
Theory of Aster Models

Charles J. Geyer

April 6, 2024



Preface

This is a book about the theory of aster models. Its main intended
readers are implementers of aster software. So far, that is just the author.
The reason for the book is to go into all the gory details so the software can
do the Right Thing.

Other readers may also find this book useful in having all of the theory
of aster models in one place and presented with consistent notation. But
they may have to skip a lot of material they don’t want to read.
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Chapter 1

Introduction

1.1 Background

Aster models (Geyer, Wagenius, and Shaw, 2007; Shaw, Geyer, Wage-
nius, Hangelbroek, and Etterson, 2008b; Geyer, Ridley, Latta, Etterson, and
Shaw, 2013) are parametric statistical models specifically designed for life
history analysis. They are exponential family models that generalize gen-
eralized linear models (GLM) that are also exponential family models (for
example, logistic regression and Poisson regression with log link) in two ways

� in GLM components of the response vector are conditionally indepen-
dent given covariate data but in aster models they need not be, and

� in GLM the conditional distributions of components of the response
vector given covariate data all come from the same family but in aster
models they need not.

As generalizations of GLM, aster models are also regression models. They
model the conditional distribution of the response vector given covariate
data. The marginal distribution of covariate data is not modeled.

In life history analysis, the data are about survival and reproduction of
biological organisms. Thus aster models also generalize discrete time sur-
vival analysis (aster models model not only survival but also what happens
conditional on survival). Aster models unify many disparate kinds of life
history analysis that have appeared in the biological literature: comparison
of Darwinian fitness between various groups (Geyer et al., 2007; Shaw et al.,
2008b), estimation of fitness landscapes (Lande and Arnold, 1983; Mitchell-
Olds and Shaw, 1987; Shaw et al., 2008b; Shaw and Geyer, 2010, Eck, Shaw,
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CHAPTER 1. INTRODUCTION 2

Geyer, and Kingsolver, 2015), Leslie matrix analysis (Caswell, 2001), life ta-
ble analysis in demography (Goodman, 1968), and estimation of population
growth rates (Fisher, 1930; Lenski and Service, 1982; Shaw et al., 2008b;
Eck et al., 2015). Aster models also generalize zero-inflated Poisson regres-
sion (Lambert, 1992), negative binomial regression (overdispersed Poisson
regression), and zero-inflated negative binomial regression.

Aster models are a special case of graphical models (Lauritzen, 1996).
In particular, they are statistical models for which the joint distribution
of the response vector factorizes as a product of marginal and conditional
distributions (equation (1.1) below). This makes aster models a special case
of chain graph models (Lauritzen, 1996, Sections 2.1.1 and 3.2.3).

Aster models also have the predecessor-is-sample-size property (Sec-
tion 1.12 below) that makes the joint distribution of the response vector
an exponential family. This property can be seen to generalize unnamed
properties of survival analysis, life-table analysis, Leslie matrix analysis,
and population growth rate analysis (Section 1.13.3 below).

1.2 Software

Currently, all software for aster models is written in the R statistical
computing language (R Core Team, 2023). There are two CRAN (cran.
r-project.org) packages, aster (Geyer, 2021) and aster2 (Geyer, 2017a).
Both R and these packages can be installed in minutes on any computer,

so any user can get started with aster models in almost no time.
R package aster is the most complete. It does everything except depen-

dence groups and limiting conditional models.
R package aster2 is the very incomplete. It does do dependence groups

and limiting conditional models, but everything else is either missing or
much harder to use than in R package aster. The only analyses known to
us using R package aster2 are Eck et al. (2015) and May, Shaw, Geyer, and
Eck (2022).

So any aster model that can be done with R package aster should be
done with that package.

1.3 Summary

Aster models combine three ideas,

� factorization of a joint distribution into a product of marginals and
conditionals (Section 1.6 below),
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� the predecessor is sample size property (Section 1.12 below), which
says the conditioning variables in the conditional distributions in the
factorization act like sample sizes, and

� the exponential family property (Section 1.16 below), which says the
conditional distributions in the factorization are exponential families
of distributions,

into one big idea. Together they make the joint distribution of the response
vector also an exponential family. And this makes aster models as well-
behaved as generalized linear models or log-linear models for categorical
data analysis, even though they are far more more complicated.

1.4 Vectors and Subvectors

We adopt a notation from Lauritzen (1996) for subvectors, but fuss about
it more. The idea that vectors can have arbitrary index sets, rather than in-
dices that are consecutive numbers starting at one, appears earlier in Rock-
afellar (1988). The idea that vectors are functions occurs everywhere in
functional analysis (Rudin, 1991, Appendix B).

As in set theory (Halmos, 1960, Section 8), if A and B are sets, then AB

denotes the set of all functions B → A. In particular, if J is a finite set,
then we let RJ denote the set of all functions J → R. This set can also be
considered a finite-dimensional vector space. That functions J → V where
J is any set and V is a field or a vector space can be considered vectors
is the reason the study of infinite-dimensional topological vector spaces is
called functional analysis.

Another way of looking at this distinction is that the usual view of finite-
dimensional vector spaces is that they are Rd for some natural number d,
which is tantamount to insisting that the index set for vectors in this space
must be the set {1, . . . , d}. Here we are saying the index set can be any
finite set J .

Even though we consider vectors to be functions, we write evaluation of
these functions yj so it looks like usual notation. We even say that yj is a
component of the vector y rather than the value of the function y at the
point j. But behind the scenes our vectors are also functions, and we could
write y(j) instead of yj .

We need a notation for subvectors of a vector. If y is an element of RJ

and A ⊂ J , then we let yA denote the restriction of y to the set A. As
such, it is an element of the vector space RA. Like all functions, it knows



CHAPTER 1. INTRODUCTION 4

its domain and codomain. It knows it is a function A → R. So it knows
its components are yj , j ∈ A. And these are also the components of y for
j ∈ A. Since the components of yA are a subset of the components of y, we
say yA is a subvector of y.

If we were to insist that all vectors, including subvectors, have index
sets {1, . . . , k} for some natural number k, then we could not distinguish
different subvectors of the same length, or at least could not without ugly
and cumbersome extra decoration of the notation. (It is hard to explain how
elegant this notation is with simple examples, but a perusal of Appendices B
and C will show this notation is extremely powerful, and those appendices
would be much longer and more confusing if we had to use conventional
notation with indices going from 1 to k.)

Our notation does have the drawback that we have only the convention
that lower case letters denote elements of sets and upper case letters denote
sets to indicate that yj is a component of a vector or subvector (the value
of a function at the index j) and yA is a subvector (the restriction of a
function to the set A, so still a function, not the value of a function). We
also consider any subscript notation that clearly denotes a set as indicating
a subvector, for example, y{1,3,5} or y{j} or y{ j∈J :j≺i }.

The conventional notation for restriction of a function in mathematics
is y|A or y|A. If we used this, it would be more definite whether a subvector
is intended. Perhaps our usage, which agrees with Lauritzen, is ill-advised.
But we will continue with it.

It will not be important in what follows, but a special subvector y∅ has
the empty index set. It is a function ∅ → R. One might wonder what
that is, but mathematicians define such. For any set A there is exactly one
function ∅→ A, which is called the empty function. It has an empty graph
(no argument-value pairs) because there are no possible argument values.
That is, if f : ∅→ A is an empty function, then it is valid to write f(x) for
all x in the domain of f , which is the empty set, so there are no such x. But
there is the function. And there is exactly one such function (for each set
A) because there is only one empty set and only one subset of ∅ × A = ∅
that is the graph of f . We also want to consider the vector space R∅. Since
this has only one element, the empty function ∅→ R, this must be a vector
space having only one element. Every vector space has a zero vector. So this
single element must be the zero vector of the vector space R∅. So the empty
function f : ∅ → R must be the zero vector of this vector space. And this
makes a crazy kind of mathematical sense: we do have f(x) = 0 for all x in
the domain of f , just like for any other zero vector. The only tricky part is
that there are no such x. But that is OK to mathematicians. Quantifiers
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can range over any set, including the empty set, so the statement f(x) = 0
for all x ∈ ∅ is a true mathematical statement. We say f(x) = 0 holds
vacuously, meaning there are no x that need to be considered. Whether
one finds this paragraph interesting or just crazy, it is an inevitable part
of the vectors-are-really-functions point of view. It is always there in the
background, whether or not we pay any attention to it.

When we consider random vectors Y , then YA is also a random vector
for any A that is a subset of the index set (domain) of Y . This includes Y∅.
But since Y∅ has only one possible value, the empty function y∅, this must
be a constant random vector (one that takes the same value with probability
one).

Of course since Y∅ and y∅ are zero vectors of the vector space R∅ in
which they take values, we can write 0 instead of Y∅ or y∅.

1.5 Regression Notation

Strictly speaking, in regression theory, every probability and expectation
is conditional on covariate data, at least on the part of the covariate data
that is considered random rather than fixed by the design of the experiment.
Thus to be hyperpedantic, we should always write

E(YA | the part of covariate data that is random)

Pr(YA ∈ B | the part of covariate data that is random)

rather than E(YA) or Pr(YA ∈ B). But, like most regression books, we will
not do this. The dependence of probabilities and expectations on covariates
is usually not made explicit in the notation.

This is especially important in aster models when components of the
response vector depend on the values of other components, so we frequently
write

E(YA | yj)
pr(yA | yj)

and the like (Section 1.6 below). And we do not want this dependence
confused with dependence on covariate data.

When necessary for clarity, as in the discussion of fitness landscapes,
which are regression functions, we can explicitly denote the dependence on
covariate data in conditional probabilities and expectations.
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1.6 Factorization

Let J be the index set of the response vector y of an aster model. We
also need more variables that are not in the response vector. As we shall see
they are treated as constants. Let N be the index set of all the variables,
so J ⊂ N . Then there is a partition G of J and a function q : G → N , such
that the joint distribution of y factorizes as

pr(y) =
∏
G∈G

pr(yG | yq(G)) (1.1)

We emphasize that q : G → N maps elements of G, which are sets of indices,
to elements of N , which are single indices, so each yG in (1.1) is a subvector
of the response vector y, and each yq(G) in (1.1) is a component of the vector
of all the variables.

In this factorization, each component yj of the response vector y appears
exactly once “in front of the bar” in a conditional distribution on the right-
hand side (because G is a partition of J so each j ∈ J is in exactly one
G ∈ G). So every component of y is treated as random (the joint distribution
of y is modeled). Random variables yq(G) that appear “behind the bar” in
a conditional on the right-hand side may or may not be components of y.
They are not if q(G) /∈ J . The distribution of such random variables is not
modeled by (1.1). So they are treated as constant random variables.

We say (1.1) is valid if what are denoted as conditional distributions on
the right-hand side agree with the conditional distributions derived from the
left-hand side (the joint distribution) by the usual operations of probability
theory.

Theorem 1.1. The factorization (1.1) is valid if and only if the partition G
can be totally ordered by some total ordering < such that q(G) ∈ H implies
G < H.

A proof of this theorem is straightforward and given in Appendix A. It
could also be derived from the discussion of chain graph models in Lauritzen
(1996, equation 3.23).

In (1.1) we have been deliberately vague about what pr is supposed to
mean, since there are many ways to specify probability distributions and
any of them will do.

� If y is a discrete random vector, then pr could denote probability mass
functions.
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� If y is a continuous random vector, then pr could denote probability
density functions.

� If y is a partly discrete and partly continuous continuous random vec-
tor (either some components discrete and some components continu-
ous or some components a mixture of discrete and continuous) then
pr could denote probability mass-density functions.

� No matter what, pr could denote cumulative distribution functions.

� No matter what, pr could denote probability measures and regular
conditional probability measures (also called Markov kernels).

In any of these cases the multiplication indicated in (1.1) is actual multipli-
cation of real-valued thingummies.

1.6.1 Topological Sort

The total order asserted to exist by the theorem need not be unique and
usually is not unique. We can find such a total order using the algorithm
called topological sort (Aho et al., 1983, Section 6.6).

This algorithm, given a partial order on a set, finds a total order that
extends the partial order, or proves that none exists (and gives an error
message). R function tsort in R package pooh (Geyer, 2017b) implements
this algorithm.

The set we use here is G and the partial order on it is a list of pairs (G,H)
of elements of G such that q(G) ∈ H. These are supplied to R function
tsort as arguments from and to, which are vectors whose components are
elements of G (coded somehow), that is, when from[k] is G, then to[k] is
the H that contains q(G). And every G such that q(G) ∈ J occurs in from.

Vectors from and to could have length zero. This would happen if
q(G) /∈ J for all G ∈ G. This is only the most extreme case where from does
not contain all elements of G. When this happens, and we want the result
to be a total order on G, we can provide G (in any order) as the domain

argument of R function tsort.
When invoked with these arguments, R function tsort returns a (not

necessarily unique) total order on G compatible with the given partial order,
that is, it agrees with Theorem 1.1. If the user has made a mistake and
incorrectly specified the q function so there is no total order that satisfies
Theorem 1.1, then tsort will give an error.

Current code in R packages aster and aster2 does not actually use the
topological sort algorithm but rather forces the user to input the data so
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that the numerical order of the components of the response vector is the
total order, that is, considering the index set of the response vector to be
{1, . . . , n} for some integer n, current code requires q(G) < j for any j ∈ G.
It is up to the user to input the data in this way. The computer is no help.

But we could make the computer figure this out in future versions of the
software.

1.6.2 Further Factorization

In Lauritzen (1996) chain graph factorizations like our (1.1) and his
equation (3.23) can be further factorized, his equation (3.24). But in aster
model theory, we shall never be interested in such further factorizations
(even in cases where they are possible) and never use any notation that
allows for them. So we will never have an analog of equation (3.24) in
Lauritzen (1996). For us, factorization is our (1.1).

1.7 Graphs

Each factorization goes with a graph (Lauritzen, 1996, Section 3.2.3).
The nodes of the graph are either the elements of N or the components of
y corresponding to these elements (yj for j ∈ N). There is a directed edge,
also called an arrow, q(G) −→ j (or if one prefers yq(G) −→ yj) for every
G ∈ G and every j ∈ G. There is an undirected edge, also called a line,
j −− k (or if one prefers yj −− yk) for every G ∈ G and every j, k ∈ G such
that j 6= k.

As we have just seen, the function q determines the graph (the function
q knows its domain G and codomain N). Conversely, the graph determines
the function q.

� The set J =
⋃
G is the set of nodes of the graph that have incoming

arrows (as we shall see, these nodes are called non-initial).

� The elements of G are the maximal connected components of the graph
of lines having node set J . (The graph of lines is the graph obtained
by keeping all the nodes and lines but removing all the arrows). If
a node j ∈ J has no incoming lines, then the singleton set {j} is an
element of G. R function weak in R package pooh (Geyer, 2017b) can
be used to find the dependence groups implied by a graph of lines.

� The graph of q is determined by the arrows: (G, q(G)) is an argument-
value pair whenever there is an arrow j −→ k with j = q(G) and k ∈ G.
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(If there is an arrow j −→ k for any k ∈ G, then there must also be
an arrow j −→ k for every k ∈ G.)

Thus we can reason with with graphs or with q functions (which we will
soon learn to call predecessor functions, Section 1.10 below). Graphs can be
helpful, but we do not have to use them.

1.7.1 Exception

In theory, as stated above, there is a line between every pair of distinct
elements of every dependence group and no other lines.

In practice, this leads to annoying and unnecessary clutter when we
display graphs as figures. Because we never further factorize dependence
groups (Section 1.6.2 above), we can find the dependence groups from the
graph if we only include enough lines so that each dependence group is a
connected subgraph of the graph of lines (again, this is the graph obtained
by keeping all the nodes and lines but removing all the arrows).

This exception is illustrated in graph (1.16) below where only two lines
rather than three are used to connect the nodes of each dependence group
of size three.

1.8 Graphical Terminology

In aster theory, we say

� a node is initial if it has no incoming arrows or lines (when thinking
about the graph) or if it is not an element of J =

⋃
G (when thinking

about the function q),

� a node is terminal if it has no outgoing arrows (it may have outgoing
lines and will have outgoing lines if it is an element of an element of G
that is not a singleton set) (when thinking about the graph) or if it is
not an element of { q(G) : G ∈ G } (when thinking about the function
q),

� if there is an arrow j −→ k, then we say that j is the predecessor of k
(or yj is the predecessor of yk),

� and, conversely, that k is a successor of j (or yk is the successor of yj).
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In mainstream graphical model theory, a different terminology is more
widely used (Lauritzen, 1996) root = initial, leaf = terminal, parent = pre-
decessor, child = successor. We do not use this terminology in aster model
theory because it can cause serious confusion in biological applications.

As a general policy, we eschew all terminology based on biological analo-
gies when there is an available alternative (even when that alternative is less
popular).

In any aster graph every node has at most one predecessor and all nodes
in the same G ∈ G must have the same predecessor (because q is a function
that takes elements of G as arguments).

In mainstream graph theory, a chain graph with only arrows (no lines)
having the at-most-one-predecessor property is called a forest and its max-
imal connected components are called trees, but we do not use this termi-
nology either (avoiding serious confusion when the application involves data
on real trees in real forests). It is enough to say that aster graphs have the
at-most-one-predecessor property.

In mainstream graph theory, there is a term ancestor that means pre-
decessor, or predecessor of predecessor, or predecessor of predecessor of pre-
decessor, or predecessor of predecessor of predecessor of predecessor, or the
same with arbitrarily many repetitions of “predecessor of.” And there is a
converse term descendant, that is, i is an ancestor of j if and only if j is a
descendant of i.

In aster model theory we avoid these terms too (avoiding confusion when
the application involves real biological organisms with real biological ances-
tors and real biological descendants). If we need the concepts, then we use
the long-winded descriptions predecessor of predecessor of predecessor and
so forth or successor of successor of successor and so forth. Fortunately, we
rarely need these concepts. And when we do need these concepts we can
avoid the cumbersome verbiage by using mathematical notation introduced
in Section 1.11 below.

Finally, we need a term for G and its elements. The terminology we have
been using in our writings about aster models is elements of G are dependence
groups. The mainstream graphical models terminology (Lauritzen, 1996) is
chain components. Both have two words and four syllables. Neither is very
elegant. We don’t like the “chain” terminology because we are not using
general chain graph theory (aster models are very special chain graphs).
Our term dependence group is not great, but we haven’t thought of a better
term.



CHAPTER 1. INTRODUCTION 11

1.8.1 Exception

R package aster uses “root” node for initial node. We hadn’t com-
pletely thought through the terminology when that package was written,
and we have kept this inconsistency for reasons of backward compatibility.

R package aster2 does the Right Thing: uses “initial” node.

1.9 Two Kinds of Aster Graphs

The graphs for aster models are often very large with thousands or tens of
thousands of nodes, but usually they are composed of isomorphic subgraphs.
So drawing one of these isomorphic subgraphs is enough. If you’ve seen one,
you’ve seen them all. (Graphs are isomorphic if a drawing of one can be
laid on a drawing of the other with everything — nodes, lines, and arrows
— matching up. Only the names of the nodes are different. And names of
arrows, if any.)

An aster graph need not be composed of all isomorphic subgraphs, but
the only published example of that is, as far as I know, Eck et al. (2015).

To distinguish these two kinds of graphs, we call the aster graph de-
scribed in the preceding section the full aster graph (we consider the “full”
redundant but the emphasis may help avoid confusion).

Certain subgraphs of the full aster graph, we then call graphs for “indi-
viduals” (in scare quotes for reasons to be explained presently). These are
easier to recognize than describe.

Current aster software (Section 1.2 above) forces q(G) 6= q(H) whenever
G 6= H and q(G) and q(H) are initial nodes. In this case, the graph for
an “individual” (in scare quotes) consists of the subgraph consisting of one
initial node and all of its successors or successors of successors or successors
of successors of successors and so forth with arbitrarily many repetitions of
“successors of” and all of the arrows and lines in the full graph connecting
these nodes. (This is where the term “descendant” in its graph-theoretic
sense would come in handy if we allowed ourselves to use it. The graph
for an “individual” consists of one initial node, all of its descendant nodes,
and all of the lines and arrows going between these nodes. But once we
have the idea of the graph for an “individual” we no longer need the term
“descendant.”)

But aster theory as described so far does not force this convention. If
yj = 1, for all initial nodes j, which is the case with most (but not all) aster
applications, then it would do no harm if all initial nodes were fused into one
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initial node. That would invalidate nothing but the way we just described
graphs for “individuals” (in scare quotes).

Thus we have to be a bit more careful. If G is a dependence group whose
predecessor q(G) is initial, then the graph for the “individual” (in scare
quotes) containing G consists of q(G), the nodes in G and their successors
or successors of successors or successors of successors of successors and so
forth with arbitrarily many repetitions of “successors of” and all of the
arrows and lines in the full graph connecting these nodes. (And it would
make this definition a little shorter if we allowed ourselves to use the word
“descendant” in its graph-theoretic sense.)

There are two reasons why the scare quotes.

� In life history analysis, the graph for an “individual” ideally goes one
or more times around the life cycle (exactly). Thus it may involve
data not only for one biological individual but also for its offspring
and perhaps offspring of offspring (if the experiment goes twice around
the life cycle) or even perhaps more remote descendants (where here
“descendants” means real biological descendants, not the graphical
models idea of descendants).

� If the value of the constant yj at the initial node of the graph for an
“individual” is greater than one, then the data for this “individual” is
actually cumulative data for yj real biological individuals and perhaps
their real biological descendants.

If one does not like our terminology of “ ‘individual’ in scare quotes,”
our advice is to just explain what data the graph is for. It may actually be
for a biological individual, for a biological individual and its offspring, or n
biological individuals and perhaps their offspring. Just say what it is.

Or we could use the characterization of Corollary B.3 in Appendix B,
which says the subgraphs for “individuals” are stochastically independent
subvectors of the response vector.

In general, the subgraphs for “individuals” are the minimal stochastically
independent subvectors, in the sense that the data for an “individual” has
no stochastically independent parts. But when limiting conditional models
come into play, this is no longer the case. Thus independence of data for
“individuals” (in scare quotes) is an important property of aster models, but
it does not (in general) characterize subgraphs for “individuals.”
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1.10 The Other Predecessor Function

It is useful to have not only the set-to-index predecessor function q de-
fined in Section 1.6 above but also the index-to-index predecessor function
p defined as follows

p(j) = k if and only if j ∈ G ∈ G and q(G) = k.

Clearly, q determines p. The converse is not true because p knows nothing
about dependence groups. But p and G together determine q.

1.11 Transitive Closure of Predecessor Relation

The predecessor relation on N is the index-to-index predecessor function
p thought of as a relation, that is, thinking set-theoretically (Halmos, 1960,
Section 7), as the set

{ (j, p(j)) : j ∈ J } (1.2)

of pairs that satisfy the relation.
We need a notation from dynamical systems theory for repeated applica-

tion of a function. If f is any function whose domain and codomain are the
same, then it makes sense to compose f with itself. Then we let f0 denote
the identity function on the domain of f , let f1 = f , f2 = f ◦ f , and, in
general, fn+1 = fn ◦ f . So

f0(x) = x

f1(x) = f(x)

f2(x) = f(f(x))

f3(x) = f(f(f(x)))

and so forth.
We want to use this notation with the index-to-index predecessor func-

tion p, but it does not have the same domain and codomain. It is a function
J → N and J ⊂ N , so its codomain is larger than its domain. (We could
also consider p to be a partial function on N , but this would not help, so
we don’t bother.) This means

� p0(j) = j makes sense for all j ∈ N ,

� p1(j) = p(j) makes sense for all j ∈ J , and
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� pk(j) = p
(
pk−1(j)

)
makes sense whenever pk−1(j) ∈ J but not other-

wise; that is, it makes no sense when pk−1(j) is an initial node.

