20% confidence, the membership function
cannot go up to one. The membership function reaches its maximum value at
µ = x as per Theorem 5.
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Figure 7: Binomial Fuzzy Confidence Interval, x = 4, n = 10, alpha = 0.8

phi <- umpu.binom(4, 10, p, 0.8)

xmax <- max(p[phi < 1])

xmin <- min(p[phi < 1])

xmax <- 1.1 * xmax

xmin <- xmin / 1.1

plot(p, 1 - phi, xlim = c(xmin, xmax), ylim = 0:1,

xlab = "success probability", ylab = "", type = "l")
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