So pk(j) always makes sense for k = 0, and if it makes sense for some k > 0,
then it also makes sense for all m such that 0 ≤ m ≤ k. but it will never
make sense for all nonnegative integers k, because for all j there exists a k
such that fk(j) is an initial node (because all of our graphs have a finite
number of nodes).

As (1.2) says, we are thinking of the predecessor relation as a relation
on the set J . So in that context pk(j) only makes sense when pm(j) ∈ J for
m = 0, 1, . . . , k − 1.

The transitive closure of the predecessor relation is the smallest transitive
relation R containing it. As with most relations, we prefer denoting this
relation by infix notation: saying j � k rather than (j, k) ∈ R, that is, j � k
means k = pn(j) for some positive integer n.

Theorem 1.2. Under the conditions of Theorem 1.1, the transitive closure
of the predecessor relation is a strict partial order.

Proof. If j � k, then j ∈ G for some G ∈ G and k = pn(q(G)) for some
natural number n (n = 0 is allowed).

If k ∈ H for some H ∈ G, then we have G < H in the total ordering that
Theorem 1.1 uses. Hence we cannot also have k � j because that would
imply G < H and H < G contradicting < being a strict total order.

If k /∈ H for any H ∈ G then k has no predecessor (k is initial) and we
cannot have m � k for any node m.

In either of the preceding cases we never have k � j and j � k. Since
� is a transitive relation by definition, it is a strict partial order (Halmos,
1960, Section 14).

Corollary 1.3. The transitive closure of the predecessor relation is com-
patible with the total order on the family of dependence groups defined in
Theorem 1.1 in the sense that j ∈ G ∈ G and k ∈ H ∈ G and j � k implies
G < H.

The non-strict counterpart of this relation is the reflexive transitive clo-
sure of the predecessor relation, which is denoted �. We have j � k if and
only if j � k or j = k.

The inverse of a relation R considered as a set of argument-value pairs
reverses the order in the pairs, that is (k, j) ∈ R−1 if and only if (j, k) ∈ R.
As usual, we denote the inverse of a relation by turning its infix notation
around: ≺ is the inverse of � and � is the inverse of �.



CHAPTER 1. INTRODUCTION 15

The inverse of the predecessor relation is the successor relation, so ≺ is
the transitive closure of the successor relation and� is the reflexive transitive
closure of the successor relation.

The choice of whether the transitive closure of the predecessor relation
is denoted � or ≺ is arbitrary. Either choice works so long as one keeps
straight which is which. Our choice is influenced by an arbitrary choice
in the source code for R package aster. When the predecessor function
is encoded (as the argument pred to the R function aster) it is required
that predecessors have lower indices than successors (come before them in
the pred vector). Thus we want to think of predecessors as “less than”
successors in some sense. Hence our decision to make p(j) ≺ j.

In graphical model theory, � is called the ancestor relation, ≺ the descen-
dant relation, � the ancestor-or-self relation, and � the descendant-or-self
relation. But, as stated in Section 1.8 above, our policy is to avoid these
terms to avoid confusion in biological applications. If we need words rather
than symbols, we have to use the long winded ones: “reflexive transitive
closure of the predecessor relation” and so forth.

1.12 Predecessor is Sample Size

All aster models have the predecessor is sample size property. This is
a very important property that separates them from all other graphical
models. There is a long history of models that have this property. Life
table analysis and discrete time survival analysis have it. So does Leslie
matrix analysis (Caswell, 2001) and other methods of estimation of popula-
tion growth rate (Fisher, 1930; Goodman, 1968; Lenski and Service, 1982).
But none of those models were regression models, nor did they have the
generality of aster models in their graphical structure. They do have the
basic relationship of conditional and unconditional means implied by this
property (Section 1.13.3 below) but nothing else of aster model theory.

For one conditional distribution in the factorization (1.1), say for the
conditional distribution of yG given yq(G),

� conditional on yq(G) = 0, the distribution of yG is concentrated at zero
(the zero vector having all components equal to zero),

� conditional on yq(G) = 1, the distribution of yG is whatever this dis-
tribution is designated to be, and

� conditional on yq(G) = n with the n > 1, the distribution of yG is the
n-fold convolution of the distribution for sample size one.
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In short, the conditional distribution of yG given yq(G) is the distribution
of the sum of yq(G) independent and identically distributed (IID) random
vectors having whatever the distribution is for sample size one. (By conven-
tion, a sum having zero terms is zero, and a sum having one term is that
term.) Or, even shorter, the predecessor plays the role of sample size for
this conditional distribution. Or, shorter still, predecessor is sample size.

Note that we name families for dependence groups by the conditional
distribution for sample size one. This is an unusual practice. It is not
the way families are named for generalized linear models. And it can seem
unnecessarily mysterious at first sight.

All of our example graphs in Section 1.14 below have Bernoulli arrows.
For such an arrow

yi
Ber−−−−→ yj

why not just say the conditional distribution of yj given yi is binomial with
sample size yi (because the sum of IID Bernoulli is binomial)? For one thing,
it is not clear what sample size zero means without further explanation
(although R functions for the binomial distribution do understand sample
size zero to mean the same thing we do). For another thing, for an arrow

yi
0-Poi−−−−→ yj

the distribution of the sum of IID zero-truncated Poisson random variables
is not a “brand name distribution.” And its probability mass function has
no closed-form expression. So we could not label this arrow with the name
of the conditional distribution of yj given yi because there is no such name.

One consequence of the predecessor-is-sample-size property is that yj
that are predecessors (are at nonterminal nodes) must be nonnegative-
integer-valued random variables. There is an exception to this requirement
that will be discussed in Section 1.17 below, but that exception has never
been used.

Another consequence of the predecessor-is-sample-size property is the
following section.

1.13 Conditional and Unconditional Mean Values

1.13.1 Unconditional

Let y be the response vector of an aster model. We define a parameter
vector µ = E(Y ). This is the vector having components

µj = E(Yj), j ∈ J, (1.3)
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where, as usual, J is the index set of the response vector (the set of non-
initial nodes of the full aster graph).

This is called the unconditional mean value parameter vector. This
name is getting us a little bit ahead of ourselves. At this point, we don’t even
know these means exist. (We will eventually find out they do exist.) And,
at this point, we don’t know that means parameterize aster models, since
we haven’t yet even completely specified what the distribution of an aster
model is. We know the fundamental factorization (1.1), and we know each of
those factors obeys the predecessor-is-sample-size property, but we don’t yet
know anything more. (We will eventually find out means do parameterize
aster models.)

For now we will just assume these means exist.

1.13.2 Conditional

We define another parameter vector ξ having components

ξj = E(Yj | Yp(j) = 1), j ∈ J, (1.4)

if this expression makes sense. It will not make sense when the conditioning
event has probability zero (so the conditional expectation can be defined
arbitrarily). In that case we have to use a different definition that does not
come with an equation. The predecessor-is-sample-size property says that
yj is the sum of yp(j) IID random variables, and we say ξj is the mean of
those random variables.

This is called the conditional mean value parameter vector. As in the
preceding section, this name is getting us a little bit ahead of ourselves.
At this point, we don’t even know these means exist. (We will eventually
find out they do exist.) And, at this point, we don’t know that means
(conditional or unconditional) parameterize aster models. But the next
section will show the unconditional means determine conditional means and
vice versa. So if µ parameterizes, then so does ξ, and vice versa.

1.13.3 The Combination of the Two

It follows from the predecessor-is-sample-size property and linearity of
expectation that

E(Yj | yp(j)) = ξjyp(j), j ∈ J. (1.5)

Then it follows from the iterated expectation axiom of conditional probabil-
ity

E(Yj) = E{E(Yj | Yp(j))} (1.6)



CHAPTER 1. INTRODUCTION 18

that
µj = ξjµp(j), j ∈ J. (1.7)

This is the fundamental recursive relation that shows (as we examine in
more detail presently) how µ is determined by ξ and vice versa.

To map from ξ to µ we use (1.7) recursively

µj = ξjµp(j)

= ξjξp(j)µp(p(j))

= ξjξp(j)ξp(p(j))µp(p(p(j)))

and so forth, with as many recursive applications as necessary. In practice,
the computer traverses the graph in any order that visits predecessors before
successors using (1.7) to determine µj as a function of ξ (having already
determined µp(j) when its node was visited previously). To get the recursion
started, we need the mean values at initial nodes, which are given by

µj = yj , j ∈ N \ J, (1.8)

because the mean value of a constant random variable is its constant value.
Using the reflexive transitive closure of the successor relation � we can

rewrite the above as follows

µj =

∏
i∈J
i�j

ξi


 ∏
i∈N\J
i�j

µi

 , j ∈ J, (1.9)

where we note that the second product always has exactly one term: there
is always exactly one initial node i such that i � j. We could also rewrite
(1.9) as

µj =

∏
i∈J
i�j

ξi


 ∏
i∈N\J
i�j

yi

 , j ∈ J, (1.10)

by (1.8).
To map from µ to ξ, rewrite (1.7) as

ξj =
µj
µp(j)

(1.11)

but for this to make sense, we must know that µp(j) is never zero.
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We will eventually find out that µp(j) is never zero except in limiting
conditional models. So we do not always have this property. Thus (1.11)
makes sense when µp(j) is never zero, but otherwise some components of ξ
are not determined by µ.

Conversely, multiplication by zero is not a problem (unlike division by
zero), so (1.9) and (1.10) always determine µ as a function of ξ.

Everything in this section up to this point is an elementary consequence
of the laws of conditional and unconditional expectation and the predecessor-
is-sample-size property. Consequently, everything in this section up to this
point is also true of all previous models in survival analysis and demography
that have also had this property cited in Sections 1.1 and 1.12 above.

1.13.4 Confession

Geyer et al. (2007) did not define ξ the way we do here. Instead they
used that Greek letter to denote (1.5). A referee said this definition is
dumb. It makes ξ a function of both random variables and parameters, so it
is not a parameter, and one shouldn’t use Greek letters for things that aren’t
parameters. We didn’t listen then and managed to get the paper published
overriding this objection. But now we agree with the referee.

The vector ξ as defined here is an important parameterization of aster
models (this has been realized since Geyer, 2010).

R package aster used the same dumb definition until version 1.0-2 of the
package, when a new optional argument is.always.parameter was added
to the method of R generic function predict that handles aster model ob-
jects. And, for reasons of backward compatibility, the dumb definition is still
the default. One must use the optional argument is.always.parameter =

TRUE to estimate ξ as defined in this section.
R package aster2 and recent papers and technical reports use the defini-

tion presented here (the conditional mean value parameter vector is defined
as we do here if they mention conditional mean value parameters at all).
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1.14 Some Aster Graphs

The first published aster model (Geyer et al., 2007) had this graph

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

(1.12)

which is for one individual. There are 570 individuals in the data set, which
is included in the R package aster. So one can think of the full aster graph
as 570 copies of this graph with the subscripts changed so the nodes (the
yj) are all different.

Because this graph has only arrows, no lines, each node is a dependence
group all by itself.

The individuals are plants of the species Echinacea angustifolia, whose
common name is narrow-leaved purple coneflower. These data were col-
lected by the Echinacea Project (http://echinaceaproject.org/), a long-
running project funded by the National Science Foundation (the co-PI’s are
the second and third authors of Geyer et al. (2007)). The way (1.12) is laid
out, variables in the first column (y1, y4, and y7) are for 2002, those in the
second column are for 2003, those in the third column are for 2004, those in
the first row (y1, y2, and y3) measure survival (0 = dead, 1 = alive), those in
the second row indicate flowering (0 = no flowers, 1 = some flowers), those
in the third row are flower head counts (actual number of flower heads).

Of course, the “rows” and “columns” are not part of the graphical struc-
ture. The only thing that matters is which nodes are connected by which
arrows.

Aster graphs for “individuals” can get a lot bigger than (1.12). The
Echinacea Project now has data for years since 2004 (which extends the
graph with many more “columns”) and data for more life history stages
(which extends the graph with more “rows”).

The node labels (the yj) are random variables, components of the re-
sponse vector. The arrows indicate conditional distributions. An arrow

yi −−−−→ yj (1.13)

indicates the conditional distribution of yj given yi. An arrow

1 −−−−→ yi (1.14)
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indicates the marginal distribution of yi, because conditioning on a constant
random variable is the same as not conditioning.

Labels on the arrows name the distribution. Ber is for Bernoulli (any
zero-or-one-valued random variable), and 0-Poi is for zero-truncated Poisson
(Poisson conditioned on being nonzero). This explanation of arrows and
their distributions is incomplete and will be picked up again in Section 1.12.

Here is a more complicated aster graph from Shaw and Geyer (2010)

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3

Ber−−−−→ y4yBer

yBer

yBer

yBer

y5 y6 y7 y8y0-Poi

y0-Poi

y0-Poi

y0-Poi

y9 y10 y11 y12yPoi

yPoi

yPoi

yPoi

y13 y14 y15 y16yBer

yBer

yBer

yBer

y17 y18 y19 y20

(1.15)

Again, because this graph has only arrows, no lines, each node is a
dependence group all by itself. The label Poi on arrows indicates the Poisson
distribution.

This graph is for simulated data, which Shaw and Geyer (2010) used
because at the time no data for aster models as complicated as (1.15) had
been collected by biologists, and it was important to give such an illustration
of the possibilities of aster models. Like in (1.12) the “columns” in (1.15) are
for data in successive years. The first three “rows” of (1.15) can be taken to
be the same as those of (1.12): survival, flowering indicator variables, and
flower counts. The fourth row of (1.15) is seed counts, and the fifth row is
number of seeds that germinate (produce new plants). Of course, since the
data are simulated, the story about these variables is just a story. It could
be told differently, and Shaw and Geyer (2010) do have a story where the
same graph could be for data about an animal rather than a plant.

This graph did serve as a good example of what was possible. Stanton-
Geddes, Tiffin, and Shaw (2012b, in the on-line appendix) discuss an aster
model with seven life history stages (one of which is artificial, modeling
random sampling in the data collection process — for more on this see
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Chapter 3 below — hence only six are about life history of the organisms)
and thus would be like the graph (1.15) except with seven “rows.” Because
the organism in question (Chamaecrista fasciculata, common name partridge
pea) was an annual plant, there is only one “column.” (As mentioned above,
“rows” and “columns” are not part of the graphical structure — the only
thing that matters is which nodes are connected by which arrows and lines
(if any) — and Stanton-Geddes et al. actually laid out their graph in a row.)

Statistically, there are some important differences between these graphs.
Graph (1.15) has both Poisson (Poi) and zero-truncated Poisson (0-Poi)
arrows and hence illustrates when to use which (see also Section 1.14.1
below). In graph (1.12) every predecessor node is Bernoulli, but in graph
(1.15) y13 through y16 are non-Bernoulli predecessor nodes. So (1.15) shows
that predecessor values can be any nonnegative integer.

The graph (1.16) comes from a still unpublished manuscript for a book
about aster models. It was the first graph for a model for an animal having
life history stages like an insect’s larva, pupa, and adult. We present this
graph for hypothetical data even though a similar model has been fit to
real data by Eck et al. (2015). Those data are for the tobacco hornworm
Manducca sexta, which is an insect (a moth) that does have these life history
stages. Those data were not collected with the intention of using an aster
model (which were very new when the experiment was done) and so were
not ideal for aster analysis. Although an aster analysis was done by Eck
et al. (2015), it does not serve as quite as clean an example as the graph
(1.16).

y1 y4 y7 y10

1 y2 y5 y8 y11

y3 y6 y9 y12

y13 y14 y15 y16

y17 y18 y19 y20

M

M

M

M

M

M

M

M

M

M

M

M

Ber Ber Ber Ber

0-Poi 0-Poi 0-Poi 0-Poi

(1.16)

As always, the constant 1 at the initial node of the graph indicates
that the graph is for one individual. In addition to the notations Ber =
Bernoulli and 0-Poi = zero-truncated Poisson, which we have already met,
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we now also have M = multinomial. Lines without arrowheads are “lines”
connecting nodes in the same dependence group. Hence the dependence
groups containing more than one node are {1, 2, 3}, {4, 5, 6}, {7, 8, 9}, and
{10, 11, 12}. Other nodes are dependence groups all by themselves; {j} is a
dependence group for j ≥ 13.

As stated in Section 1.7.1 above, this graph does not follow the the-
ory, which requires a line connecting each pair of distinct elements of each
dependence group and which would require us to add lines y1 −− y3 and
y4 −− y6 and y7 −− y9 and y10 −− y12 to the graph. But, also as stated in
Section 1.7.1 above, we don’t need these lines to infer the dependence groups
from the graph. The lines y1 −− y2 and y2 −− y3 that are in the graph say
y1 and y3 are in the same dependence group as y2, and since there are no
other lines to these nodes, they must constitute a dependence group. Since
there doesn’t seem to be any room in the picture (1.16) for these additional
lines required by theory, we omit them.

Each of the multi-node dependence groups has a conditional multinomial
distribution with, as usual, predecessor as sample size. Since each prede-
cessor is zero-or-one-valued, if a predecessor (say y2) is equal to one, then
exactly one of its three successor nodes (y4, y5, and y6) is equal to one, and,
if this predecessor is equal to zero, then all of its three successor nodes are
also equal to zero. In effect, exactly one of the “exterior nodes” of this group
of switches (y1, y3, y4, y6, y7, y9, y10, y11, and y12) is equal to one. There is
one path taken by any particular individual, from the initial node (marked
1) through these four multinomial dependence groups.

The intended application for this graph (as in Eck et al., 2015) is life
history data for an insect. As in our graphs without dependence groups,
“columns” of the graph are for different times (days, perhaps). Nodes in the
top “row” of this graph (y1, y4, y7, and y10) indicate death. Nodes in the sec-
ond “row” of this graph (y2, y5, y8, and y11) indicate the individual is a larva
(caterpillar). Nodes in the third “row” of this graph (y3, y4, y9, and y12)
indicate the individual is an adult (moth, with wings, flying around trying
to mate). Nodes in the fourth “row” of this graph (y13 through y16) indi-
cate mating success. Nodes in the bottom “row” of this graph (y17 through
y20) count number of eggs laid. So this graph is for female individuals. In
Eck et al. (2015) the same graph with only the multinomial dependence
groups (nodes 1 through y12) is used for male individuals because the sex of
individuals was not determined before they reached adulthood.

So this graph illustrates two important points not seen before. It is
not necessary for every individual to have the same graph (here females
and males have different graphs). And we have non-singleton dependence
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groups, multinomial “switches” between different life history stages.
Here is yet another graph illustrating normal dependence groups.

1 y1 y2 y3 y4

y5 y6 y7 y8

y9 y10 y11 y12

Ber

N

N

Ber

N

N

Ber

N

N

Ber

N

N (1.17)

Here the top “row” indicates survival. And the next two rows are for
normally distributed something or other given survival. Here we model the
normal as two-node dependence groups {5, 9}, {6, 10}. {7, 11}, and {8, 12}
because we do not want to assume variance is known. As we shall see, this
permits but does not require, modeling variance as a function of covariates.

We see that the aster formalism suggests new possibilities. In order to
have a two-parameter normal distribution, we need two-node dependence
groups. Why the normal distribution has two nodes in the graph is com-
pletely explained in Section D.10 in Appendix D. If we had a one-parameter
subfamily of the normal family, then that would have only one node; see Sec-
tion D.5 for that.

An aster model with two-parameter normal dependence groups, like
graph (1.17), is seen in May et al. (2022). An aster model with one-
parameter normal arrows (normal location family) is seen in Warwell and
Shaw (2017).

1.14.1 Zero-Inflated Poisson

Readers may have wondered why the graph (1.12) has its middle “row.”
The variables y4, y5, and y6 are a function of the variables y7, y8, and y9,
respectively, (yj = 1 if and only if yj+3 > 0, j = 4, 5, 6). So why were these
variables inserted in the graph?

Consider just the subgraph

y1
Ber−−−−→ y4

0-Poi−−−−→ y7 (1.18)

The conditional distribution of y7 given y1 (both arrows combined) is zero-
inflated Poisson (Lambert, 1992). Since y7 = 0 if and only if y4 = 0, and
the probability of this event can be anything (because the Bernoulli arrow
does not have any restrictions on its parameter), it is, strictly speaking,
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zero-inflated-or-deflated Poisson, but we will not be this fussy about this bit
of terminology.

So having arrows arranged like this is just the aster way of getting zero-
inflated Poisson random variables into the model.

Why can we not just have zero-inflated Poisson arrows? Because zero-
inflated Poisson is not an exponential family. It can be factored into a
product of two exponential families, like (1.18) does. But it is not itself
exponential family. Hence we cannot have arrows like that in an aster model
because of the exponential family assumption (Section 1.16 below). If we
want zero-inflated Poisson or zero-inflated negative binomial in aster models,
then this is the way we have to do it.

Although we have zero-inflated Poisson distributions in aster models, we
do not give them their usual parameterization (Lambert, 1992). No aster
model parameterization (summarized in Section 1.21 below) has this usual
parameterization.

1.14.2 On Not Overusing Zero-Truncated Poisson

The zero-truncated Poisson distribution is for when by definition of the
model a count of zero cannot occur unless the predecessor is zero. It is not
for the case where expected count is so high that zeros occur infrequently.
It is for the case where zeros are impossible (except when predecessors are
zero).

Some users have been confused about this, using zero-truncated distri-
butions where they are not appropriate.

1.14.3 Not Really Missing Data

The property that predecessor zero implies successor zero (because a
sum having zero terms is zero by convention, Section 1.12 above) takes
care of what people formerly conceived of as a missing data problem: when
yp(j) = 0 (for concreteness, say this means the “individual” is dead), you
cannot “observe” yj .

Nevertheless we can infer yj = 0 (if yj is flower count, then we are
inferring that dead plants have no flowers; if yj is survival for the following
year, then we are inferring that dead plants stay dead).

So that is not a true missing data problem from the aster model perspec-
tive. Researchers do need to be aware of the need to code their data this
way (dead individuals have 0 flowers not NA flowers, NA being the R value
for missing data).
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Many researchers have been confused about this when first introduced
to aster models. If different individuals live different numbers of years, don’t
we need different graphs for individuals to reflect this? No. We just have
a long enough graph to accommodate all life spans. After the individual is
dead the data are just zero (not NA).

As we shall see (Section 1.16 below) the property that predecessor zero
implies successor zero makes likelihood inference automatically do the Right
Thing. We do not have to go into contortions to get it to do the Right Thing.
It just does the Right Thing automatically.

1.14.4 Really Missing Data

If we did have truly missing data (not observable and not inferable),
then we would have a problem that aster models are not equipped to solve.

R function aster in R package aster does not allow NA values in the
data it analyzes. Its help page says

It was almost always wrong for aster model data to have NA

values. Although theoretically possible for the R formula mini-
language to do the right thing for an aster model with NA values
in the data, usually it does some wrong thing. Thus, since version
0.8-20, this function and the reaster function give errors when
used with data having NA values. Users must remove all NA values
(or replace them with what they should be, perhaps zero values)
“by hand”.

R function asterdata in R package aster2 also does not allow NA values in
aster data for analyses done by that package.

1.14.5 Bernoulli versus Multinomial

Bernoulli arrows and multinomial dependence groups are closely related
but work differently. Bernoulli is related to multinomial but different.

In (1.16) every arrow labeled with anM is Bernoulli marginally, but the
whole point of dependence groups is that the components of the response
vector in a dependence group are not conditionally independent given their
predecessors, unlike the Bernoulli arrows labeled Ber in (1.16) or in any of
the graphs in this section (by Lemma B.1).

Conversely, if

yi
Ber−−−−→ yj
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is a Bernoulli arrow, then we could replace this with a multinomial depen-
dence group that does the same thing

yk

yi yj
M

M

where k is some index that hasn’t been used in the rest of the graph.
For example, we could change graph (1.12) to

y10 y11 y12

1 y1 y2 y3

y4 y5 y6

y7 y8 y9

M

M

Ber

M

M

Ber

M

M

Ber

0-Poi 0-Poi 0-Poi

(1.19)

and all of the components of the response vector that have the same indices
would have the same interpretation and the same values in the same data in
both graphs (1.12) and (1.19). Then the additional nodes y10, y11, and y12
are determined by the properties of the multinomial distribution and the
predecessor-is-sample size property (Section 1.12 above)

y10 = 1− y1
y11 = y1 − y2
y12 = y2 − y3

(1.20)

The aster models with graphs (1.12) and (1.19) can be made equivalent if
parameterized to make that so (I think, no proof here), but they don’t have
to be equivalent (I think). Hence scientists have to decide which to use.
The argument of simplicity argues for (1.12) (no dependence groups). But
arguments can be made both ways.

Not only can we replace Bernoulli arrows with multinomial dependence
groups, we can, at least partially replace multinomial dependence groups
with Bernoulli arrows. We could replace the graph (1.16) with the graph
shown in Figure 1.1 (p. 28). In graph (1.16) and the graph in Figure 1.1 all
of the components of the response vector that have the same indices have
the same interpretation and the same values in the same data except for y1,
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y4, y7, and y10 which have the opposite interpretation and opposite values in
the two graphs. In graph (1.16) the value one for y1, y4, y7, and y10 means
dead. In the graph in Figure 1.1 the value one for these variables means
alive.

The aster models with the graph (1.16) and the graph in Figure 1.1
cannot (I think) be made equivalent by some choice of parameterization.
Hence scientists have to decide which to use. Now the argument of simplicity
seems to argue for (1.16). In either case we have dependence groups (we must
have to track life history stages). So as long as we have to have dependence
groups, we might as well make them do as much work as possible, tracking
mortality as well as progress through life history stages. But arguments can
be made both ways.

1.14.6 Bernoulli versus Bernoulli

Any composition of Bernoulli arrows is another Bernoulli. In the follow-
ing graph

y1
Ber−−−−→ y2

Ber−−−−→ y3
Ber−−−−→ y4 (1.21)

the conditional distribution of y4 given y1 = 1 is Bernoulli. If y1 = 1, then y2
is either zero or one, hence so is y3, hence so is y4, and any zero-or-one-valued
random variable is Bernoulli.

Hence, we can replace the subgraph (1.21) by the single arrow

y1
Ber−−−−→ y4 (1.22)

(deleting the components y2 and y3 from the response vector).
And this change-of-data gives a model in which the conditional distribu-

tion of y4 given y1 = 1 is Bernoulli in either case.
But when these are subgraphs of a larger graph, the corresponding aster

models cannot (I think) be made equivalent by some choice of parameteri-
zation. Hence scientists have to decide which to use.

Of course, had (1.21) been different

y1
Ber−−−−→ y2

Ber−−−−→ y3
Ber−−−−→ y4y

...

so y2 had a successor other than y3 (or similarly for y3) then y2 and y3 could
not have been removed from the data.
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The observation of this section is only for when we have a straight line
of Bernoullis like (1.21) with no branches. But this case is seen surprisingly
often in published aster analyses. Again, scientists have to decide which to
use.

1.14.7 Thinned Poisson

A Poisson followed by a Bernoulli is Poisson (this is well known in spatial
statistics). In the graph

y1
Poi−−−−→ y2

Ber−−−−→ y3 (1.23)

the conditional distribution of y3 given y1 = 1 is Poisson. Thus this graph
can be replaced by the single arrow

y1
Poi−−−−→ y3 (1.24)

(deleting the component y2 from the response vector),
And this change-of-data gives a model in which the conditional distri-

bution of y4 given y1 = 1 is Poisson in either case. Again, scientists have to
decide which to use.

There are, as far as I can see no general principles for which aster graph
is the one and only Right Thing for any particular data. Multiple different
aster models may have some rationale supporting them.

1.15 Exponential Families of Distributions

This is a brief overview of the theory of exponential families of distribu-
tions, just enough to allow us to finish the basic theory of aster models. We
will do some more exponential family theory later as the need arises.

1.15.1 Definition

The usual definition of exponential families of distributions (Barndorff-
Nielsen, 1978, Chapter 8; Brown, 1986, Chapter 1; Geyer, 1990, Chapter 1)
involves probability mass-density functions (or measure-theoretic probabil-
ity density functions with respect to an arbitrary positive measure). Here
we give a simpler definition from Geyer (2009).

A statistical model is a family of probability distributions. A statistical
model is an exponential family of distributions if it has a log likelihood of
the form

l(θ) = 〈y, θ〉 − c(θ) (1.25)
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where

� y is a vector-valued statistic, which is called the canonical statistic,

� θ is a vector-valued parameter, which is called the canonical parameter,

� c is a real-valued function, which is called the cumulant function, and

� 〈 · , · 〉 is a bilinear form that places the vector space where y takes
values and the vector space where θ takes values in duality.

In equation (1.25) we have used the rule that additive terms in the log
likelihood that do not contain the parameter may be dropped. Such terms
have been dropped in (1.25).

In aster model theory, we always have

〈y, θ〉 =
∑
j∈J

yjθj

where J is the common index set for y and θ so both are vectors in RJ . But
the angle brackets notation, which comes from functional analysis (Rudin,
1991), is used to indicate that we don’t think of the the vector space where
y takes values and the vector space where θ takes values as being the same.
They are dual vector spaces, not the same.

This means that 〈y, y〉 or 〈θ, θ〉 are glaring errors, unlike what would be
the case if we said that 〈 · , · 〉 was an inner product on RJ or some such. In
any event, your humble author has been using this notation since his thesis
(Geyer, 1990) and is not going to stop now. Moreover, most aster papers
also use this notation (if they discuss aster theory at all).

Although we usually say “the” canonical statistic, “the” canonical pa-
rameter, and “the” cumulant function, these are not uniquely defined:

� any one-to-one affine function of a canonical statistic vector is another
canonical statistic vector,

� any one-to-one affine function of a canonical parameter vector is an-
other canonical parameter vector, and

� any real-valued affine function plus a cumulant function is another
cumulant function.
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(Affine functions are defined in Section 1.15.3 below.) These possible changes
of statistic, parameter, or cumulant function are not algebraically indepen-
dent. Changes to one may require changes to the others to keep a log
likelihood of the form (1.25) above.

Usually no fuss is made about this nonuniqueness. One fixes a choice of
canonical statistic, canonical parameter, and cumulant function and leaves
it at that.

The cumulant function may not be defined by (1.25) on the whole vector
space where θ takes values. In that case it can be extended to this whole
vector space by

c(θ) = c(ψ) + log
{
Eψ
(
e〈Y,θ−ψ〉

)}
(1.26)

where θ varies while ψ is fixed at a possible value of the canonical parameter
vector, and the expectation and hence c(θ) are assigned the value ∞ for θ
such that the expectation does not exist (Geyer, 2009, equation (5)).

The family is full if its canonical parameter space is

Θ = { θ : c(θ) <∞} (1.27)

and a full family is regular if its canonical parameter space is an open subset
of the vector space where θ takes values.

Almost all exponential families used in real applications are full and reg-
ular. So-called curved exponential families (smooth non-affine submodels
of full exponential families) are not full. Constrained exponential families
(Geyer, 1991) are not full. A few exponential families used in spatial statis-
tics are full but not regular (Geyer and Møller, 1994).

Many people use “natural” everywhere this book uses “canonical.” In
this we are following Barndorff-Nielsen (1978). It also goes with our policy
of avoiding terminology used in biology if alternatives are available.

Many people also use an older terminology that says a statistical model
is in the exponential family, where we say a statistical model is an expo-
nential family. Thus the older terminology says the exponential family is
the collection of all of what the newer terminology calls exponential families.
The older terminology names a useless mathematical object, a heterogeneous
collection of statistical models not used in any application. The newer ter-
minology names an important property of statistical models. If a statistical
model is a regular full exponential family, then it has all of the properties
discussed here. If a statistical model is an exponential family (not neces-
sarily full or regular), then it has many of the properties discussed here.
Presumably, that is the reason for the newer terminology. In this we are
again following Barndorff-Nielsen (1978).
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1.15.2 Independent and Identically Distributed

Suppose we have an exponential family with vector canonical statistic z,
vector canonical parameter θ, and log likelihood

l(θ) = 〈z, θ〉 − c(θ)

And suppose we have an IID sample from this family with log likelihood

ln(θ) =
n∑
i=1

[〈zi, θ〉 − c(θ)]

=

〈
n∑
i=1

zi, θ

〉
− nc(θ)

(1.28)

where subscripts indicate a sequence of vectors rather than components
of one vector: z1, z2, . . . are IID random vectors. This tells us that IID
sampling from an exponential family gives another exponential family with

� canonical statistic vector that is the sum of the canonical statistic
vectors for the elements of the sample,

� the same canonical parameter vector, and

� cumulant function that is n times the cumulant function for the ele-
ments of the sample.

A lot of “addition rules” for “brand name distributions” are special cases.
For example, sum of IID Bernoulli is binomial, sum of IID Poisson is Poisson,
sum of IID exponential is gamma.

The simple math in this section is important for aster models. The
predecessor-is-sample-size property (Section 1.12 above) requires us to know
n-fold convolutions of the distributions associated with arrows at least well
enough to write down the log likelihood. This section tells how that is done.

1.15.3 Canonical Affine Submodels

In this section we consider canonical affine submodels of exponential
families. If θ is the canonical parameter vector, then these submodel pa-
rameterizations have the form

θ = a+Mβ, (1.29)
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where a is a known vector and M is a known matrix; a is called the offset
vector and M is called the model matrix in the terminology of R functions lm
and glm. M is called the design matrix by others. We use the terminology
favored by R. The submodel parameter vector β is called the coefficients
vector by R. We will find another name for it in this section.

The term “canonical affine submodel” was introduced by Geyer et al.
(2007), but before that “affine hypothesis” was used by Barndorff-Nielsen
(1978, Section 8.2). Usually these are called linear models or generalized
linear models or log-linear models in various settings.

There are two notions of linear used in mathematics. There is a sharp
dividing line at the beginning of linear algebra. In calculus and lower level
mathematics (including pre-college) a linear function is one with a flat graph.
In linear algebra and all higher level mathematics a linear function is one
that preserves the vector space operations. In particular, if f is a linear
function in this higher-level sense, then f(0) = 0. If one needs the lower-
level sense in higher-level mathematics, it is called an affine function. An
affine function between vector spaces is a linear function plus a constant
function. If a 6= 0 in (1.29), then this is a linear change-of-parameter in
the lower-level sense but an affine change-of-parameter in the higher-level
sense. It is unclear (to me) whether the “linear” in linear models, generalized
linear models, and log-linear models is the lower-level sense allowing a 6= 0
in (1.29) or the higher-level sense assuming a = 0 in (1.29), because a = 0
in most applications. We follow Geyer et al. (2007) and Barndorff-Nielsen
(1978) in calling these models affine.

The log likelihood for the canonical affine submodel is

l(β) = 〈y, a+Mβ〉 − c(a+Mβ)

= 〈y, a〉+ 〈y,Mβ〉 − c(a+Mβ)

and the term 〈y, a〉 that does not contain the parameter β can be dropped
from the log likelihood giving

l(β) = 〈y,Mβ〉 − c(a+Mβ)

and, because

〈y,Mβ〉 = yT (Mβ) = yTMβ = (MT y)Tβ = 〈MT y, β〉

we can write the submodel log likelihood in exponential family form

l(β) = 〈MT y, β〉 − csub(β) (1.30)
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where
csub(β) = c(a+Mβ), for all β. (1.31)

This shows the canonical affine submodel is itself an exponential family with

� canonical statistic vector MT y,

� canonical parameter vector β, and

� cumulant function csub.

It is helpful to have a term saying what model a canonical affine submodel
is a submodel of. In this context, we call that model the saturated model. It
is the special case of (1.29) with a = 0 and M the identity matrix, so θ = β.
The saturated model is the largest possible canonical affine submodel (of
itself).

A canonical affine submodel is a full exponential family if its parameter
space is

{β ∈ RK : c(a+Mβ) <∞}

where K is the index set of β and c is the cumulant function of the saturated
model. Because affine functions are continuous and the preimage of an open
set through a continuous function is open, the full canonical affine submodel
is regular if the saturated model is a regular full exponential family.

1.15.4 Moment and Cumulant Generating Functions

The moment generating function (MGF) of a random vector Y is given
by

M(t) = E
(
e〈Y,t〉

)
provided that the function M so defined is finite on a neighborhood of zero;
otherwise we say the random vector Y does not have an MGF. Clearly, the
MGF only depends on the distribution of Y , so we also say this is the MGF
of this distribution.

The MGF of the distribution of the canonical statistic of an exponential
family corresponding to canonical parameter θ is given by

Mθ(t) = Eθ

(
e〈Y,t〉

)
We rearrange (1.26) obtaining

ec(θ)−c(ψ) = Eψ
(
e〈Y,θ−ψ〉

)
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and then change θ to θ + t and ψ to θ in that order obtaining

ec(θ+t)−c(θ) = Eθ
(
e〈Y,t〉

)
so the MGF of the distribution of Y for parameter vector θ is

Mθ(t) = ec(θ+t)−c(θ)

provided Mθ is finite on a neighborhood of zero, which is when c is finite on a
neighborhood of θ, which is when θ is in the interior of the full canonical pa-
rameter space (1.27). Hence every distribution in a regular full exponential
family has an MGF.

The cumulant generating function (CGF) of a random vector Y is the
log of the MGF provided the MGF exists. If a distribution has no MGF,
then it has no CGF either. Hence the CGF of the distribution of Y for
parameter vector θ is

Kθ(t) = c(θ + t)− c(θ)

provided Kθ is finite on a neighborhood of zero, which is when θ is in the in-
terior of the full canonical parameter space (1.27). Hence every distribution
in a regular full exponential family has a CGF.

The MGF is so called because its derivatives evaluated at zero give mo-
ments. The CGF is so called because its derivatives evaluated at zero give
cumulants. Cumulants are polynomial functions of moments and vice versa.
Thus a distribution that has an MGF or a CGF has moments and cumu-
lants of all orders. But we will not use moments and cumulants higher than
second order (next section) in our study of aster models.

Observe that derivatives of Kθ evaluated at zero are derivatives of c eval-
uated at θ. Hence the cumulant function is so called because its derivatives
evaluated at θ give cumulants. (Of course, this is only valid when θ is in the
interior of the full canonical parameter space (1.27)).

This also shows that cumulant functions are infinitely differentiable at
every point in the interior of the full canonical parameter space (1.27)),
and cumulant functions of a regular full exponential family are infinitely
differentiable at every point of the full canonical parameter space (1.27)).

1.15.5 Mean and Variance

First and second order cumulants are mean and variance

Eθ(Y ) = c′(θ) (1.32a)

varθ(Y ) = c′′(θ) (1.32b)
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(Barndorff-Nielsen, 1978, Theorem 8.1). Of course, these formulas are valid
only where c is differentiable, which is when θ is in the interior of the full
canonical parameter space (1.27). On the boundary of the full canonical
parameter space, the derivatives on the right-hand sides of these formulas
do not exist and the cumulants on the left-hand sides might or might not
exist but in any case are not given by these formulas. In a regular full
exponential family these formulas are good for all values of θ in the full
canonical parameter space (1.27).

In (1.32a) Y is a vector and its expectation is a vector having the same
index set: µ = Eθ(Y ) is the vector having components µj = Eθ(Yj). The
right-hand side of (1.32a) must also be a vector having the same index set:
its components are ∂c(θ)/∂θj .

In (1.32b) Y is a vector and its variance is a square symmetric matrix
having components covθ(Yj , Yk). The right-hand side of (1.32b) must also
be a matrix having the same index set: its components are ∂2c(θ)/∂θj∂θk.

Many people do not like our terminology calling the left-hand side of
(1.32b) the variance matrix of Y . Names in common use are covariance ma-
trix (but this is horrible terminology because it uses up a name that should
be used for the covariance of two random vectors), variance-covariance ma-
trix, and dispersion matrix. We use our terminology, because it denotes the
multivariate analog of the variance of a random variable. This can be seen
everywhere in probability theory. If you can accept our notation varθ(Y ) for
this mathematical object, then the same formulas work for univariate and
multivariate Y .

1.16 Aster Models and Exponential Families

We finally get to the final axiom of aster models. Each conditional dis-
tribution in the factorization (1.1) actually stands for parametric family of
distributions, and each of these is an exponential family of distributions.
As explained in Section 1.12 above, the distribution for these conditional
families is determined by the distribution for sample size one, and the dis-
tributions for dependence group G for sample size one form an exponential
family having

� canonical statistic yG,

� canonical parameter θG, and

� cumulant function cG.
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This notation means that θ is a vector with the same index set as the
response vector y and that θG are subvectors of θ in the same way as yG
are subvectors of y. The fact that the cumulant functions are subscripted
means every dependence group may correspond to a different exponential
family, and we saw this in the examples (Section 1.14 above).

Now Section 1.15.2 above tells us the cumulant function for sample size
n is n times the cumulant function for sample size one. Note that this is
valid for n = 1 and n = 0 too. For the latter we calculate using (1.26) in
the case that y is the random vector concentrated at zero

c(θ) = c(ψ) + log {Eψ(1)} = c(ψ) + log(1) = c(ψ)

so the cumulant function of the random vector concentrated at zero is a
constant function (c(ψ) is arbitrary but ψ is a constant in this equation),
and to obtain agreement with the assertion that the cumulant function for
sample size n is n times the cumulant function for sample size one, we take
this arbitrary constant to be zero, so the cumulant function for sample size
zero is always the zero function, which always has the value zero.

Now the predecessor-is-sample-size property says that the sample size
for dependence group G is yq(G), so the cumulant function for this sample
size is yq(G) times the cumulant function for sample size one.

Because the log of a product is the sum of the logs, the log likelihood
for an aster model is the sum of terms, one term for each term in the
factorization (1.1), and each term looks like (1.25) except with subscripts
for the dependence groups, that is,

l(θ) =
∑
G∈G

[
〈yG, θG〉 − yq(G)cG(θG)

]
(1.33)

(by the predecessor-is-sample-size property, the conditional distribution of
yG given yq(G) is the sum of IID random vectors having cumulant function
cG, hence the cumulant function in each term is yq(G) times the cumulant
function for sample size one).

As was mentioned in Section 1.14.3 above, probability theory just does
the Right Thing in case yq(G) = 0. By the predecessor-is-sample-size prop-
erty, this implies yG = 0 too, so the whole contribution to the log likelihood
of the term for dependence group G is zero (when, as we are discussing here,
the predecessor is zero). And zero is the correct contribution because the
conditional distribution of yG given yq(G) = 0 is concentrated at zero, that
is, it is zero with probability one, so the contribution to the log likelihood
should be log(1) = 0.
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So there is no need to do anything special about the case where prede-
cessor equals zero. All of our formulas are correct in this case too.

1.17 Infinitely Divisible Aster Families

As stated in Section 1.12 above, one consequence of the predecessor-
is-sample-size property is that components of the response vector that are
predecessors must be nonnegative-integer-valued random variables.

Except Geyer et al. (2007) note an exception to this rule. If the distri-
bution in question is infinitely divisible, then r-fold convolution makes sense
for any r ≥ 0. A distribution having moment generating function m is in-
finitely divisible if and only if m( · )r is a moment generating function for all
real r ≥ 0 (Cuppens, 1975, Corollary 4.2.2). Then the distribution having
moment generating function m( · )r is defined to be the r-fold convolution
of the distribution having moment generating function m. Hence a regu-
lar full exponential family having cumulant function c is infinitely divisible
if and only if rc( · ) is a cumulant function for all real r ≥ 0. R package
aster (Geyer, 2021) has several infinitely divisible families: Poisson, nega-
tive binomial, and normal-location (normal with unknown mean and known
variance). Hence, if the conditional distribution of yG given yq(G) = 1 is
infinitely divisible, then the distribution of yq(G) can be nonnegative-real-
valued.

This observation, however, has played no role in applications of aster
models because R packages aster and aster2 do not implement any families
of nonnegative-valued random variables that are not also integer-valued.
Such families exist (the gamma distribution, for example), so if they were
implemented, there could be a role for this observation.

1.18 The Aster Transform

The aster log likelihood (1.33) does not have exponential family form
(1.25). But since (1.33) is affine in y, it must be an exponential family having
canonical statistic vector y. In order to figure out the canonical parameter
and cumulant function for this family we rewrite (1.33) as follows

l(θ) =

∑
j∈J

yj

θj − ∑
G∈G
q(G)=j

cG(θG)


−

 ∑
G∈G
q(G)/∈J

yq(G)cG(θG)

 (1.34)
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and now we see we do have exponential family form with the canonical
parameters (of the exponential family which is the joint distribution of y)
being the terms in square brackets (the multipliers of the components of y)

ϕj = θj −
∑
G∈G
q(G)=j

cG(θG), j ∈ J, (1.35)

and the cumulant function being the terms left over

c(ϕ) =
∑
G∈G
q(G)/∈J

yq(G)cG(θG) (1.36)

(the fact that we have ϕ on one side of the equation and θ on the other will
be explained presently). Note that all of the yq(G) appearing in (1.36) are
constant random variables (because they are at initial nodes). Thus (1.36)
does define a deterministic (non-random) function of the parameter, as the
cumulant function of an unconditional distribution must be.

This notation means that ϕ is a vector with the same index set as the
response vector y, that ϕG are subvectors of ϕ in the same way as yG are
subvectors of y, and that ϕj are components of ϕ in the same way as yj are
components of y.

The map θ 7→ ϕ is called the aster transform. We claim this parame-
ter transformation is invertible and both the transform and its inverse are
infinitely differentiable. We invert the function very simply moving terms
from the right-hand side to the left-hand side

θj = ϕj +
∑
G∈G
q(G)=j

cG(θG), j ∈ J. (1.37)

How can this define θ in terms of ϕ when components of θ appear on both
sides of the equation? Simply use the equations (1.37) in any order that
visits successors before predecessors. Theorem 1.1 guarantees there is such
an order (it guarantees an order among dependence groups, but we can
order components within a dependence group arbitrarily). Then when we
are using (1.37) to compute θj we will have already have computed θk for
all k that are successors, successors of successors, and so forth of j, and, in
particular, we will already have computed θG for all G such that q(G) = j.

The map ϕ 7→ θ is called the inverse aster transform. The aster trans-
form is clearly infinitely differentiable because cumulant functions are in-
finitely differentiable (when all of the families for the dependence groups
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are regular full exponential families). The inverse function theorem of real
analysis (Browder, 1996, Theorem 8.27) says the inverse function is differ-
entiable as many times as the function it is the inverse of. Hence the inverse
aster transform is also infinitely differentiable.

Now we see why it is OK for (1.36) to have ϕ on the left-hand side and
θ on the right-hand side: θ is given as a function of ϕ by the inverse aster
transform so the right-hand side of (1.36) can be considered a function of
ϕ.

Now we can express (1.34) in exponential family form

l(ϕ) = 〈y, ϕ〉 − c(ϕ) (1.38)

where the cumulant function c of the joint distribution of the aster model is
(1.36).

We call

� θ the conditional canonical parameter vector and

� ϕ the unconditional canonical parameter vector.

But this terminology makes these parameters more like two kinds of the
same sort of thing than they really are.

� The subvectors θG are the canonical parameter vectors of the condi-
tional distributions of the dependence groups, but, as we have seen
(this is the whole point of the aster transform), θ is not the canonical
parameter vector of the (unconditional, joint) distribution of the aster
model.

� The vector ϕ is the canonical parameter vector of the (unconditional,
joint) distribution of the aster model, but the subvectors ϕG or the
components ϕj are not separately canonical for anything.

In short the subvectors of θ are groupwise canonical but θ is not vectorwise
canonical, and, conversely, ϕ is vectorwise canonical, but its subvectors are
not groupwise canonical.

1.19 More On Exponential Families

1.19.1 Directions of Constancy, Identifiability

A direction δ in the vector space where the canonical parameter vector
of an exponential family takes values is called a direction of constancy if the
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random variable 〈Y, δ〉 is constant almost surely, where Y is the canonical
statistic vector. Because all of the distributions in an exponential family
have the same support (this follows from the log likelihood being finite for
all all data values when the canonical parameter value is in the full canonical
parameter space (1.27)) we don’t have to say which distribution in the family
almost surely refers to: if a property holds almost surely for one distribution
in the exponential family, then it holds almost surely for all distributions in
the exponential family.

Geyer (2009, Theorem 1) gives many equivalent characterizations of this
concept. Here are some of them. In these we use the notation y is the
canonical statistic vector, θ is the canonical parameter vector, δ is a vector
in the vector space where θ takes values, l is the log likelihood (1.25), and
Θ is the full canonical space (1.27).

(a) For some θ ∈ Θ, the function s 7→ l(θ + sδ) is finite on some open
interval and is not strictly concave on that interval.

(b) For all θ ∈ Θ, the function s 7→ l(θ+ sδ) is constant on the whole real
line.

(c) The parameter vectors θ and θ+sδ correspond to the same distribution
for some θ ∈ Θ and some s 6= 0.

(d) The parameter vectors θ and θ+sδ correspond to the same distribution
for all θ ∈ Θ and all real s.

(e) The random variable 〈Y, δ〉 is almost surely constant for some distri-
bution in the exponential family.

(f) The random variable 〈Y, δ〉 is almost surely constant for all distribu-
tions in the exponential family.

We arbitrarily picked (e) to serve as the definition, but, because they are all
equivalent (Geyer, 2009, Theorem 1), we could have picked any of these to
serve as the definition.

Condition (b) explains the terminology; these are directions of constancy
of the log likelihood function as defined in Rockafellar (1970). They obvi-
ously imply, if θ̂ is a maximum likelihood estimate (MLE), then so is θ̂+ sδ
for all real s. Condition (a) gives a uniqueness condition for maximum like-
lihood. If δ is not a direction of constancy and s 6= 0, then θ and θ + sδ
cannot both be maximum likelihood estimates because (a) would imply the
log likelihood is higher somewhere between these points. Thus the MLE for
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a full exponential family (if it exists) is unique if and only if there are no
nonzero directions of constancy.

It is clear from condition (e) or (f) that the set of all directions of con-
stancy of an exponential family (with a particular canonical parameteriza-
tion) is a vector subspace, which is called the constancy space of the family.

Conditions (c) and (d) connect this concept with identifiability. If there
exist two distinct canonical parameter vectors θ and θ∗ that correspond
to the same distribution, then θ − θ∗ is a direction of constancy. Thus
this concept characterizes the only form of nonidentifiability the canonical
parameterization of an exponential family can have. Conversely, if there are
no nonzero directions of constancy, then the canonical parameterization is
identifiable.

However, we do not insist on identifiability for three reasons.

� As Geyer (2009) says, non-identifiability “is, at worst, merely a com-
putational nuisance” so it is a big mistake to contort theory and ap-
plications to achieve identifiability too early. The computer can put
it in at the end with no help from humans (for how see Section 1.20.3
below).

� Multinomial dependence groups in aster models require non-identifiable
parameterization (Section D.9 in Appendix D).

� Limiting conditional models require non-identifiable parameterization
if they are to use the same parameterization as the original model
(Chapter 2).

Conditions (e) and (f) connect this concept with multivariate degener-
acy. The vector δ is a direction of constancy if and only if the random
variable 〈Y, δ〉 is almost surely constant, which is the same thing as saying
the canonical statistic vector Y is concentrated on a hyperplane. So the
canonical parameterization of a full exponential family is identifiable if and
only if Y is not concentrated on a hyperplane. A random variable that has
finite variance is constant almost surely if and only if that variance is zero.
Hence we can also characterize directions of constancy in terms of the vari-
ance matrix of the canonical statistic (1.32b). In a regular full exponential
family, let

I(θ) = varθ(Y ).

(we need a regular full exponential family to guarantee the variance exists).
This is the Fisher information matrix as well as the variance matrix of
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the canonical statistic because differentiating the log likelihood (1.25) twice
gives

l′′(θ) = −c′′(θ) = − varθ(Y ).

Then clearly, δ is a direction of constancy if and only if

varθ(〈Y, δ〉) = δT I(θ)δ

is zero. And by the spectral theorem Halmos (1958, Section 79) this holds
if and only if I(θ)δ = 0, in words, if and only if δ is a null eigenvector of the
Fisher information matrix.

1.19.2 Mean Value Parameters

Theorem 1.4. For a regular full exponential family, every distribution has
a mean value (for the canonical statistic vector), and different distributions
have different mean values. Hence mean values parameterize a regular full
exponential family, and the mean value parameterization is always identifi-
able, whether or not the canonical parameterization is identifiable.

Proof. We already know that mean values exist and are given by (1.32a).
Let us temporarily adopt a notation for the map from canonical to mean
value parameters: f : θ 7→ c′(θ). This map is differentiable with derivative
matrix

f ′(θ) = c′′(θ) = I(θ).

Consider distinct distributions in the exponential family having canonical
parameter vectors θ and θ∗. Then θ − θ∗ is not a direction of constancy.
Define a function g by

g(s) = f
(
sθ + (1− s)θ∗

)
.

Then the corresponding mean values are

µ = g(1) = f(θ)

µ∗ = g(0) = f(θ∗)

Differentiating g gives

g′(s) = f ′
(
sθ + (1− s)θ∗

)
(θ − θ∗)

= I
(
sθ + (1− s)θ∗

)
(θ − θ∗)
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Since I
(
sθ+(1−s)θ∗

)
is a variance matrix, it is positive semi-definite. Since

θ − θ∗ is not a direction of constancy,

(θ − θ∗)T I
(
sθ + (1− s)θ∗

)
(θ − θ∗) (1.39)

is strictly positive for all s in some open interval of the real line containing
0 and 1 (because θ and θ∗ are interior points of the full canonical parameter
space). We note that (1.39) is the derivative of the function h defined by

h(s) = 〈g(s), θ − θ∗〉

Since the derivative of this function is strictly positive it is strictly increasing
on some open interval containing 0 and 1, hence

h(1)− h(0) = 〈g(1)− g(0), θ − θ∗〉 = 〈µ− µ∗, θ − θ∗〉

is strictly positive. Hence µ 6= µ∗.

The parameter vector µ = c′(θ) is called the mean value parameter of
the regular full exponential family. (A full exponential family that is not
regular need not have a mean value for every distribution. It must have a
mean value for every distribution whose canonical parameter vector θ in the
interior of the full canonical parameter space Θ, but it need not have mean
values for distributions whose θ is on the boundary of Θ.)

1.19.3 Calculating the Inverse Transformation

Discussed in the proof of the preceding theorem was the transformation
θ 7→ c′(θ), which the theorem says maps from a not necessarily identifiable
parameter (θ) to a necessarily identifiable parameter (µ). In this section we
find out this parameter transformation is invertible if and only if the canon-
ical parameterization is identifiable, and we also find out how to calculate
the inverse if it exists.

Define a function l̃ that is just like the log likelihood of the exponential
family (1.25) except that we replace the observed value of the canonical
statistic vector y with a possible mean value

l̃(θ) = 〈µ, θ〉 − c(θ), (1.40)

where µ = Eθ(Y ) for some θ.

Lemma 1.5. The cumulant function of a full exponential family is a convex
function. It is strictly convex if and only if the exponential family has no
nonzero directions of constancy.
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This is Theorem 7.1 in Barndorff-Nielsen (1978). An alternative proof
for regular full exponential families can use the second derivative test in
Theorem 2.14 in Rockafellar and Wets (1998). The function c is convex
because c′′(θ) is a variance matrix, hence positive semi-definite for all θ.
When there are no nonzero directions of constancy, c′′(θ) is positive definite
for all θ, so c is strictly convex.

The derivatives of (1.40) are

l̃′(θ) = µ− c′(θ) (1.41a)

l̃′′(θ) = −c′′(θ) (1.41b)

Applying the second derivative test in Theorem 2.14 in Rockafellar and Wets
(1998) gives

Lemma 1.6. The function l̃ defined by (1.40) is a concave function. It is
strictly concave if and only if the exponential family has no nonzero direc-
tions of constancy.

Lemma 1.7. For a differentiable convex function, any point where the
derivative is zero is a global minimizer. For a differentiable strictly convex
function, any point where the derivative is zero is a unique global minimizer.

For a differentiable concave function, any point where the derivative is
zero is a global maximizer. For a differentiable strictly concave function,
any point where the derivative is zero is a unique global maximizer.

This is part of Theorem 10.1 in Rockafellar and Wets (1998).

Theorem 1.8. Global maximizers of the function l̃ exist, and any global
maximizer θ satisfies µ = c′(θ) and hence is a canonical parameter vector
corresponding to the mean value parameter µ.

In case the canonical parameterization is identifiable, which is when there
are no nonzero directions of constancy, the function l̃ has a unique global
maximizer.

Proof. By assumption µ = Eθ(Y ) = c′(θ) for some θ, hence by Lemma 1.7
this θ is a global maximizer of l̃. If there are other global maximizers θ∗, then
they also satisfy µ = c′(θ∗). Hence, such θ and θ∗ correspond to the same µ.
Hence θ and θ∗ correspond to the same distribution by Theorem 1.4. Hence,
if the canonical parameterization is identifiable, then θ = θ∗.

Theorem 1.9. For a regular full exponential family with identifiable canon-
ical parameterization, any algorithm that always goes uphill if it can on l̃
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defined by (1.40) converges to the unique maximizer of l̃ which is the unique
canonical parameter vector θ corresponding to mean value parameter vector
µ.

Proof. Any cumulant function is lower semicontinuous and convex (Barndorff-
Nielsen, 1978, Theorem 7.1). Hence (1.40) defines an upper semicontinuous
concave function. The rest of the theorem is Corollary 27.2.2 in (Rockafellar,
1970).

Corollary 1.10. For a regular full exponential family with identifiable canon-
ical parameterization, any algorithm that always goes uphill if it can on the
log likelihood defined by (1.25) converges to the unique MLE if the observed
value of the canonical statistic vector y is a possible value of the mean value
parameter vector.

Proof. In case y = µ for some mean value parameter vector µ, this is a
special case of Theorem 1.9.

The point of the theorem and its corollary is that maximization of upper
semicontinuous strictly concave functions is easy. Any algorithm, no matter
what the starting point, and no matter how inefficient, can find the unique
solution, so long as it is not so stupid as to be going downhill when it should
be going uphill.

Of course we do not have to use inefficient algorithms, we can use al-
gorithms as clever as we want, but we must be careful to not be so clever
that we turn out to be stupid. No matter what algorithm we use it must
have the property of always going uphill if it can. The algorithms used by
R function aster in R package aster have this property. The algorithm
used by R function transformUnconditional in R package aster2 has this
property.

Corollary 1.10 hides a big issue. There does not have to be a mean value
parameter vector µ such that µ = y, and in this case the MLE does not
exist: there is no θ that maximizes (1.25) because we can always go uphill
from any θ. This is the subject of Section 1.23.2 and Chapter 2.

1.20 Aster Mean Value Parameters

We have already met the mean value parameters of aster models in
Section 1.13 above. They are

� the unconditional mean value parameter vector µ defined by (1.3) and
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� the conditional mean value parameter vector ξ defined by (1.4) when
the conditioning event in that equation makes sense and by the dis-
cussion following that equation otherwise.

In Section 1.13 above we were getting ahead of ourselves in two ways.
We didn’t yet know that these mean values existed, and we didn’t yet know
that they parameterized the model. Now we do. So we fill in the details on
that.

1.20.1 Unconditional

Theorem C.1 in Appendix C says, if each family for a dependence group
is a regular full exponential family, then the (unconditional, joint) distribu-
tion of the aster model is a regular full exponential family. All of the families
for dependence groups (including dependence groups that are singleton sets)
that have ever been implemented in aster software are regular full exponen-
tial families. Thus all aster models that have ever been implemented are
regular full exponential families.

And hence we know how to map from aster model canonical parameter
vectors to mean value parameter vectors and vice versa. The maps from
canonical to mean value are

µ = c′(ϕ) = Eϕ(Y ), (1.42)

where c is the cumulant function of the (unconditional, joint) aster model
(1.36), and Y is the response vector of the aster model, and

ξG = c′G(θ) = Eθ(YG | Yq(G) = 1), G ∈ G, (1.43)

where cG is the cumulant function of dependence group G.
The inverse mappings to these mappings do not, in general, have closed

form expressions but are described in Section 1.19.3 above. Apply Theo-
rem 1.8 to the regular full exponential exponential family that is the sat-
urated aster model in its unconditional canonical parameterization. Then
(1.40) becomes in this special case

l̃(ϕ) = 〈µ, ϕ〉 − c(ϕ) (1.44)

where µ is a possible value of the unconditional mean value parameter vector
of the aster model and c is the cumulant function of the aster model (1.36).
Then any point ϕ where the first derivative of l̃ is zero is a global maximizer
of l̃ and is an unconditional canonical parameter vector ϕ that corresponds to
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µ. Such a global maximizer always exists. If the canonical parameterization
is identifiable (if there are no nonzero directions of constancy), then this
global maximizer is unique. All of the above follows from Theorems 1.8
and C.1.

When the canonical parameterization is identifiable, this process allows
us to calculate the map µ 7→ ϕ that is the inverse to to the map ϕ 7→ µ given
by ϕ 7→ c′(ϕ). We know the forward transformation ϕ 7→ µ is infinitely dif-
ferentiable (because cumulant functions of regular full exponential families
are infinitely differentiable). Hence it follows from the inverse function theo-
rem of real analysis (Browder, 1996, Theorem 8.27) that the inverse function
is infinitely differentiable if it exists (we are not using the inverse function
theorem to prove the existence of a local inverse; we know a global inverse
function exists if and only if the unconditional canonical parameterization
is identifiable; we are using the assertion of the inverse function theorem
about differentiability of this inverse function).

In summary, we know the inverse mapping µ 7→ ϕ exists and is infinitely
differentiable when ϕ is identifiable, but we generally have no closed-form
expression for this mapping and must calculate it by maximizing l̃ defined
by (1.44).

Another conclusion of the inverse function theorem is that the derivative
of the inverse is the inverse of the derivative (this is not always stated in the
theorem statement, but does appear in the proof). In our case, the derivative
of the forward mapping ϕ → µ is c′′(ϕ) = I(ϕ). We know this matrix is
invertible if and only if ϕ is identifiable. And when it is invertible (when
there are no nonzero directions of constancy, when Y is not concentrated on
a hyperplane) the derivative of the inverse mapping µ → ϕ is c′′(ϕ)−1. In
more detail, if we temporarily give this inverse mapping a notation f : µ→ ϕ
given by ϕ is the unique global maximizer of l̃ defined by (1.44) (assuming
the inverse mapping exists, that is, assuming identifiablilty). Then

f ′(µ) = I(ϕ)−1, when ϕ = f(µ),

or
f ′(µ) = I

(
f(µ)

)−1
.

1.20.2 Conditional

Now we go over all of the preceding section again for conditional mean
values and dependence groups. We fuss less about the details because they
are the same mutatis mutandis. For dependence group G, define l̃G by

l̃G(θG) = 〈ξG, θG〉 − cG(θG) (1.45)
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where ξG is a possible value of the conditional mean value parameter vector
for G and cG is the cumulant function for G. Then any point θG where
the first derivative of l̃G is zero is a global maximizer of l̃G. Such a global
maximizer always exists. If the canonical parameterization is identifiable (if
there are no nonzero directions of constancy of the family for dependence
group G), then this global maximizer is unique.

When we do this procedure for each dependence group G this defines
a mapping ξ → θ if each dependence group has identifiable canonical pa-
rameterization. This mapping is infinitely differentiable if it exists, and the
derivative is given by inverting the derivative of the forward mapping. The
forward mapping has block diagonal derivative with components

∂ξj
∂θk

=
∂2cG(θG)

∂θj∂θk
, j, k ∈ G,

∂ξj
∂θk

= 0, otherwise.

If we denote the matrix with these components by I(θ), then I(θ)−1 is the
derivative of the inverse mapping at a point ξ that corresponds to θ.

1.20.3 Dealing with Non-Identifiability

We are used to the computer dealing with non-identifiability, also called
collinearity, automatically. R functions lm and glm in core R (R Core
Team, 2023), which fit linear and generalized linear models, handle non-
identifiability automatically by dropping regressor vectors (columns of the
model matrix) until identifiability is obtained. They signal this by reporting
NA for coefficient estimates corresponding to these dropped regressor vectors.

R package aster does more or less the same thing as R functions lm

and glm except that it simply does not mention regression coefficients for
dropped regressors (it does say which regressors these are in the component
dropped of the object returned by R function aster).

In aster models fit by R package aster (which cannot have dependence
groups corresponding to more than one component of the response vector)
the only way that nonidentifiability of the canonical parameterization can
arise is if the model matrix does not have full column rank, which is getting
ahead of ourselves because we have not discussed canonical affine submodels
of aster models yet (next section).

In aster models fit by R package aster2 the aster model can have non-
identifiable canonical parameterizations (θ is nonidentifiable if and only if ϕ
is nonidentifiable because the aster transform is one-to-one) when the model
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has multinomial dependence groups or when we are analyzing a limiting con-
ditional model of the aster model.

R package aster2 does more or less the same thing as R functions lm

and glm except that it returns zero for certain coefficients on the theory that
constraining a parameter to be equal to zero is equivalent to dropping the
corresponding regressor.

From a theoretical point of view there is just one issue: directions of
constancy (Section 1.19.1 above). Suppose we have an exponential family in
which the canonical parameter is β (this includes canonical affine submodels
but also the saturated models they are submodels of). If δ is a direction of
constancy, then β and β+sδ correspond to the same distribution for all s. If
δ 6= 0, then we do not have identifiability, and need to decide how to regain
it. The way to do so that R users (at least) have been trained to expect is
to constrain some βj to be equal to zero.

If δ 6= 0, then it has a nonzero component, say δi. Then we can constrain
βi to be equal to zero, because for any β, the parameter vector β + sδ with

βi + sδi = 0

or
s = −βi/δi

has i-th component zero and corresponds to the same distribution as β.
So this procedure of obtaining identifiability by constraining some pa-

rameter to be equal to zero works for any exponential family (and works
for GLM that are not exponential families by them being close enough to
exponential families in the theoretical aspects that are necessary for this to
work).

This procedure can always be implemented by the computer provided it
has a way of determining directions of constancy. As stated in Section 1.19.1
above, the set of all directions of constancy is a vector subspace of the
vector space where the canonical parameter takes values, which is called
the constancy space. Hence the set of all directions of constancy can be
characterized by providing a basis for the constancy space.

So long as aster software has a function like R function constancy in R
package aster2 that provides a basis for the constancy space, the computer
can do the rest of dealing with non-identifiability.
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1.21 A Plethora of Parameters

We now have the parameterizations θ, ϕ, ξ, and µ for aster models. We
now know that

� µ is always identifiable,

� ξ is always identifiable unless some µq(G) = 0,

� ϕ is identifiable if and only if there are no nonzero directions of con-
stancy, and

� θ is identifiable if and only if ϕ is identifiable.

The simple closed-form expressions we have for these parameter trans-
formations are shown below.

θ ϕ

ξ µ

aster transform

ξG=c
′
G(θG)

inverse aster transform

µ=c′(ϕ)
multiplication

division

(1.46)

where (of course) “aster transform” is (1.35) above, “inverse aster transform”
is (1.37) above, “multiplication” is (1.7) or (1.9) or (1.10) above, “division”
is (1.11), and the equations labeling downwards arrows refer to (1.43) and
(1.42) above.

Both upward arrows being unlabeled indicates no closed-form expres-
sions for going from mean value parameters to canonical parameters. There
is an algorithm (Section 1.19.3 above) but (in general) no closed-form ex-
pression. All of the arrows do, however, indicate smooth (infinitely differen-
tiable) changes of parameter, if they correspond to a change of parameter
at all.

The arrows that may not correspond to a change of parameter arrow are

� the arrow µ 7→ ξ labeled “division” fails to be a map when there is
division by zero, in which case ξ is not identifiable,

� the arrows ξ 7→ θ and µ 7→ ϕ, which are unlabeled fail to be maps
when the canonical parameterizations are not identifiable (and either
both are identifiable or neither are).

As explained in Section 1.20.3 above, identifiability of either canonical
parameterization can be recovered by constraining certain parameters to be
equal to zero. When we do this we need to be careful to not mess up the
other parameter transformations.
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� If we constrain some components of ϕ to be equal to zero in order
to make ϕ identifiable and the transformation µ → ϕ a map, then
this also makes θ identifiable, but since the inverse aster transform is
nonlinear this does not correspond to setting any components of θ to
be equal to zero.

� Conversely, if we constrain some components of θ to be equal to zero
in order to make θ identifiable and the transformation ξ → θ a map,
then this also makes ϕ identifiable, but since the aster transform is
nonlinear this does not correspond to setting any components of ϕ to
be equal to zero.

� When some components of the response vector that are predecessors
are equal to zero almost surely, ξ is not identifiable: if µq(G) = 0, then
ξG can be chosen arbitrarily, but then θG will be determined by this
arbitrary choice, and then ϕ will be determined by θ. Since µ is always
identifiable, it is unchanged when ξG is allowed to be chosen arbitrarily
(the arbitrary choice is multiplied by zero in the conversion to µ).

All of these parameterizations are important. Any may be crucial in
some applications and irrelevant to other applications. From this point for-
ward we now call the statistical model we have been discussing the saturated
aster model. No matter which parameterization we choose, the length of the
parameter vector is the same as the length of the response vector (both have
the same index set J).

The saturated aster model has too many parameters chasing too little
data. More parsimonious models are used in applications.

The next few sections introduce these more parsimonious models and
even more parameters, and Sections 1.22.2 and 1.22.4 below discuss their
transformations similar to how this section does.

1.22 Aster Canonical Affine Submodels

It may come as a shock to the reader that all of the work done so far
concerns models that are of no interest in applications.

1.22.1 Unconditional

In this section we straightforwardly apply the theory of Section 1.15.3
above, which describes canonical affine submodels of general exponential
families, to aster models. In Section 1.15.3 the canonical parameter vector of
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the exponential family was denoted θ. The canonical parameter vector of the
(unconditional, joint) aster model is the unconditional canonical parameter
vector ϕ. Thus we parameterize an aster unconditional canonical affine
submodel

ϕ = a+Mβ, (1.47)

where, as stated in Section 1.15.3 above, a is the offset vector and M is
the model matrix. Either a or M may depend on covariate data since aster
analyses, like all regression analyses, are done conditional on covariate data.
Usually a does not depend on covariate data andM does depend on covariate
data, and usually the i-th row of M depends only on data for case i, but
this actually places no restriction on M because what is considered “data
for case i” is arbitrary. This is the only place where covariate data enters an
unconditional aster model (for short we refer to such models as unconditional
aster models rather than unconditional canonical affine submodels of aster
models).

From the theory in Section 1.15.3 above, an unconditional aster model
is itself a regular full exponential family with

� canonical statistic vector MT y,

� canonical parameter vector β,

� cumulant function csub defined by

csub(β) = c(a+Mβ)

where c is the cumulant function of the saturated aster model given
by (1.36) above, and

� mean value parameter

τ = c′sub(β) = Eβ(MTY ) = MTµ,

where µ is the saturated model mean value parameter.

Theorem C.2 in Appendix C says that every unconditional aster model
is a regular full exponential family if the saturated model is a regular full
exponential family. Theorem C.1 in Appendix C says the latter happens
when every family for every dependence group is a regular full exponential
family, which is the case for all families currently implemented in aster
software.
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1.22.2 A Plethora of Parameters Revisited

With unconditional canonical affine submodels (preceding section) we
get two more parameters, so we can change our picture to

θ ϕ β

ξ µ τ

aster transform

ξG=c
′
G(θG)

inverse aster transform

µ=c′(ϕ)

ϕ=a+Mβ

τ=c′sub(β)
multiplication

division τ=MTµ

(1.48)
where (of course) all of the parameters and arrows for the “left square” are
the same as in (1.46), where the three of the arrows for the “right square”
give parameter transformations discussed in the preceding section, and the
three unlabeled arrows are parameter transformations that have no closed-
form expression.

The inverse mapping to the the mapping β 7→ τ is calculated just like
the other upward arrows in the diagram. Apply Theorem 1.8 to the regular
full exponential exponential family that is the unconditional canonical affine
submodel. Then (1.40) becomes in this special case

l̃sub(β) = 〈τ, β〉 − csub(β) (1.49)

as with the other l̃ functions, l̃sub is concave and strictly concave when
the canonical parameter β of the unconditional canonical affine submodel
is identifiable, which is when there does not exist a nonzero direction of
constancy, a nonzero vector η such that 〈MTY, η〉 = 〈Y,Mη〉 is almost
surely constant. Whenever τ is a possible value of the mean value parameter
vector, that is, τ = Eβ(MTY ) for some β, then that β is a global maximizer
of (1.49). That β is the unique maximizer if and only if β is identifiable (no
nonzero directions of constancy exist).

As discussed in Section 1.20.3 above, we can always deal with non-
uniqueness (non-identifiability) by constraining some components of β to
be equal to zero.

The other unlabeled arrows on the “right square” in the diagram are the
inverses of linear transformations, but these generally do not have unique
solutions.

The mapping ϕ = a + Mβ need be neither one-to-one nor onto. In
applications, it is never onto. That is the whole point of submodels, to be
a proper submodel. It will not be one-to-one if there is “collinearity” (if M
does not have full column rank). Let B denote the full canonical parameter
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space for the parameter β described in the Theorem C.2 in Appendix C and
its proof. Temporarily, let f denote the mapping defined by f(β) = a+Mβ.
As we just said, f is one-to-one if and only if M has full column rank, but
f is never onto (in applications). Thus f is invertible (if one-to-one) only
when it is considered a mapping B → f(B), that is, its codomain is its
range. Then (assuming one-to-one) the inverse f−1 exists and is a mapping
f(B)→ B.

But this is a triviality. It says that if ϕ = f(β), then we know that ϕ is
in the domain of the inverse mapping and β = f−1(ϕ). But otherwise, when
just given a ϕ in the saturated model unconditional canonical parameter
space, we don’t know whether it is in f(B) or not, since the only way we
can know is if we know it is f(β) for some β.

The mapping τ = MTµ need be neither one-to-one nor onto. In appli-
cations, it is never one-to-one. Again, that is the whole point of submodels.
If M is not onto, then MT is not one-to-one (considered as the linear trans-
formations these matrices represent). Thus the equation τ = MTµ never
has a unique solution for µ. The only way to find a µ that corresponds to a
given τ is to go the other way around the square τ 7→ β 7→ ϕ 7→ µ.

For an unconditional canonical affine submodel

� τ is always identifiable,

� β may or may not be identifiable, if not, identifiability can be forced
by constraining some components of β to be equal to zero,

� the set of allowed ϕ = a + Mβ values is either an affine subspace of
RJ or an open subset of such an affine subspace,

� the set of allowed µ values is a smooth manifold having the same
dimension as β, but is a curved manifold since the mapping ϕ→ µ is
nonlinear,

� similarly, the set of allowed θ values is a smooth manifold having the
same dimension as β, and

� similarly, the set of allowed ξ values is a smooth manifold having the
same dimension as β.

1.22.3 Conditional

Since all of the theory in the preceding two sections works so smoothly,
it may be surprising that we have a competing view of how to do submodels.
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We almost don’t have a competing view. As far as I know, there are only
two published examples of conditional aster analyses. Example 1 in Shaw
et al. (2008b) was done as a conditional aster analysis but can easily be
redone as an unconditional aster analysis (Geyer, 2018, Slide Deck 4, slides
47 ff.). The analysis in Shaw et al. (2015) titled “Relating Plant Fitness to
Aphid-Load” was done as a conditional aster analysis and had to be so done
because time-dependent covariates (in this case aphid load) do not mesh
well with unconditional aster models.

So in rare cases (one so far published, as far as I know) conditional aster
models are necessary. But in the vast majority of applications unconditional
aster models (which are the default for aster software) are the ones used and
the only ones users consider.

Nevertheless, if we have conditional aster models at all, then we need
their theory. In conditional canonical affine submodels of aster models we
do not use the submodel parameterization (1.47). Instead we use

θ = a+Mβ, (1.50)

This is undeniably a TTD (thing to do) but has no theoretical justification.
It does not connect with exponential family theory except, as a smooth
submodel of a regular full exponential family (the saturated model), this is
a curved exponential family. As we shall see, there are a few good properties
that are shared by conditional and unconditional aster models, but only a
few. The theory of conditional aster models is impoverished compared to
that of unconditional aster models.

1.22.4 A Plethora of Parameters Re-Revisited

The analog of (1.46) or (1.48) for conditional aster models is

β θ ϕ

ξ µ

θ=a+Mβ aster transform

ξG=c
′
G(θG)

inverse aster transform

µ=c′(ϕ)
multiplication

division

(1.51)

There is no analog of the submodel mean value parameter τ for a condi-
tional aster model (because a conditional aster model is not a regular full
exponential family).
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1.23 Maximum Likelihood

1.23.1 Exponential Families

Maximum likelihood estimation in a regular full exponential family is
much like the problem of inverting the parameter transformation from canon-
ical to mean value parameters discussed in Section 1.19.3 above. We simply
maximize l given by (1.25) rather than l̃ given by (1.40). Both of these
functions are always concave and strictly concave if and only if the canoni-
cal parameterization is identifiable.

A point is a global maximizer of l or l̃ if and only if the first derivative
is equal to zero. Hence θ is an MLE if and only if it satisfies the observed
equals expected property

y = Eθ(Y ) (1.52)

where the left hand side is the observed value of the canonical statistic and
the right-hand side is the expected value corresponding to parameter value
θ. If the canonical parameterization is identifiable (if the canonical statistic
is not concentrated on a hyperplane, if there are no nonzero directions of
constancy), the solution θ of (1.52).

The only difference between the problem of this section and Section 1.19.3
above is that there we assumed there was a solution, that is, we assumed
that the µ in (1.40) satisfied the expected equals expected condition (which
is a triviality) µ = Eθ(Y ). Here we do not assume (1.52) has a solution.
The data are what they are. We assume they are possible data under the
statistical model, but we do not assume anything else.

All of the same arguments apply to canonical affine submodels, only the
notation changes. Replace y by MT y and replace θ by β. Thus β is a global
maximizer of the submodel log likelihood if and only if

MT y = MTEβ(Y ) (1.53)

1.23.2 Directions of Recession, Existence

A direction δ in the vector space where the canonical parameter vector
of an exponential family takes values is called a direction of recession of the
log likelihood if

〈Y, δ〉 ≤ 〈y, δ〉, almost surely, (1.54)

where y is the observed value of the canonical statistic vector and Y is a
random value of the canonical statistic vector.
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Suppose δ is a nonzero direction of recession that is not a direction of
constancy. By monotonicity of expectation we have

Eθ{〈Y, δ〉} < 〈y, δ〉

for all parameter values θ, because we know 〈y−Y, δ〉 is nonnegative almost
surely, so if it had zero expectation, it would have to be zero almost surely
(which would imply that δ is a direction of constancy). Consequently, if
δ is a nonzero direction of recession that is not a direction of constancy,
then (1.52) has no solutions and maximum likelihood estimates for θ do not
exist. It turns out this is the only way the MLE for a regular full exponential
family can fail to exist.

Geyer (2009, Theorem 3) gives many equivalent characterizations of this
concept. Here are some of them. In these we use the notation y is the
observed value of the canonical statistic vector, Y is a random value of the
canonical statistic vector, θ is the canonical parameter vector, δ is a vector
in the vector space where θ takes values, l is the log likelihood (1.25), and
Θ is the full canonical space (1.27).

(a) For some θ ∈ Θ,
lim sup
s→∞

l(θ + sδ) > −∞.

(b) For all θ ∈ Θ, the function s 7→ l(θ+sδ) is nondecreasing on the whole
real line.

(c) 〈Y − y, δ〉 ≤ 0 almost surely for some distribution in the exponential
family.

(d) 〈Y − y, δ〉 ≤ 0 almost surely for every distribution in the exponential
family.

We arbitrarily picked (c) to serve as the definition, but, because they are
all equivalent we could have picked any of these to serve as the definition
of direction of recession. All of these equivalences are a consequence of
Theorem 3 in Geyer (2009), except the implication that (a) implies the
others uses Theorem 8.6 in Rockafellar (1970).

By Theorem 4 in Geyer (2009) the MLE exists if and only if every direc-
tion of recession is a direction of constancy. (It is clear from the definitions
that every direction of constancy is a direction of recession.)

By Theorem 5 in Geyer (2009) if δ is a direction of recession that is not
a direction of constancy, then the function

s 7→ l(θ + sδ)
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is strictly increasing on the interval where it is finite, and this is true for all
θ ∈ Θ. This gives us another argument, besides the argument given above
why a direction of recession that is not a direction of constancy implies
nonexistence of an MLE. But we need Theorem 4 in Geyer (2009) for the
reverse conclusion that nonexistence of the MLE cannot occur for any other
reason.

All of the same arguments apply to unconditional canonical affine sub-
models, only the notation changes. Replace y by MT y and replace θ by β.
Thus a direction δ in the vector space where the submodel canonical param-
eter β takes values is a direction of recession if and only if 〈y − Y,Mδ〉 ≥ 0
almost surely (for any one distribution in the submodel and hence for all
distributions). And MLE for β exist if and only if 〈y − Y,Mδ〉 ≥ 0 almost
surely implies 〈y− Y,Mδ〉 = 0 almost surely. Moreover, β is an MLE if and
only if (1.53) holds.

A lot more can be said and will be said on this subject (Chapter 2).

1.23.3 Unconditional Aster Models

Almost nothing needs to be said in this section that hasn’t already been
said. Unconditional canonical affine submodels of aster models are regular
full exponential families (under the conditions of Theorems C.1 and C.2 in
Appendix C). So the penultimate paragraph of the preceding section says
it all.

1.23.4 Conditional Aster Models

Conditional aster models are not regular full exponential families (only
curved exponential families). At least, they are not when considered statis-
tically, probabilistically.

But if we play a trick, they are when considered numerically, alge-
braically. Rewrite (1.33) as

l(θ) =
∑
G∈G

[
〈yG, θG〉 − nq(G)cG(θG)

]
(1.55)

and pretend that all of the nq(G) are constants. This makes no sense statis-
tically, probabilistically because those nq(G) are actually yq(G) and some of
them are the same variables that appear as components of the yG that also
appear in this expression. But if we are just treating this log likelihood as
a numerical, algebraic function to maximize to find MLE, then this doesn’t
matter.
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We call this the associated independence model of the conditional aster
model. In this model y factorizes as

pr(y) =
∏
G∈G

pr(yG | nq(G)) (1.56)

where all of the nq(G) are considered constants and not components of y.
Then of course, we have the parameter transformation (1.50) of the canonical
affine submodel. This is a regular full exponential family (Theorem C.3 in
Appendix C).

So now we can apply the theory of Geyer (2009) to the associated inde-
pendence model.

Theorem 1.11. If yq(G) = 0 for any dependence group G, replace the family
for this dependence group by the degenerate family concentrated at zero so
cG is the zero function. Then η is a direction of recession of the associated
independence model if and only if, writing δ = Mη,

Eβ{〈yG − YG, δG〉 | yq(G)} ≥ 0, for all G ∈ G such that yq(G) > 0,

and η is a direction of constancy of the associated independence model if and
only if

Eβ{〈yG − YG, δG〉 | yq(G)} = 0, for all G ∈ G such that yq(G) > 0.

Then the MLE for β exists if and only if every direction of recession is a
direction of constancy, and the MLE is unique if and only if no nonzero
directions of constancy exist.

Note that the theorem ignores δG for G such that yq(G) = 0, hence
unless the model matrix M is such that δG = 0 for all such G there will be
non-uniqueness whenever there are such G.

1.23.5 Fisher Information

Exponential Family

Differentiating twice the log likelihood (1.25) of an exponential family
we get

l′′(θ) = −c′′(θ)

and minus this is observed Fisher information, and the expectation is ex-
pected Fisher information. Since the right-hand side is constant, observed
and expected Fisher information are the same and are given by either side
of (1.32b).
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Unconditional

The Fisher information matrix for the saturated model unconditional
canonical parameter ϕ is given by either side of (1.32b) with θ replaced by
ϕ (because ϕ is the canonical parameter vector of the (unconditional, joint)
aster model). Following Geyer et al. (2007), their equations (17) and (18) we
choose to calculate Fisher information using probability theory (calculating
covariances) rather than calculus (calculating derivatives).

This is done using the factorization and the iterated covariance theorem,
which says for any random variables X, Y , and Z

cov(X,Y ) = E{cov(X,Y | Z)}+ cov{E(X | Z), E(Y | Z)}

From this, for i and j in the same dependence group G

covϕ(Yi, Yj) = Eϕ{covϕ(Yi, Yj | Yq(G))}
+ covϕ{Eϕ(Yi | Yq(G)), Eϕ(Yj | Yq(G))}

= Eϕ{Yq(G)γij}+ covϕ{Yq(G)ξi, Yq(G)ξj}
= µq(G)γij + varϕ(Yq(G)ξiξj

(1.57)

where µ and ξ are the unconditional and conditional mean value parameter
vectors, respectively, corresponding to ϕ, and we introduce the notation

γij =
∂2cG(θG)

∂θi∂θj

which can also be written

γij = covϕ(Yi, Yj | Yq(G) = 1) (1.58)

provided the conditioning event does not have probability zero (so the latter
equation makes no sense) but we always have

covϕ(Yi, Yj | Yq(G)) = Yq(G)γij

by the predecessor-is-sample-size property (this was used in deriving (1.57)).
For future use we also define γij = 0 when i and j are not in the same

dependence group. This makes sense because if i ∈ G and j ∈ H and G 6= H

∂2cG(θ)

∂θi∂θj
=
∂2cH(θ)

∂θi∂θj
= 0
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And, for i and j not in the same dependence group, say i ∈ G and j ∈ H
and G < H in the order on G asserted to exist by Theorem 1.1,

covϕ(Yi, Yj) = Eϕ{covϕ(Yi, Yj | Yq(G))}
+ covϕ{Eϕ(Yi | Yq(G)), Eϕ(Yj | Yq(G))}

= covϕ{Eϕ(Yi | Yq(G)), Eϕ(Yj | Yq(G))}
= covϕ{ξiYq(G), Eϕ(Yj | Yq(G))}
= ξi covϕ{Yq(G), Eϕ(Yj | Yq(G))}
= ξiEϕ{[Yq(G) − µq(G)]Eϕ(Yj | Yq(G))}
= ξiEϕ{[Yq(G) − µq(G)]Yj}
= ξi covϕ(Yq(G), Yj)

= ξi covϕ(Yp(i), Yj)

(1.59)

where the second equality is the Markov property (Theorem B.2 in Ap-
pendix B): Yi and Yj are conditionally independent given Yq(G).

Because covariances are symmetric in their arguments, we do not need
to do the case G > H.

It should be clear that we can calculate the whole Fisher information
matrix using (1.57) and (1.59) traversing the full aster graph in any order
that visits predecessors before successors (the inverse of the order in Theo-
rem 1.1).

For computational efficiency, we should note that if i and j are nodes of
the full aster graph for different “individuals” in scare quotes (defined in Sec-
tion 1.9 above), then they are unconditionally independent by Corollary B.3
in Appendix B, so

cov(Yi, Yj) = 0

in this case. The Fisher information matrix for ϕ is block diagonal with the
blocks being for “individuals” (in scare quotes).

Now we revert to calculus to find the Fisher information matrix for the
unconditional submodel canonical parameter β. The map β 7→ ϕ given by
(1.47) has derivative M , the model matrix, that is, if mij are components
of M , then

∂ϕi
∂βj

= mij .

It follows from the chain rule that

c′′sub(β) = MT c′′(ϕ)M
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or
I(β) = MT I(ϕ)M

where we abuse notation using I for both Fisher information for β and Fisher
information for ϕ.

Conditional

Differentiating twice the log likelihood (1.33) for the conditional canon-
ical parameter vector θ of an aster model we get

∂2l(θ)

∂θi∂θj
= −

∑
G∈G

yq(G)
∂2cG(θG)

∂θi∂θj
= −

∑
G∈G

yq(G)γij

Since this is random, observed and expected Fisher information are not the
same. Also noting that γij = 0 unless i, j ∈ G we have the following.

� The observed Fisher information matrix for θ is block diagonal with
nonzero blocks corresponding to the dependence groups. The i, j com-
ponent is yq(G)γij for G such that i, j ∈ G and zero otherwise.

� The expected Fisher information matrix for θ is similarly block diag-
onal. The i, j component is µq(G)γij for G such that i, j ∈ G and zero
otherwise.

If in either case we denote this matrix by I(θ), then the Fisher informa-
tion matrix for β is

I(β) = MT I(θ)M

for the same reason as in the preceding section (and I denotes the observed
Fisher information matrix in both instances or the expected Fisher informa-
tion matrix in both instances).
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Completion

In this chapter we deal with what to do when maximum likelihood esti-
mates do not exist in the exponential family or aster model we are initially
given. There may, and usually do, exist maximum likelihood estimates in
the completion of the family. It is a bit unclear what we should call the
statistical models studied in this chapter.

� Barndorff-Nielsen (1978, Sections 9.3 and 9.4) calls this concept com-
pletion.

� Brown (1986, Chapter 6) calls this concept an aggregate exponential
family for reasons that will be explained presently.

� Geyer (1990, Chapters 2 and 4) calls this concept closure.

� Geyer (2009) calls this concept Barndorff-Nielsen completion.

Brown (personal communication) pointed out that the eponym chosen in
Geyer (2009) was not quite correct, since Barndorff-Nielsen (1978) works
under more restrictive regularity conditions than Brown (1986), and Brown
(1986) works under more restrictive regularity conditions than Geyer (1990).
The choice in Geyer (2009) follows Stigler’s law of eponomy. At least in this
case Barndorff-Nielsen had the concept first if not in the most generality.
The reason why Geyer (1990) chose “closure” rather than “completion” is
that when one works under the weakest regularity conditions, the topological
space that is the statistical model being “completed” is not metrizable, hence
“complete” (every Cauchy sequence converges) doesn’t make any sense (the
definition of Cauchy sequence requires a metric). Thus we have only the
more general topological concept of closure. We won’t fuss about any of
this and will continue use Barndorff-Nielsen completion or just completion.

65
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2.1 Binomial Example

For this simplest example of the phenomenon of interest, we consider
the binomial distribution. We know from the discussion in Section 1.23.2
above that the MLE does not exist when the observed value of the canonical
statistic, which for the binomial distribution is the number of successes, is
an extreme value, either as small as it can be or as large as it can be, in this
case either 0 or n, where n is the sample size.

Usually, we think the MLE for the usual parameter p, the success prob-
ability, does exist for all data and is p̂ = x/n. But when x = 0 or x = n,
so p̂ is zero or one, the MLE for the canonical parameter θ = logit(p) does
not exist because the domain of the logit function is the open interval (0, 1)
and does not include the endpoints. Since

lim
p↓0

logit(p) = −∞

lim
p↑0

logit(p) =∞

we could try to identify these endpoints with infinite values of the canonical
parameter, but that is not the way exponential family theory works, and,
as we shall see, it does not generalize to multiparameter problems.

So instead of trying to complete the parameter space, we try to complete
the family of distributions. These distributions have PMF

fp(x) =

(
n

x

)
px(1− p)n−x

and we have

lim
p↓0

fp(x) =

{
1, x = 0

0, x > 0

lim
p↑1

fp(x) =

{
0, x < n

1, x = n

so the completion contains the original exponential family we were given plus
two new distributions, the degenerate distribution concentrated at zero and
the degenerate distribution concentrated at n. And these new distributions
are what are usually thought of as the binomial distributions for p = 0 and
p = 1 (when p = 0 no successes are possible so x = 0 almost surely; when
p = 1 no failures are possible so x = n almost surely).
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2.2 General Exponential Families

2.2.1 Support and Support Function

Let C denote the closed convex support of the exponential family under
discussion. This is the smallest closed convex set that contains the canonical
statistic vector with probability one. Hence it is a closed convex subset of
the vector space where the canonical statistic takes values.

The closed convex support always exists because the intersection of
closed sets is closed and the intersection of convex sets is convex and be-
cause finite-dimensional vector spaces are second countable. Define C to be
the intersection of all closed convex sets that contain the canonical statistic
vector Y with probability one under some distribution in the family, and
hence for all distributions in the family (because all have the same support).
Then event Y /∈ C is the union of a countable family of open sets having
probability zero, hence Y ∈ C almost surely.

Let σC denote the support function of C, defined by

σC(δ) = sup
y∈C
〈y, δ〉 (2.1)

(Rockafellar and Wets, 1998, Section 8.E). The term “support” here is un-
fortunate in that it is unrelated to the term “support” in C being a support
of the canonical statistic vector of the exponential family. But both terms
are well established (“closed convex support” in exponential family theory
and “support function” in convex analysis).

2.2.2 Probability Mass-Density Functions

If (1.25) is the log likelihood of an exponential family, the the PMDF of
that family must be the exponential of the log likelihood. In order that we
do not get extra terms that do not appear in the log likelihood and in order
to get the right support of the family, we take the measure with respect to
which we calculate densities to be a measure in the family, say the measure
corresponding to canonical parameter vector ψ. Then the PMDF are

fθ(ω) = e〈Y (ω),θ−ψ〉−c(θ)+c(ψ) (2.2)

where ω is the complete data (remember that Y is a statistic, not necessarily
the complete data) (Geyer, 2009, Equation (4)).



CHAPTER 2. COMPLETION 68

2.2.3 Straight Line Limits

Theorem 2.1. For a full exponential family having log likelihood (1.25),
densities (2.2), canonical statistic vector Y , full canonical parameter space
Θ, and closed convex support C, suppose δ is a direction in the vector space
where the canonical parameter takes values and

Hδ = { y ∈ RJ : 〈y, δ〉 = σC(δ) }, (2.3)

then for all θ ∈ Θ

lim
θ+sδ

fθ+sδ(ω) =


0, 〈Y (ω), δ〉 < σC(δ)

fθ(ω)/Prθ(Y ∈ Hδ), 〈Y (ω), δ〉 = σC(δ)

∞, 〈Y (ω), δ〉 > σC(δ)

(2.4)

where the middle term is defined to be ∞ in case of divide by zero. If δ
is not a direction of constancy and Prθ(Y ∈ Hδ) > 0, then the function
s 7→ Prθ+sδ(Y ∈ Hδ) is continuous, strictly increasing, and converges to one
as s→∞.

In the two cases ruled out by the precondition of the last sentence the
function s 7→ Prθ+sδ(Y ∈ Hδ) is a constant function. If δ is a direction of
constancy, then Prθ(Y ∈ Hδ) = 1 for all θ. If Prθ(Y ∈ Hδ) = 0 for some θ,
then Prθ(Y ∈ Hδ) = 0 for all θ.

Proof. This is a complication of Theorem 6 in Geyer (2009) that is essen-
tially Theorem 2.3 in Geyer (1990). However the proof of that Theorem 2.3
contains some errors, so a corrected proof is given in the appendix of Geyer
(2009). Then the case Prθ(Y ∈ Hδ) > 0 is Theorem 2.6 in Geyer (1990),
and the case Prθ(Y ∈ Hδ) = 0 follows from Theorem 2.2 in Geyer (1990).
The last sentence of the theorem statement is in Corollary 5 and Theorem 6
in Geyer (2009).

In case Prθ(Y ∈ Hδ) > 0, we note three things about the limit in (2.4).

� It is a probability distribution because the set where it is infinite has
measure zero under the dominating measure Prψ

� It is a conditional distribution of the original family, the conditional
distribution of Y given the event Y ∈ Hδ for the parameter vector θ.

� It is a limit distribution of the original family, the limit of the distri-
butions for parameter vectors θ + sδ as s → ∞. By Scheffé’s lemma,
convergence of PMDF implies convergence in total variation of the
corresponding probability measures.
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Note that the distribution under discussion is both a limit distribution and
a conditional distribution. Thinking of it as just one or the other is missing
something. It is both.

In case Prθ(Y ∈ Hδ) = 0, we note one thing about the limit in (2.4).

� It is the zero measure because it is zero on the support of the domi-
nating measure Prψ.

2.2.4 Limiting Conditional Models

We note one thing about the set of all limits in (2.4) in the case when
Prθ(Y ∈ Hδ) > 0.

� They form an exponential family of distributions. The log likelihood
is

lδ(θ) = 〈y, θ〉 − c(θ)− log Prθ(Y ∈ Hδ) (2.5)

and this is clearly an exponential family with

– canonical statistic vector y,

– canonical parameter vector θ, and

– cumulant function given by

cδ(θ) = c(θ) + log Prθ(Y ∈ Hδ) (2.6)

Geyer (2009) calls this family the limiting conditional model (LCM). Of
course, there are many LCM, one in each direction, but as we shall presently
see, there is usually only one LCM of interest in any particular data analysis.

Theorem 2.2. Equation (2.6) gives the correct limit of the cumulant func-
tion to make (2.5) equal to the limit of (1.25) when limits are taken as in
Theorem 2.1 in the case 〈y, θ〉 = σC(δ).

Proof. In symbols, the assertion of the theorem is

lim
s→∞

l(θ + sδ) = lδ(θ)

And

lim
s→∞

l(θ + sδ) = lim
s→∞

[
〈y, θ + sδ〉 − c(θ + sδ)

]
= 〈y, θ〉+ lim

s→∞

[
s〈y, δ〉 − c(θ + sδ)

]
= 〈y, θ〉+ lim

s→∞

[
sσC(δ)− c(θ + sδ)

]
= 〈y, θ〉 − c(θ)− log Prθ(Y ∈ Hδ)

= 〈y, θ〉 − cδ(θ)
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where the fourth equality is Theorem 2.2 in Geyer (1990).

We know, of course, that cumulant functions can be redefined by adding
an arbitrary constant (the c(ψ) in (1.26)). As mentioned in Section 1.15.1
above, we could even redefine the cumulant function by adding an arbitrary
affine function if we were to accept a different choice of canonical statistic.
But things would get very confusing if we made different arbitrary choices for
the original exponential family and its limiting conditional models. Hence,
however the cumulant function of the original exponential family was chosen,
we will always use (2.6) to define cumulant functions for limiting conditional
models.

2.2.5 Aggregate Exponential Family

Denote the LCM in the direction δ by Pδ. When Prθ(Y ∈ Hδ) = 0
we say Pδ is empty (there are no limit probability distributions, and we do
not want to include the zero measure in our completion, at least not yet).
Taking limits when δ = 0 does nothing (because (2.1) says σC(0) = 0 for
any C and this gives Hδ = RJ in (2.3)). So P0 is the exponential family we
started with, which we call the original model (OM) for short.

Then
P =

⋃
δ∈RJ

Pδ

is a union of exponential families that contains all straight-line limits.
Under certain regularity conditions used by Barndorff-Nielsen (1978),

Brown (1986), and Geyer (2009) this union is the completion. We do not
get anything more by taking further straight-line limits in Pδ for the various
δ.

But in general (Geyer, 1990, Chapters 2 and 4) we may need to take
further straight-line limits or general (not straight line) limits to arrive at
the completion.

Anyway, one can see why Brown (1986) gave this idea the name aggregate
exponential family. It is a union (or aggregate) of exponential families.

2.2.6 Support and Directions of Recession and Constancy

Theorem 2.3. A vector δ is a direction of recession of the log likelihood of
a full exponential family with closed convex support C and observed value of
the canonical statistic vector y if and only if 〈y, δ〉 ≥ σC(δ). If δ and −δ are
both directions of recession, then δ is a direction of constancy. Conversely,
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if δ is a direction of constancy and y ∈ C, then δ and −δ are both directions
of recession.

The condition y ∈ C is measure-theoretic nonsense. We have to say
y ∈ C to be measure-theoretically correct, but if your data fail to satisfy
y ∈ C, then something is wrong with your data.

Proof. The first sentence is Corollary 2.4.1 in Geyer (1990). If δ and −δ are
both directions of recession then

〈y, δ〉 ≥ σC(δ) = sup
x∈C
〈x, δ〉

and

−〈y, δ〉 = 〈y,−δ〉
≥ σC(−δ)
= sup

x∈C
〈x,−δ〉

= − inf
x∈C
〈x, δ〉

or
〈y, δ〉 ≤ inf

x∈C
〈x, δ〉

so
〈y, δ〉 ≤ inf

x∈C
〈x, δ〉 ≤ sup

x∈C
〈x, δ〉 ≤ 〈y, δ〉 (2.7)

hence
〈x, δ〉 = 〈y, δ〉, x ∈ C (2.8)

hence 〈Y, δ〉 = 〈y, δ〉 almost surely, and δ is a direction of constancy.
Conversely, if δ is a direction of constancy, then 〈Y, δ〉 is constant almost

surely. And if y ∈ C, that constant must be 〈y, δ〉. Hence (2.8) holds. Hence
(2.7) holds. And we have already seen that (2.7) is equivalent to both δ and
−δ being directions of recession.

2.2.7 Curved Line Limits

Chapter 4 of Geyer (1990) covers completely general limits of sequences
of distributions in an exponential family of distributions, these limits being
in the sense of convergence of probability mass-density functions. Although
the section title says “curved line limits,” these limits are just limits of
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sequences. We only get a line by connecting the dots, and that line does not
have to be a smooth curve.

Theorems 4.1 through 4.5 in Geyer (1990) show that taking general limits
gives no more limits that correspond to probability distributions than tak-
ing iterated straight line limits. General limits can produce limits that are
subprobability distributions (Geyer, 1990, Examples 4.2 through 4.4), but
these can never be maximum likelihood estimates for a full family, because
iterated straight line limits produce the corresponding probability distribu-
tion, which must have higher likelihood. This shows that we do not need to
consider curved line limits, so long as we limit our attention to full families.

2.3 Unconditional Aster Models

Unconditional aster models are regular full exponential families. Thus
the theory of the preceding section applies to them.

Theorem 2.4. Suppose {j} is a univariate dependence group in an aster
graph, and the one-parameter exponential family of distributions for the ar-
row yp(j) −→ yj has closed convex support that is an interval with endpoints
aj and bj (either of which may be infinite and which satisfy aj ≤ bj with
equality possible, in which case this distribution is concentrated at one point).
Let J be the set of non-initial nodes of the aster graph, and let Y denote the
response vector and y its observed value.

If yj = ajyp(j), then the vector η having index set J and coordinates

ηi =


−1, i = j

aj i = p(j)

0, otherwise

(2.9)

is a direction of recession of the saturated aster model.
Taking the limit in the direction of recession (2.9) gives the LCM that is

the same as the OM except the arrow yp(j) −→ yj has the degenerate family
of distributions concentrated at aj. This LCM is the OM conditioned on the
event Yj = ajYp(j).

If yj = bjyp(j), then the vector η having index set J and coordinates

ηi =


1, i = j

−bj i = p(j)

0, otherwise

(2.10)
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is a direction of recession of the saturated aster model.
Taking the limit in the direction of recession (2.10) gives the LCM that is

the same as the OM except the arrow yp(j) −→ yj has the degenerate family
of distributions concentrated at bj. This LCM is the OM conditioned on the
event Yj = bjYp(j).

In case aj = bj the vectors (2.9) and (2.10) are both directions of reces-
sion, and are negatives of each other, hence are both directions of constancy.
But in this case we only need one direction of constancy since one is a scalar
multiple of the other.

In case yp(j) = 0 and −∞ < aj < bj <∞ the vectors (2.9) and (2.10) are
still both directions of recession, but are not directions of constancy unless
Yp(j) = 0 almost surely.

Proof. We have a direction of recession if and only if 〈Y − y, η〉 ≤ 0 almost
surely. From the definition of aj and bj we know ajYp(j) ≤ Yj ≤ bjYp(j)
almost surely.

In case yj = ajyp(j) and η is given by (2.9) we have two cases. If p(j) is
noninitial, then

〈Y − y, η〉 = −(Yj − yj) + aj(Yp(j) − yp(j)) = −Yj + ajYp(j)

and this is indeed less than or equal to zero almost surely by definition of
aj . If p(j) is initial, then

〈Y − y, η〉 = −(Yj − yj) = −Yj + ajyp(j) = −Yj + ajYp(j)

the last equality being that Yp(j) is a constant random variable so Yp(j) =
yp(j) almost surely, and this is indeed less than or equal to zero almost
surely by definition of aj . Thus in either case we have (2.9) is a direction of
recession and

〈Y − y, η〉 = −Yj + ajYp(j) (2.11)

Taking limits in the direction (2.9) arrives at the limiting conditional model
that conditions on (2.11) being equal to zero, that is, on the event Yj =
ajYp(j). By the predecessor-is-sample-size principle this is the same thing
as saying the arrow yp(j) −→ yj has the degenerate family of distributions
concentrated at aj .

The proofs of the assertions about (2.10) are similar.
That the conditions for (2.9) and (2.10) both hold when aj = bj and that

one is then the negative of the other is obvious. That η and −η both being
directions of recession implies either is a direction of constancy is Geyer
(2009) Theorem 3 part (e) and Theorem 1 part (g).
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In case yp(j) = 0 and −∞ < aj < bj < ∞ we also have yj = 0 so
yj = ajyp(j) = bjyp(j) holds trivially. Thus we have already proved that both
are directions of recession. In order for (2.9) to be a direction of constancy
we need Yj = ajYp(j) to hold almost surely, but this is false unless Yp(j) = 0
almost surely. Similarly for (2.10).

As we see in the proof, there are two cases. When p(j) is noninitial
the arrow yp(j) −→ yj represents a conditional distribution and η has two
nonzero components unless aj = 0 and η is given by (2.9) or bj = 0 and η
is given by (2.10). When p(j) is initial the arrow yp(j) −→ j represents, in
effect, a marginal distribution and η has one nonzero component. But the
formulas (2.9) and (2.10) work in either case because the middle case does
not occur when p(j) /∈ J .

The case aj = bj cannot occur in aster models allowed by R package
aster. But once we start taking limits, then they can. So they are allowed
by R package aster2.

Degenerate distributions concentrated at aj or bj are further discussed
in the appropriate section of Appendix D (the details depend on the family
the degenerate distribution is derived from). R package aster2 implements
them.

In the case considered last in the theorem where yp(j) = 0 and (2.9) and
(2.10) are both directions of recession and point in different directions, any
nonnegative combination (linear combination with nonnegative coefficients)
of these two vectors is another direction of recession (any nonnegative com-
bimation of directions of recession is another direction of recession, Geyer,
2009, Theorem 3). For example, the vector η whose only nonzero component
is ηp(j) = aj − bj is a direction of recession.

Theorem 2.5. Suppose G is a multinomial dependence group in an aster
graph. Let J be the set of non-initial nodes of the aster graph, and let Y
denote the response vector and y its observed value.

If j ∈ G and yj = 0, then the vector η having index set J and coordinates

ηi =

{
−1, i = j

0, otherwise
(2.12)

is a direction of recession of the saturated aster model.
This vector is not a direction of constancy of the saturated aster model

unless Yq(G) = 0 almost surely.
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The vector η having index set J and coordinates

ηi =


−1, i ∈ G
+1, i = q(G)

0, otherwise

(2.13)

is a direction of constancy of the saturated aster model.
Taking the limit in the direction of recession (2.12) gives the LCM that is

the same as the OM except the arrow yp(j) −→ yj has the degenerate family
of distributions concentrated at zero, and the conditional distribution for
dependence group G becomes a partially degenerate multinomial distribution
that has Yj = 0 almost surely.

Proof. For (2.12) we need to show that 〈Y − y, η〉 ≤ 0 almost surely. This
is obvious.

〈Y − y, η〉 = −(Yj − yj) = −Yj (2.14)

and this is indeed less than or equal to zero almost surely by definition of
the multinomial distribution.

In order for (2.12) to be a direction of constancy we need (2.14) to be
zero almost surely. But this is false unless Yq(G) = 0 almost surely.

For η given by (2.13) to be a direction of constancy we need to show
that 〈Y − y, η〉 = 0 almost surely, where Y and y are as above. This too is
obvious.

〈Y − y, η〉 = (Yq(G) − yq(G))−
∑
j∈G

(Yj − yj)

and this is indeed equal to zero almost surely, by definition of the multino-
mial distribution.

By Theorem 2.1, taking limits in the direction (2.12) results in an LCM
that conditions the OM on the event Yj = 0 almost surely, and this corre-
sponds to the arrow yp(j) −→ yj having the degenerate family concentrated
at zero almost surely. And this makes the multinomial distribution of YG
given Yq(G) partially degenerate.

As mentioned after the preceeding theorem, any nonnegative combina-
tion of directions of recession is another direction of recession. This includes
the direction of constancy (any direction of constancy is a direction of reces-
sion, and so is the negative of any direction of constancy). Hence a vector
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η is a direction of recession described by this theorem if and only if

ηj < max
i∈G

ηi implies yj = 0

q(G) noninitial implies max
i∈G

ηi = −ηq(G)

In case all but one of the components of a multinomial YG are zero, we can
apply the theorem repeatedly to get a completely degenerate multinomial
family. If j ∈ G and yk = 0 for k ∈ G \ {j}, then repeated limits give us the
degenerate multinomial family that conditions on Yk = 0 for k ∈ G \ {j},
but then we must also have Yj = Yq(G) almost surely by definition of the
multinomial distribution.

These partially degenerate multinomial distributions are further dis-
cussed in Section D.9 in the appendix.

In case yq(G) = 0 but Yq(G) = 0 does not hold almost surely, the theorem
says that every η whose only nonzero component is ηj = −1 is a direction
of recession. Hence any nonnegative combination of these is a direction
of recession. Hence considering also (2.13) gives a vector η having nonzero
components ηG in case q(G) is initial and ηG∪{q(G)} in case q(G) is noninitial,
is a direction of recession if and only if

q(G) noninitial implies max
i∈G

ηi = −ηq(G)

and this direction of recession is a direction of constancy if and only if

ηi = ηj , i, j ∈ G

Theorem 2.6. Suppose G = {j, k} is a normal-location-scale dependence
group in an aster graph. Let J be the set of non-initial nodes of the aster
graph, and let Y denote the response vector and y its observed value.

If yq(G) = 1, then the vector η having index set J and coordinates

ηi =


2yj , i = j

−1, i = k

0, otherwise

(2.15)

is a direction of recession of the saturated aster model.
But this direction of recession does not produce a limiting conditional

model because it corresponds to the case Prθ(Y ∈ Hδ) = 0 in in Theorem 2.1.
If yq(G) ≥ 2, then almost surely there are no directions of recession for

this family.



CHAPTER 2. COMPLETION 77

If yq(G) = 0, then every vector of the form (2.15) is a direction of reces-
sion (for all real numbers yj). These directions of recession are not directions
of constancy unless Yq(G) = 0 almost surely.

Proof. The closed curve consisting of points yG such that yk = y2j supports

the conditional distribution of yG given yq(G) = 1. The function f : yj 7→ y2j
is a convex function. By the gradient inequality (Rockafellar and Wets,
1998, Theorem 2.13 (b))

f(Yj)− f(yj) ≥ f ′(yj)(Yj − yj)

but this can also be written

Yk − yk ≥ 2yj(Yj − yj)

because f(yj) = yk and f(Yj) = Yk and f ′(yj) = 2yj . And it can also be
written

−ηk(Yk − yk) ≥ ηj(Yj − yj)

because of the definition of η in the theorem statement. And this says
〈Y − y, η〉 ≤ 0 so η is a direction of recession.

Since f is strictly convex (Rockafellar and Wets, 1998, Theorem 2.13
(a′)), we have strict inequality in the gradient inequality (Rockafellar and
Wets, 1998, Theorem 2.13 (b′)) when Yj 6= yj . Hence we have 〈Y − y, η〉 < 0
almost surely. But the latter is equivalent to Prθ(Y ∈ Hδ) = 0 in in Theo-
rem 2.1.

The (closed) convex support of the family for sample size one is the set

C = { yG : yk ≥ y2j }

The (closed) convex support of the family for sample size n is is the n-
fold Minkowski sum of this set, which is nC (Rockafellar and Wets, 1998,
Proposition 2.23). Because the distributions in this family are continuous,
the interior of nC actually supports the family for n ≥ 2. Hence (almost
surely) it is not possible to observe data on the boundary of the convex
support for n ≥ 2.

In case yq(G) = 0, the convex support of the conditional distribution of
YG given Yq(G) is 0·C = {0}. Now we have to consider the three-dimensional
set of all possible vectors Y{j,k,l} with l = q(G). Since limits of sequences
of normal vectors are again normal vectors (Rockafellar and Wets, 1998,
Proposition 6.6 and Theorem 6.9), normal vectors at the point 0 = (0, 0, 0)
are those of the form (2.15) and any nonnegative combinations of such.
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In order for such a vector η to be a direction of constancy, we must have
ηjYj + ηkYk = 0 almost surely. But this is false unless Yq(G) = 0 almost
surely.

If yq(G) ≥ 1, then the theorem gives at most one direction of recession,
and it is not a direction of constancy. If yq(G) = 0, then the theorem gives an
infinite number of directions of recession pointing in different directions. Our
intention with these theorems is to use them to discover generic directions
of recession of (not saturated) unconditional aster models using repeated
linear programming. But we cannot put an infinite number of vectors into
a linear program.

Moreover, our use of this theorem has to be fundamentally different from
our use of Theorems 2.4 and 2.5. From the latter we discover DOR that lead
to LCM in which we find MLE. From the former we discover DOR that do
not lead to LCM, and the MLE does not exist, and we have to rudely inform
users that their models are no good: you cannot estimate the variance of a
normal distribution from one observation.

Users can avoid these kind of error messages by assuming homoscedastic
errors (just like in linear models). The way this is done in aster models is to
have the variance node of each normal-location-scale family have the same
parameter. And the way to do that is to have + foo in the formula, where
foo is the indicator vector of the variance nodes of all normal-location-scale
dependence groups (the k in the theorem) and no other appearance of foo

in the formula.
Users can have more complicated formulas in which variance differs

among normal-location-scale dependence groups, but then it is the job of the
computer to catch situations in which this leads to directions of recession
described by the theorem.

Fortunately, we can separate these two kinds of problems. All normal
dependence groups must be terminal (so not really “fortunately” because
this follows from the predecessor-is-sample-size principle). Thus we can
trim all of the normal dependence groups off of the aster graph and still
have a possible aster model. Then we can apply our algorithm (still to be
developed in what follows) to determine whether a GDOR exists and, if so,
what the LCM is (for the model with normal dependence groups trimmed
off).

Then we can put the normal dependence groups back, and look for more
directions of recession. In this, the following theorem helps.

Theorem 2.7. Suppose G is a dependence group in an aster graph, and
yq(G) = 0 where Y is the response vector and y its observed value, then
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the vector η whose only nonzero component is ηq(G) = −1 is a direction of
recession of the saturated aster model.

Taking the limit in this direction gives the LCM that is the same as the
OM except Yq(G) = 0 almost surely, and this means the distributions of all
successors, successors of successors, successors of successors of successors,
etc. are not identifiable in this LCM.

This direction of recession is not a direction of constancy unless Yq(G) = 0
almost surely.

Proof. We know q(G) is not a terminal node. It is not an initial node either,
because aster models are required to have nonzero data at initial nodes.
We know from the predecessor-is-sample-size property that Yq(G) ≥ 0 is
required. Since yq(G) is at the lower endpoint of the support of Yq(G), the
vector described in the theorem statement is a direction of recession.

If we take limits in this direction, we get the OM conditioned on the
event Yq(G) = 0 almost surely, and this implies Yj = 0 almost surely for all
j ≺ q(G), where ≺ is the transitive closure of the successor relation. The
cumulant function for this LCM does not depend on any of the variables ϕj
for j � q(G). This can be seen by applying (1.26) to this model.

c(ϕ) = c(ϕ∗) + log
{
Eϕ∗

(
e〈Y,ϕ−ϕ

∗〉
)}

= c(ϕ∗) + log

Eϕ∗
∏
j∈J

eYj(ϕj−ϕ
∗
j )


= c(ϕ∗) + log

Eϕ∗
 ∏

j∈J
j 6�q(G)

eYj(ϕj−ϕ
∗
j )




where ϕ varies and ϕ∗ is fixed. And then (1.38) shows that the log likelihood
for the LCM does not depend on any of these variables either.

This vector is a direction of constancy if and only if Yq(G) = 0 almost
surely.

The vector this theorem finds to be a direction of recession is also found
by theorems preceeding it, but the point of this theorem is that it applies to
any aster model whatsoever, even those having families that have not been
implemented yet. And the theorem also provides more information about
LCM.

In particular, it tells us that for LCM we found by applying our (yet
to be developed) GDOR algorithm to the model with normal dependence
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groups trimmed off, any normal dependence groups having Yq(G) = 0 in the
LCM can still be ignored: their parameters will be non-identifiable in the
LCM.

Theorem 2.8. The set of all directions of recession is a closed convex cone.
The set of all directions of constancy is a vector subspace. Every direction
of constancy is also a direction of recession. A vector δ is a direction of
constancy if and only if both δ and −δ are directions of recession.

The set of all directions of recession of saturated aster models having
families described by Theorems 2.4, 2.5, 2.6, and 2.7 is the smallest closed
convex cone containing all of the directions of recession described by those
theorems.

The set of all directions of constancy of such aster models is the smallest
vector subspace containing all of the directions of constancy described by
those theorems.

Proof. The assertions of the first paragraph are all in Theorems 1 and 3 of
Geyer (2009) and the discussion surrounding them.

Sections 4.1 and 4.2 in Geyer (1990) characterize all possible limit dis-
tributions in an exponential family of distributions. Theorem 2.7 in Geyer
(1990) says that all limit distributions can be obtained by taking iterated
straight line limits. The limit of a product being the product of the lim-
its, when we take a limit we get a limit in each term of the fundamental
factorization of aster models (1.1). Thus when we have all possible limit-
ing conditional models for each of the families for each of the dependence
groups, we have also gotten all of the limits for the whole aster model.

Conversely, since the theorems mentioned describe all possible limits
of distributions for dependence groups in the families described by those
theorems, which includes all families currently implemented in R packages
aster and aster2, we have discovered all possible limits. There are no other
directions of recession.

As the theorem statement only implicitly refers to but the the proof ex-
plicitly says, the theorem does not apply to aster models having multivariate
dependence groups whose families have not been invented yet. We would
need to add theorems about their directions of recession if we add them to
aster models.

Now we need to figure out how to use these theorems when applied to
general unconditional aster models (canonical affine submodels of the sat-
urated aster model). The principle is simple. If M is the model matrix of
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a canonical affine submodel, then δ is a direction of recession (resp. con-
stancy) of that submodel if and only if η = Mδ is a direction of recession
(resp. constancy) of the saturated model.

So we revisit the theorems.
In Theorem 2.4 we have either (2.9) or (2.10) or both or neither is a

direction of recession. If aj = bj , then we can take either to be a direction of
constancy and ignore the other. If the predecessor is zero almost surely (this
cannot happen unless the model we are considering is already an LCM) then
any directions of recession are directions of constancy, but not otherwise.

In Theorem 2.5 when yq(G) > 0 we have one direction of recession for
each j ∈ G such that yj = 0 and we also have one direction of constancy for
the whole dependence group. If the predecessor is zero almost surely (this
cannot happen unless the model we are considering is already an LCM) then
all directions of recession are directions of constancy, but not otherwise.

For now we ignore Theorem 2.6.
So that completes our list of directions of recession and constancy.

Theorem 2.9. A vector δ is a direction of recession of an unconditional
canonical affine submodel with normal dependence groups trimmed off and
no arrows having degenerate families if and only if η = Mδ has the form

η =
∑
j∈Jr

ejηj (2.16)

where Jr is the index set for directions of recession of the saturated model
discussed above, Jc is the subset of Jr indexing directions of constancy, and
the ej are real numbers satisfying ej ≥ 0 for j ∈ Jr \ Jc.

Proof. This just makes explicit what Theorem 2.8 already says.

Consider the following linear program having variables ej for j ∈ Jr and
δk for k ∈ K.

maximize
∑

j∈Jr\Jc

ej

subject to 0 ≤ ej ≤ 1, j ∈ Jr \ Jc (2.17)

Mδ =
∑
j∈Jr

ejηj

Theorem 2.10. Linear program (2.17) always has a solution. Linear pro-
gram (2.17) has optimal value zero if and only if there does not exist a
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direction of recession that is not a direction of constancy and the MLE ex-
ists in the originally given unconditional aster model with model matrix M .
Otherwise, the optimal value is greater than or equal to one and the δ part
of the solution is a direction of recession that is not a direction of constancy.

Proof. The feasible region is nonempty because it always contains the zero
vector. Then solutions exist because the objective function is obviously
bounded on the feasible region.

The optimal value is zero if and only if at the solution ej = 0 for j ∈
Jr \ Jc, in which case the δ part of the solution is a direction of constancy
of the submodel and η = Mδ is a direction of constancy of the saturated
model. The assertion about existence of MLE is then Theorem 4 in Geyer
(2009).

If there exists any feasible point such that some ej for j ∈ Jr \ Jc is
nonzero, then we can multiply all components of δ and all ej by a strictly
positive constant to make the largest ej for j ∈ Jr \Jc equal to one, in which
case the objective function is greater than or equal to one. Optimizing then
only increases the objective function. The solution then is clearly a direction
of recession that is not a direction of constancy by Theorem 2.9.

We are not done yet because we haven’t yet in the terminology of Geyer
(2009) found a generic direction of recession (GDOR). That will be one
that has the maximal number of nonzero ej for for j ∈ Jr \ Jc. Since any
nonnegative combination of directions of recession is another direction of
recession, we can seek GDOR by modifying our linear program to find DOR
with ej > 0 that we haven’t found so far.

Let J∗ be any nonempty subset of Jr \ Jc, and consider the following
linear program.

maximize
∑
j∈J∗

ej

subject to 0 ≤ ej ≤ 1, j ∈ J∗ (2.18)

0 ≤ ej , j ∈ (Jr \ Jc) \ J∗

Mδ =
∑
j∈Jr

ejηj

Then we iterate (Algorithm 1, page 83).

Theorem 2.11. Algorithm 1 always terminates, and γ is a generic direction
of recession unless γ = 0, in which case the MLE exists in the originally
given unconditional aster model.
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Algorithm 1 Find GDOR for Unconditional Aster Model

Set J∗ = Jr \ Jc
Set J∗∗ = ∅
Set γ = 0
repeat {

Solve the linear program (2.18)
if (linear program has no solution) error
if (optimal value is zero) break
Set δ to be the δ part of the solution of the linear program
Set γ = γ + δ
Set e to be the e part of the solution of the linear program
Set J∗∗ = J∗∗ ∪ { j ∈ J∗ : ej > 0 }
Set J∗ = J∗ \ J∗∗
if (J∗ = ∅) break

}

Proof. The algorithm must terminate because J∗ decreases in each iteration.
So we terminate when J∗ = ∅ if not before.

Since each δ found is a direction of recession that is not a direction of
constancy, so is γ.

The termination condition of optimal value zero or J∗∗ = ∅, proves that
γ is such that η = Mγ has the most possible nonzero components ηj for
j ∈ Jr \ Jc. Hence it is generic unless γ = 0 and the algorithm proves the
MLE exists in the OM.

From now on we only use the LCM corresponding to the GDOR found.
This means every ηj for j ∈ J∗∗ found by the algorithm is a direction of
constancy of this LCM. The other DOR remain the same.

Now we add back in all of the normal dependence groups. Normal-
location arrows are covered by Theorem 2.4 with aj = −∞ and bj = +∞.
They can never have directions of recession. So that leaves normal-location-
scale dependence groups.

From Theorem 2.6 we know that those with yq(G) ≥ 2 have no directions
of recession to add to our problem. From Theorem 2.7 we know that those
with yq(G) = 0 have non-identifiable parameters in the LCM. If G = {j, k}
then we add a vector whose only nonzero component is ηj = 1 to the list
of directions of constancy and also a vector whose only nonzero component
is ηk = 1 to the list of directions of constancy. Finally, from Theorem 2.6
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we know that those with yq(G) = 1 have exactly one direction of recession
that is not a direction of constancy given by (2.15). There are no further
directions of recession to add to our problem.

So we throw all of this back into linear program (2.17). It had better
have optimal value zero. Otherwise users get rude error messages.

2.4 Conditional Aster Models

Saturated aster models are regular full exponential families. Uncondi-
tional canonical affine submodels of aster models are regular full exponential
families. So the theory in this chapter up to now applies to them.

Conditional canonical affine submodels of aster models are not regular
full exponential families. As smooth submodels of saturated aster models,
they are what the jargon calls curved exponential families. But that does
not tell us much about existence or non-existence of MLE. We know that
all possible limits have to be limits of distributions in the saturated model
(because it is a submodel of the saturated model). But when those limits are
MLE is something for which there is no general theory for curved exponential
families.

2.4.1 Associated Independence Models

A cheap trick, however, does crack the problem of conditional aster mod-
els. This is the notion of associated independence models (Section 1.23.4
above). For reference, we repeat (1.55) above

l(θ) =
∑
G∈G

[
〈yG, θG〉 − nq(G)cG(θG)

]
(2.19)

(so this equation now has two equation numbers, one here and one there).
The actual conditional model has (saturated model) log likelihood that

is (2.19) with nq(G) replaced by yq(G). The associated independence model
(AIM) has (saturated model) log likelihood that is (2.19) with nq(G) constant
and yj random.

As Section 1.23.4 above says, the AIM makes no sense when considered
statistically, probabilistically, because it pretends that variables that are
actually the same (nq(G) and yq(G)) are different, and one is constant and the
other random. But, as Section 1.23.4 above also says, the AIM makes perfect
sense when considered numerically, algebraically when we are considering
maximum likelihood estimation. Then nq(G) and yq(G) are just numbers,
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fixed at their observed values, and if we use different notation for the same
number in different parts of the expression, that is OK.

In Section 1.23.4 we used the AIM to reach the conclusion that the log
likelihood of a conditional aster model is concave, something that is not
generally true of curved exponential family models.

In this section, we will use the AIM to completely characterize exis-
tence and uniqueness of MLE for conditional aster models and directions
of recession and constancy of (2.19) and for its canonical affine submodels
(conditional aster models).

What puts the I (for independence) in AIM is that the AIM makes the
YG for G ∈ G independent random vectors. This makes the AIM much easier
to reason about than the actual conditional aster model.

So now we repeat the preceding section, mutatis mutandis reasoning
about AIM rather than unconditional aster models.

Theorem 2.12. Suppose {j} is a univariate dependence group in an AIM,
and the one-parameter exponential family of distributions for the arrow
np(j) −→ yj has closed convex support that is an interval with endpoints
aj and bj (either of which may be infinite and which satisfy aj ≤ bj with
equality possible, in which case this distribution is concentrated at one point).
Let J be the set of non-initial nodes of the aster graph, let Y denote the re-
sponse vector and y its observed value, and let n denote the vector of sample
sizes whose components are nj.

If np(j) = 0 or aj = bj, then the vector η whose only nonzero component
is ηj = 1 is a direction of constancy of (2.19).

If np(j) > 0 and aj < bj and yj = ajnp(j), then the vector η whose
only nonzero component is ηj = −1 is a direction of recession that is not a
direction of constancy of (2.19).

Taking the limit in this direction of recession gives the LCM that is the
same as the OM except the arrow np(j) −→ yj has the degenerate family
of distributions concentrated at aj. This LCM is the OM (of the AIM)
conditioned on the event Yj = ajnp(j).

If np(j) > 0 and aj < bj and yj = bjnp(j), then the vector η whose only
nonzero component is ηj = 1 is a direction of recession that is not a direction
of constancy of (2.19).

Taking the limit in this direction of recession gives the LCM that is the
same as the OM except the arrow np(j) −→ yj has the degenerate family
of distributions concentrated at bj. This LCM is the OM (of the AIM)
conditioned on the event Yj = bjnp(j).
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Theorem 2.13. Suppose G is a multinomial dependence group in an AIM.
Let J be the set of non-initial nodes of the aster graph, let Y denote the
response vector and y its observed value, and let n denote the vector of
sample sizes whose components are nj.

If np(j) = 0 then the vector η whose only nonzero component is ηj = 1 is
a direction of constancy of (2.19), and this is true for each j ∈ G.

If np(j) > 0 and yj = 0, then the vector η whose only nonzero component
is ηj = −1 is a direction of recession that is not a direction of constancy of
(2.19), and this is true for each j ∈ G.

Taking the limit in any of these directions of recession, say the one having
ηj nonzero, gives the LCM that is the same as the OM (of the AIM) except
the arrow np(j) −→ yj has the degenerate family of distributions concentrated
at zero.

The vector η having index set J and coordinates

ηi =

{
1, i ∈ G
0, otherwise

(2.20)

is a direction of constancy of of (2.19).

As in the discussion following Theorem 2.5 (which this theorem dupli-
cates mutatis mutandis), we note that any nonnegative combination of di-
rections of recession is another direction of recession. Hence the directions of
recession described by this theorem are vectors η whose only nonzero com-
ponents are in the subvector ηG and such a vector is a direction of recession
of (2.19) if

ηj < max
i∈G

ηi implies yj = 0

and such a vector is a direction of constancy of (2.19) if nq(G) = 0 or if its
nonzero components are all the same.

Theorem 2.14. Suppose G = {j, k} is a normal-location-scale dependence
group in an AIM. Let J be the set of non-initial nodes of the aster graph,
let Y denote the response vector and y its observed value, and let n denote
the vector of sample sizes whose components are nj.

If nq(G) = 0, then any vector η whose only nonzero components are ηj
and ηk is a direction of constancy of of (2.19).

If nq(G) = 1, then (2.15) is a direction of recession of (2.19) that is not
a direction of constancy.

But this direction of recession does not produce a limiting conditional
model because it corresponds to the case Prθ(Y ∈ Hδ) = 0 in in Theorem 2.1.
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If nq(G) ≥ 2, then, almost surely, there are no directions of recession for
this family.

Theorem 2.15. In addition to the general properties of directions of reces-
sion and constancy found in Theorem 2.8, the set of all directions of reces-
sion of AIM having families described by Theorems 2.12, 2.13, and 2.14 is
the smallest closed convex cone containing all of the directions of recession
described by those theorems.

The set of all directions of constancy of such aster models is the smallest
vector subspace containing all of the directions of constancy described by
those theorems.

Theorem 2.16. For an AIM with normal dependence groups trimmed off
define

Jup = { j ∈ J : yj = ajnp(j) }
Jdn = { j ∈ J : yj = bjnp(j) }

where these include multinomial dependence groups with the convention aj =
0 and bj = ∞ for them. Then a vector η is a direction of recession of this
model if

ηj ≤ 0, j ∈ Jdn \ Jup
ηj ≥ 0, j ∈ Jup \ Jdn

Conversely, any direction of recession of this model satisfies these conditions
if we modify it by subtracting max(ηG) from the elements of ηG for each
multinomial dependence group G.



Chapter 3

Subsampling

3.1 Introduction

In aster models the ideal is to actually measure all components of fitness
and make them nodes in the graphical model. Sometimes, however, it is just
too much work to count all of some component of fitness, for example, all
seeds produced by a plant.

For a part of an aster graph

· · · −−−−→ ythis −−−−→ ythat −−−−→ · · ·

suppose that ythat is typically too large to count (by available methods, in
available time).

The conditional distribution of ythat given ythis is the sum of ythis in-
dependent and identically distributed (IID) random variables. This is the
predecessor-is-sample-size property (Section 1.12 above). In short, ythat is a
random “sample” from some “population” and the sample size is ythis, where
the scare quotes are to indicate that “sample” and “population” don’t refer
to an actual sample and population but are just a way of discussing prob-
ability that is common in introductory statistics books, which take finite
population sampling (actually taking a random sample from a known finite
population) as an analogy for all applications of probability theory; any IID
set of random variables is called a “sample” from a “population” whether
or not that makes literal sense.

The obvious solution to our problem is to “subsample” the “sample.”
Take a random sample of the things ythis counts, and for that subsample
count how many of whatever component of fitness ythat counts (this proposal
will be generalized in Section 3.2.4 below). In this case, Shaw et al. (2008b,

88
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p. E43) proposed to simply insert an extra arrow in the graph to represent
the subsampling process. Taking a random subsample is a Bernoulli process
(flip a “biased coin” to decide for each of the ythis things whether it goes in
the subsample). So this is a Bernoulli arrow, but we mark it specially as a
subsampling arrow

· · · −−−−→ ythis
samp−−−−→ ythis-sub −−−−→ ythat-sub −−−−→ · · · .

Here ythis is the same variable it was before (the observed count for “this”
fitness component), ythis-sub is the subsample size (the subset of the ythis
things that go in the subsample), and ythat-sub is the observed count for
“that” fitness component for the subsample). We no longer observe ythat,
which is what we would have observed if we had not subsampled. Not having
to count ythat was the whole point of the subsampling.

Shaw et al. (2008b) further proposed to treat aster models with sub-
sampling just like any other aster model. This suggestion was backed up
by Section 8 of a supporting technical report (Shaw et al., 2008a). That
technical report, however, notes this suggestion is not quite the right thing.
It says

The somewhat odd thing about this proposal is that the parame-
ter p [the subsampling probability] is known and is a conditional
mean value parameter, but we intend to use an unconditional
aster model and treat the [corresponding] unconditional canoni-
cal parameter as unknown [emphasis in the original].

and devotes the rest of its Section 8 to a simulation study that shows that,
although, not quite the right thing, it does well enough.

Stanton-Geddes, Shaw, and Tiffin (2012a, Appendix S1) show how to, in
effect, remove the effect of subsampling when producing point estimates and
confidence intervals for expected fitness, completing something left undone
by Shaw et al. (2008b) and the accompanying technical report.

Here we give a new proposal that does the right thing with subsampling
arrows and hence supersedes all earlier proposals. We have to realize that
aster models with subsampling are no longer regular full exponential families,
so they no longer satisfy the original rationale for aster models.

With subsampling there are two models we have to consider: the model
with subsampling, which reflects the experiment actually done, and the same
model with subsampling removed, which reflects biology of the organisms
being studied. We give both of these models the same parameterization
(subsampling arrows in the aster graph have no unknown parameters be-
cause the subsampling probabilities are known). Once this fundamental
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realization is made, everything else about aster models with subsampling
follows from well known likelihood theory.

3.2 Subsampling

3.2.1 Graphs With and Without Subsampling

We already have one two-way classification of aster graphs: the full aster
graph and graphs for “individuals” in scare quotes (Section 1.9 above). Now
we introduce a different two-way classification: with and without subsam-
pling. Together these give us a four-way classification.

When using aster models with subsampling, we are also interested in the
graph and the corresponding aster model if subsampling had not been done.
The graph and model with subsampling represent the experiment actually
done. The graph and model without subsampling represent the biology.
We must refer to both in our discussion. For example, we use the graph
and model with subsampling to estimate parameters, but we use the graph
and model without subsampling to predict biological properties of organisms
from these estimates.

Understanding the correspondence between the two graphs is helped
by referring to the following picture, which is part of an aster graph with
subsampling.

· · · −−−−→ yi −−−−→ yj
samp−−−−→ yk −−−−→ ym −−−−→ · · · (3.1)

Only one subsampling arrow is shown (labeled “samp”). The other arrows
are non-subsampling. Nodes at the head of subsampling arrows (here yk)
are called subsampling nodes. Thus yk is the only subsampling node among
the nodes shown. Here yj is the count of some sort of thing (flowers, seeds,
etc.) of actual individuals in the experiment, and yk is the count of the same
thing for a random subsample of those individuals who are carried forward
to later stages of the experiment. Thus yj and yk are both measurements
of the same component of fitness. The relationship between yj and yk is
artificial (done by the experimenters) and has nothing to do with biology.

The corresponding graph without subsampling is formed by removing the
subsampling arrow and subsampling node and pasting together the graph
so no break is formed

· · · −−−−→ yi −−−−→ yj −−−−→ ym −−−−→ · · · (3.2)

This graph corresponds to the experiment that would have been done if
there were no subsampling.
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Here is a more complicated example that illustrates that sometimes it
may be necessary to have subsampling arrows following each other.

y3 y5

y0 y1 y2

y4 y6

samp
samp

(3.3)

This is the graph for one “individual” assuming all “individuals” have iso-
morphic subgraphs. Here is the corresponding subgraph when we remove
the subsampling arrows.

y5

y0 y1

y4 y6

(3.4)

3.2.2 Notation for Graphs With and Without Subsampling

We are going to use mathematical notation that distinguishes analogous
concepts for the full graphs with and without subsampling by decorating
notation for the former with stars.

Sets of Nodes

The set of nodes of the full aster graph with subsampling is denoted N∗.
The set of non-subsampling nodes in N∗ is denoted N . This is the set of
nodes of the full graph without subsampling.

The set of non-initial nodes in N∗ is denoted J∗. The set of non-initial
nodes in N is denoted J . (J = N ∩ J∗.)

Families of Sets of Nodes

The set of dependence groups (Section 1.6 above) for the aster model
with subsampling is denoted G∗. The set of dependence groups for the aster
model without subsampling is denoted G.

Subsampling nodes are always dependence groups by themselves. No
dependence group with more than one node can have any subsampling nodes.
Thus the set of all subsampling nodes is J∗ \ J .
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Predecessor Functions

We already have two kinds of predecessor functions: set-to-index pre-
decessor functions denoted q (Section 1.6 above) and index-to-index pre-
decessor functions denoted p (Section 1.10 above). Now we have another
two-way classification. We will have these functions with stars to denote
with subsampling and without stars to denote without subsampling.

For example, in (3.1) we have p∗(m) = k but p(m) = j. The latter agrees
with (3.2), as it must.

For another example, in (3.3) we have

p∗(6) = 4

p∗(5) = 3

p∗(4) = 2

p∗(3) = 2

p∗(2) = 1

p∗(1) = 0

but

p(6) = 4

p(5) = 1

p(4) = 1

p(1) = 0

The latter agrees with (3.4), as it must.
We have not given examples of graphs with subsampling and dependence

groups, but the set-to-index predecessor functions work the same way

p(j) = q(G), j ∈ G ∈ G
p∗(j) = q∗(G), j ∈ G ∈ G∗

Partial Orders

In Section 1.11 above we introduced partial orders on the node set of the
graph that tell us about predecessors, predecessors of predecessors, and so
forth. Unlike the case with the other mathematical objects just discussed,
we do not need starred and unstarred versions for these.

As in Section 1.11 above, let � denote the transitive closure of the prede-
cessor relation on N∗. Then the transitive closure of the predecessor relation
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on N is just the same relation as on N∗ but restricted to N , that is j � k
in N if and only j � k when j and k are considered elements of N∗.

And similarly for �, ≺, and �.

Going from One to the Other

The user specifies the graph with subsampling. The computer should
figure out the corresponding graph without subsampling (so no mistakes
about that are made).

For this we use the notation pk for k-fold composition of a function with
itself from dynamical systems theory that is also explained in Section 1.11
above.

Suppose we are trying to determine p(j) for j ∈ J . Define

m = min{ k > 0 : (p∗)k(j) ∈ N }

Then p(j) = (p∗)m(j).
In words, we go back in the graph with subsampling looking at the

predecessor, predecessor of predecessor, and so forth until we find one that
is not a subsampling node, and that is the predecessor in the graph without
subsampling.

3.2.3 Models With and Without Subsampling

Now that we have the relationship between the graph with and without
subsampling, and hence the factorization (Section 1.6 above) with and with-
out subsampling we need to consider statistical models that go with these
factorizations. Models without subsampling are those already described
(Chapter 1 above).

So we have to describe models with subsampling here. There are two
key ideas.

� The conditional distributions for subsampling arrows are considered
known. Thus they have no unknown parameter values to estimate.

� The conditional distributions for non-subsampling arrows should be
the same for the models with and without subsampling. They should
have the same statistical models parameterized in the same way (this
statement is imprecise; it depends on which parameters we are talking
about).
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Data

First we introduce new notation for data (not used above) to distinguish
the models with and without subsampling. Let y∗ denote the response
vector for the model with subsampling and y the response vector for the
model without subsampling.

Factorization

Then the model with subsampling factorizes as

f∗(y∗) =
∏
G∈G∗

f∗G(y∗G | y∗q∗(G)) (3.5)

and the model without subsampling factorizes as

f(y) =
∏
G∈G

fG(yG | yq(G)). (3.6)

Now our first principle above says that f∗G( · | · ) has no parameters when
G /∈ G, and our second principle above says that

f∗G,θG( · | · ) = fG,θG( · | · ), G ∈ G

that is, these are the same conditional distributions (the same functions of
the variables on each side of the vertical bar) for the same parameter values.

Parameterization

This also makes clear what parameters we are talking about. The condi-
tional canonical parameter vector θ (Section 1.18 above) is the same for the
models with and without subsampling. But we also want the aster trans-
form to be the same (also Section 1.18 above), so the unconditional canonical
parameter vector ϕ will also be the same for the models with and without
subsampling.

Mean Value Parameters

The conditional mean value parameter vector ξ will differ for the models
with and without subsampling simply because the model with subsampling
has more arrows. The components of ξ will be the same for the same arrows
(Sections 1.13 and 1.20 above), that is, defining

ξj = E(yj | yp(j) = 1)

ξ∗j = E(y∗j | y∗p∗(j) = 1)
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we have

ξj = ξ∗j =
∂cG(θG)

∂θj

whenever j is not a subsampling node and j ∈ G ∈ G. But when j is a
subsampling node there is no ξj since there is no node j in the model without
subsampling, and ξ∗j is not a function of the parameters of the model (θ and
ϕ); it is not an unknown parameter but rather a known constant (this will
be revisited in the next section).

Thus when we define

µ = E(y)

µ∗ = E(y∗)

we will still have the relationship between µ and ξ discussed in Section 1.13.3
above. And we will have the analogous equations with stars for the rela-
tionship between µ∗ and ξ∗ but the relations between µ and µ∗ will be very
complicated and depend on the whole aster graph. But everything in this
section depends on subsampling having the predecessor-is-sample-size prop-
erty, which we drop in the next section. So nothing in this section holds for
general aster models with subsampling.

3.2.4 Generalizing Our Notion of Subsampling

So far, we have been assuming the conditional distributions for the sub-
sampling arrows obey the predecessor-is-sample-size principle. This means
the conditional distribution for sample size one is Bernoulli, so subsampling
arrows are Bernoulli arrows (but ones whose conditional canonical parame-
ters are fixed and known rather than unknown parameters to be estimated).
And it means the conditional distribution of y∗j given y∗p∗(j) is binomial (when

j is a subsampling node). Let ξ∗j be the usual parameter for the binomial
distribution, which is also the mean value parameter for the Bernoulli dis-
tribution. Then, defining µ∗ = E(y∗), we have the analog of (1.7) with
stars

µ∗j = ξ∗jµ
∗
p(j), j ∈ J∗. (3.7)

and all of the consequences (1.7) found in Section 1.13.3 above, except with
stars in the appropriate places.

But when we drop the predecessor-is-sample-size principle for subsam-
pling arrows (3.7) no longer holds, and there is no longer any notion of
ξ∗j for such arrows analogous to non-subsampling arrows. We still do have
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conditional mean values,
E
{
y∗j | y∗p∗(j)

}
but these do not need to satisfy

E
{
y∗j | y∗p∗(j)

}
= ξ∗j y

∗
p∗(j)

for any constant ξ∗j when j is a subsampling node that does not obey the
predecessor-is-sample-size principle, but rather are arbitrary functions of
y∗p∗(j).

This means that conditional mean value parameters for subsampling
arrows make no sense for subsampling arrows that are not Bernoulli (do not
obey the predecessor-is-sample-size principle). Since many biologists use
forms of subsampling that are not Bernoulli (not simple random sample),
we do not want to enforce the Bernoulli assumption.

All we assume about subsampling distributions is that they are known,
having no unknown parameters to estimate. We make no other assumptions
about them.

We do, of course, have an unconditional mean value parameter vector
µ∗ with components

µ∗j = E(Y ∗j ), j ∈ J∗ (3.8)

but since the computer knows nothing about the subsampling distributions
(they can be any distributions), the computer will be unable to compute
them. If users want to use µ∗ somehow, they will have to provide it them-
selves.

Thus ξ∗ is undefined, in general, and µ∗, although defined, is no longer
anything the computer can deal with.

Fortunately ξ∗ and µ∗ are unbiological. So users will mostly, perhaps
always, only be interested in ξ and µ, which the computer can deal with.

3.2.5 Log Likelihood

When there is no subsampling, the saturated aster model log likelihood
for θ is given by (1.33) which can be rewritten

l(θ) =
∑
j∈J

yjθj −
∑
G∈G

yq(G)cG(θG). (3.9)

Theorem 3.1. The log likelihood for a model with subsampling is given by

l(θ) =
∑
j∈J

y∗j θj −
∑
G∈G

y∗q∗(G)cG(θG). (3.10)
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In (3.9) and (3.10) cG is the cumulant function for the exponential family
for dependence group G.

Proof. To be clear, we write down the log likelihood for all the data using
the notation of Section 3.2.4 above

l(θ∗) =
∑
j∈J

y∗j θj −
∑
G∈G

y∗q∗(G)cG(θG) +
∑

j∈J∗\J

log fj(y
∗
j | y∗p∗(j))

and we are allowed to drop terms that do not contain unknown parameters
from the log likelihood because this makes no difference to either frequentist
or Bayesian inference. This gives (3.10).

The cumulant function cG satisfies

∂cG(θG)

∂θj
= Eθ(yj | yq(G) = 1)

= Eθ(y
∗
j | yq∗(G) = 1)

= ξj

= ξ∗j , j ∈ G ∈ G,

(3.11)

and

∂2cG(θG)

∂θj∂θk
= covθ(yj , yk | yq(G) = 1)

= covθ(y
∗
j , y
∗
k | y∗q∗(G) = 1), j, k ∈ G ∈ G,

(3.12)

and these derivatives are zero if j /∈ G or (in the latter) k /∈ G.
If the conditioning event in these equations has probability zero (which

happens in actual aster models if the family in question is k-truncated with
k > 0, Shaw et al., 2008b, have an example), then the conditional expecta-
tions are not well defined, but we still have

∂cG(θG)

∂θj
= ξj = ξ∗j (3.13)

with ξj being defined by the more long winded and careful definition given
in Section 1.13.2 above when the conditioning event in (3.11) has probability
zero.

The reason for the equality of starred and unstarred quantities is that
we want the model without subsampling to be the same as the model with
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subsampling when the subsampling arrows are removed as explained in Sec-
tion 3.2.1 above and in this section. The distribution of yG given yq(G) = n
is the same as the distribution of y∗G given y∗q∗(G) = n.

There is a similar adjustment to be made for the conditional covariances
above when their conditioning events have probability zero. We still have
that yG is the sum of yq(G) IID random vectors and ∂2cG(θG)/∂θj∂θk is the
unconditional covariance of the j and k components of one of those random
vectors.

3.2.6 Aster Transform

We have the aster transform and inverse aster transform (Section 1.18)
and these hold for models with subsampling because they are the same (we
assume) as for models without subsampling. And these determine µ and ξ as
discussed in the preceding section. And we are generally uninterested in µ∗

and ξ∗ as discussed in the preceding section. Thus we only have parameters
without stars. We have aster graphs with stars and aster data with stars,
but not parameters.

3.2.7 Canonical Affine Submodels

As is the situation without subsampling, we are interested in canonical
affine submodels (Section 1.22 above) when we have subsampling. And we
want them to be the same models with the same parameterizations with
and without subsampling. Thus they are the same as in Section 1.22 above.
Unconditional canonical affine submodels make ϕ an affine function of the
submodel parameters β. Conditional canonical affine submodels make θ an
affine function of the submodel parameters β.

Conditional

With subsampling, a conditional aster model still has a concave log likeli-
hood for the reasons discussed in Section 1.23.4 above. The saturated model
log likelihood (3.9) is a sum of linear and concave functions of θ. Therefore
the submodel log likelihood is the composition of a concave function and an
affine function, which is again a convex function. This means the MLE will
be easily found by the computer (by any algorithm that always checks that
it goes uphill on the likelihood in every iteration). It does not mean that
conditional aster models have any other properties of regular full exponen-
tial families (but this is true with or without subsampling, as was discussed
in Chapter 1).
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Unconditional

With subsampling, an unconditional aster model is no longer an ex-
ponential family and does not have any full exponential family properties.
It is, of course, still a curved exponential family, which gives it the usual
asymptotics of maximum likelihood.

3.2.8 Differentiating the Aster Transform and Its Inverse

Here we follow Section A.2 of the technical report Geyer et al. (2005)
which backs up the paper Geyer et al. (2007). Our notation is different from
their notation, our notation here is what we have used for aster models since
Geyer (2010).

Aster Transform

Let ∆θj denote an infinitesimal increment of θj and similarly for ∆ϕj .
Then differentiating (1.35) and using (3.13) and the chain rule gives

∆ϕj = ∆θj −
∑
G∈G
q(G)=j

∑
k∈G

ξk∆θk

= ∆θj −
∑
k∈J
p(k)=j

ξk∆θk
(3.14)

In language that does not refer to infinitesimals and using the sophisti-
cated view that derivatives are linear transformations (Browder, 1996, Def-
inition 8.9; Lang, 1993, p. 334), the derivative of the aster transform is the
linear transformation that maps the vector ∆θ having components ∆θj to
the vector ∆ϕ having components ∆ϕj .

We can think of this linear transformation as being represented by the
matrix of partial derivatives, which can be read off (3.14),

∂ϕj
∂θk

=


1, j = k

−ξk, j = p(k)

0, otherwise

(3.15)

Inverse Aster Transform

By the inverse function theorem, the derivative of the inverse is the
inverse of the derivative (considered as a linear transformation), assuming it
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exists, which it does if the derivative is invertible (Lang, 1993, p. 361–363).
We will prove the derivative is invertible by inverting it.

As discussed in Section 1.18 above, the formula (1.37) gives an inductive
definition that works when nodes of the graph are visited in any order that
visits successors before predecessors.

The same is true of the derivative of the inverse aster transform. Moving
a term from one side of (3.14) to the other gives

∆θj = ∆ϕj +
∑
k∈J
p(k)=j

ξk∆θk. (3.16)

When ∆θj on the left-hand side is computed, all of the ∆θk on the right-
hand side will already have been computed (when we visit successors before
predecessors).

As before, the derivative of the inverse aster transform is the linear
transformation that maps the vector ∆ϕ having components ∆ϕj to the
vector ∆θ having components ∆θj .

Because of the nature of inductive definitions, the analog of (3.15) for the
inverse transform is a bit more complicated. To help with it we introduce
the following notation and conventions. Let 1( · ) denote the function that
maps logical formulas to numbers, mapping false formulas to zero and true
formulas to one, and define empty sums (those having no terms) to be equal
to zero (the identity for addition) and empty products (those having no
terms) to be equal to one (the identity for multiplication).

Theorem 3.2. Partial derivatives of the inverse aster transform are given
by

∂θj
∂ϕk

= 1(j � k)
∏
i∈J
j≺i�k

ξi. (3.17)

In (3.17) the product is empty when j = k. (The product is also empty
when j � k but then we have 1(j � k) = 0 so it does not matter what the
value of the product is.)

Proof. What is to be shown is that (3.17) agrees with (3.16) in the case ∆ϕ
has only one nonzero component, say ∆ϕn. In this case (3.16) says

∆θj = 0, j 6� n
∆θj = ∆ϕn, j = n

∆θj =
∑
k∈J
p(k)=j

ξk∆θk, j ≺ n
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or

∂θj
∂ϕn

= 0, j 6� n

∂θj
∂ϕn

= 1, j = n

∂θj
∂ϕn

=
∑
k∈J
p(k)=j

ξk
∂θk
∂ϕn

, j ≺ n

Clearly the first two lines agree with (3.17). That leaves only the third line
to check. We note in this line that the partial derivative on the right-hand
side is zero unless j ≺ k � n and that there is hence exactly one term in
the sum. Thus the third line just above agrees with (3.17) by mathematical
induction.

3.2.9 Log Likelihood Derivatives

First Derivatives With Respect To θ

Applying (3.13) and (3.11) to (3.10), we obtain

∂l(θ)

∂θj
= y∗j − y∗p∗(j)ξj , j ∈ J. (3.18)

These are the first derivatives of the log likelihood for a saturated model
with subsampling with respect to components of θ.

Notice that, as always, there is the curious mix of starred and unstarred
thingummies. The data and the predecessor function have stars because
this is for models with subsampling. The parameters do not have stars
because we insist that models have the same parameters with and without
subsampling. The index set for (3.18) is J because that is the index set for
θ.

First Derivatives for CAM

In conditional aster models (CAM) with model equation (1.50) we have
∂θj/∂βk = mjk where M has components mjk. Thus, by (3.18) and the
chain rule

∂l(β)

∂βk
=
∑
j∈J

∂l(θ)

∂θj

∂θj
∂βk

=
∑
j∈J

(y∗j − y∗p∗(j)ξj)mjk

MLE are derived by setting these equal to zero, considering the ξ’s as func-
tions of β, and solving for β.
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First Derivatives With Respect To ϕ

Theorem 3.3. For k ∈ J define

n = inf{ j ∈ J : j � k }. (3.19)

Then

∂l(ϕ)

∂ϕk
= y∗k − y∗p∗(n)

 ∏
i∈J

n�i�k

ξi

+
∑
m∈J

n≺m�k

[
y∗p(m) − y

∗
p∗(m)

] ∏
i∈J

m�i�k

ξi


(3.20)

The infimum in (3.19) means j � k implies n � j. The at-most-one-
predecessor property (Section 3.2.2 above) makes the set { j ∈ J : j � k }
totally ordered by �. This set is also nonempty (it contains k) and finite
(aster graphs are finite). Hence the infimum in (3.19) is always well defined.

The conventions that empty sums are zero and empty products are one
(established in Section 3.2.8 above) are still in force.

If a node p∗(m) is not a subsampling node, then p(m) = p∗(m). Hence,
if there is no subsampling, all terms y∗p(m) − y

∗
p∗(m) in (3.20) are zero, and

(3.20) reduces to

∂l(ϕ)

∂ϕk
= yk − yp(n)

∏
i∈J

n�i�k

ξi = yk − µk

by (1.9), and this agrees with previous aster theory (Geyer et al., 2007,
Section 3.2).

Node p(n) is the unique initial node of the full aster graph satisfying
p(n) ≺ k. If p∗(n) 6= p(n), then p∗(n) is a subsampling node.
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Proof.

∂l(ϕ)

∂ϕk
=
∑
j∈J

∂l(θ)

∂θj

∂θj
∂ϕk

=
∑
j∈J
j�k

(y∗j − y∗p∗(j)ξj)
∏
i∈J
j≺i�k

ξi

=

∑
j∈J
j�k

y∗j
∏
i∈J
j≺i�k

ξi

−
∑
j∈J
j�k

y∗p∗(j)
∏
i∈J
j�i�k

ξi



= y∗k − y∗p∗(n)

 ∏
i∈J

n�i�k

ξi



+

 ∑
j∈J

n�j≺k

y∗j
∏
i∈J
j≺i�k

ξi

−
 ∑

m∈J
n≺m�k

y∗p∗(m)

∏
i∈J

m�i�k

ξi



= y∗k − y∗p∗(n)

 ∏
i∈J

n�i�k

ξi



+

 ∑
m∈J

n≺m�k

y∗p(m)

∏
i∈J

m�i�k

ξi

−
 ∑

m∈J
n≺m�k

y∗p∗(m)

∏
i∈J

m�i�k

ξi



= y∗k − y∗p∗(n)

 ∏
i∈J

n�i�k

ξi

+
∑
m∈J

n≺m�k

[
y∗p(m) − y

∗
p∗(m)

] ∏
i∈J

m�i�k

ξi


where the first equality is the chain rule, the second equality is (3.17) and
(3.18), and the rest are just algebra.

First Derivatives for UAM

Hence, for unconditional aster models (UAM),

∂l(β)

∂βn
=
∑
k∈J

∂l(ϕ)

∂ϕk
mkn.
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Second Derivatives With Respect To θ

Because the R function mlogl in R package aster calculates minus the
log likelihood and its first and second derivatives, we do the same. Negating
and differentiating (3.18) gives

− ∂2l(θ)

∂θj∂θk
= y∗p∗(j)γjk, j, k ∈ J, (3.21)

where

γjk =

{
∂2cG(θG)/∂θj∂θk, j, k ∈ G ∈ G
0, otherwise

(3.22)

See (3.12) above for more on γjk.

Hessian for CAM

Second derivative matrices are commonly called Hessian matrices in op-
timization theory. If the matrix having components (3.21) is denoted H(θ),
then the Hessian for β is given by

H(β) = MTH(θ)M, when θ = a+Mβ, (3.23)

where, as usual, a is the offset vector and M is the model matrix. This is
because M is the Jacobian matrix of the parameter transformation β → θ
in a CAM, and (3.23) is just the chain rule.

Hessian for UAM

If we follow the preceding section in denoting the Hessian for β by H(β),
the Hessian for θ by H(θ), and the Hessian for ϕ by H(ϕ), then

H(β) = MTH(ϕ)M, when ϕ = a+Mβ, (3.24)

and the argument is exactly the same as in the preceding section.

3.2.10 Second Derivatives With Respect To ϕ

That leaves us with having to derive H(ϕ), which is complicated. Be-
fore differentiating (3.20) again, it will simplify computations if we recog-
nize that the terms in big round brackets are “parameterized common sub-
expressions” (one has n where the other has m). Using (3.17), we can give
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one of these another notation

∂θp(m)

∂ϕk
=

∏
i∈J

m�i�k

ξi, (3.25)

but when we change m to n in (3.25) to get a notation for the other term
in big round brackets in (3.20) this does not work, because p(n) is an initial
node so there is no parameter θp(n). This would work, however, if we imagine
that the aster graph we are working with is part of a larger aster graph in
which p(n) is not initial and not a subsampling node. If we work under this
fiction, we should get correct mathematics.

Lemma 3.4.

∂2θp(m)

∂ϕj∂ϕk
=

∑
r∈J

p(m)≺r�k

∑
s∈J

p(m)≺s�j

γrs
∏
t∈J

p(m)≺t≺r

ξt
∏
u∈J
s≺u�j

ξu
∏
v∈J
r≺v�k

ξv (3.26)

When all dependence groups are singletons, as with R package aster, this
specializes to

∂2θp(m)

∂ϕj∂ϕk
=

∑
r∈J

p(m)≺r�k
p(m)≺r�j

γrr
∏
t∈J

p(m)≺t≺r

ξt
∏
u∈J
r≺u�j

ξu
∏
v∈J
r≺v�k

ξv (3.27)

Lemma 3.5. If m ≺ r and γrs 6= 0, then m ≺ s.

Proof. If r = s the assertion is trivial. Otherwise, γrs 6= 0 implies that r and
s are in the same dependence group, say G, and none of the arrows for this
dependence group are subsampling arrows. It follows that p(r) = p(s) =
q(G). So m ≺ r implies m � q(G) implies m ≺ s.
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Proof of Lemma 3.4.

∂2θp(m)

∂ϕj∂ϕk
=

∂

∂ϕj

∏
i∈J

m�i�k

ξi

=
∑
r∈J

m�r�k

∂ξr
∂ϕj

∏
i∈J

m�i�k
i 6=r

ξi

=
∑
r∈J

m�r�k

∑
s∈J

∂ξr
∂θs

∂θs
∂ϕj

∏
i∈J

m�i�k
i 6=r

ξi

=
∑
r∈J

m�r�k

∑
s∈J
s�j

γrs
∏
u∈J
s≺u�j

ξu
∏
i∈J

m�i�k
i 6=r

ξi

=
∑
r∈J

m�r�k

∑
s∈J
s�j

γrs
∏
u∈J
s≺u�j

ξu
∏
t∈J

m�t≺r

ξt
∏
v∈J
r≺v�k

ξv

=
∑
r∈J

p(m)≺r�k

∑
s∈J
s�j

γrs
∏
u∈J
s≺u�j

ξu
∏
t∈J

p(m)≺t≺r

ξt
∏
v∈J
r≺v�k

ξv

where the first equality is (3.25), the second equality is the product rule,
the third equality is the chain rule, the fourth equality is (3.13), (3.22), and
(3.17), the fifth equality just splits one product into two products. and the
last equality is m � r if and only if p(m) ≺ r and similarly for t. Finally we
use Lemma 3.5 to get p(m) ≺ r and γrs 6= 0 implies p(m) ≺ s.

Going from (3.26) to (3.27) is just that, when all dependence groups are
singletons, γrs 6= 0 implies r = s.

Theorem 3.6. Define n by (3.19). For an unconditional aster model with
subsampling, the j, k component of H(ϕ) is

− ∂2l(ϕ)

∂ϕj∂ϕk
= y∗p∗(n)

∂2θp(n)

∂ϕj∂ϕk
−

∑
m∈J

n≺m�k

[
y∗p(m) − y

∗
p∗(m)

] ∂2θp(m)

∂ϕj∂ϕk
(3.28)

where the second partial derivatives of θ with respect to ϕ are given by (3.26)
or (3.27) and where these equations are to be used regardless of whether p(n)
actually indexes a parameter.

Proof. Immediate from (3.20).
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As was remarked after Theorem 3.3, a node p∗(m) is not a subsampling
node if and only if p(m) = p∗(m), in which case the term containing y∗p(m)−
y∗p∗(m) is exactly zero.

Since cumulant functions are infinitely differentiable, so is the aster
transform, the inverse aster transform, and aster log likelihoods. Thus for-
mulas (3.26), (3.27) and (3.28) must be equal when j and k are interchanged.
We have written them in a form so that this is almost obvious. The only
non-obvious spot is when we interchange j and k in (3.26) we (in effect)
change p(m) ≺ t ≺ r into p(m) ≺ t ≺ s, but this agrees with Lemma 3.5:
t ≺ r and γrs 6= 0 implies t ≺ s.

3.2.11 Fisher Information

Change of Parameter

We begin with a theorem about change of Fisher information under
smooth change of parameter that is for general likelihood inference under
the “usual regularity conditions.” It has nothing in particular to do with
exponential families. The “usual regularity conditions” hold for all regular
exponential families including curved exponential families. So they hold for
all models in this article. But they hold for many other models too.

The only regularity condition we need is the so-called Bartlett identities,
which are usually derived by differentiating the integral of the probability
densities twice with respect to the parameters

Eθ{∇l(θ)} = 0 (3.29)

varθ{∇l(θ)} = −Eθ{∇2l(θ)} (3.30)

where ∇l(θ) denotes the vector of first partial derivatives of the log like-
lihood, ∇2l(θ) denotes the matrix of second partial derivatives of the log
likelihood, and var denotes the variance operator that produces a variance
matrix (also called variance-covariance matrix, covariance matrix, and dis-
persion matrix).

Expected Fisher information is either side of (3.30). Observed Fisher
information is −∇2l(θ).

The theorem is about what happens under a change of parameter θ =
g(ψ). In short, the theorem says Fisher information transforms like a tensor.
If expected Fisher information for θ is denoted I(θ), and observed Fisher
information for θ is denoted J(θ) (note that the latter is a random quantity
despite there being no explicit indication of this), and the Jacobian of the
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transformation is B(ψ) = ∇g(ψ), then

I(ψ) = B(ψ)T I(θ)B(ψ), when θ = g(ψ). (3.31)

This is reminiscent of and ultimately derives from the formula for change
of variance under a linear transformation. If y = Bx, where x and y are
random vectors and B is a known matrix, then

var(y) = B var(x)BT . (3.32)

The analogous result for observed Fisher information is a bit trickier. Chang-
ing I to J in (3.31) gives a statement that is, in general, false. But it is true
when MLE are plugged in

J(ψ̂) = B(ψ̂)TJ(θ̂)B(ψ̂), when θ̂ = g(ψ̂). (3.33)

When θ̂ = g(ψ̂) and ψ̂ is an MLE, then θ̂ is also an MLE by by invariance
of MLE under parameter transformation.

Theorem 3.7. Assume (3.29) and (3.30). Then statement (3.31) is correct.
If θ̂ = g(ψ̂) is a zero of the first derivative of the log likelihood for θ, then
statement (3.33) is correct. The change of parameter function g must be
injective and differentiable but need not be surjective.

Proof. By the chain rule

∇l(ψ) = ∇l(θ)B(ψ), when θ = g(ψ).

Take the variance of both sides and use (3.32) to obtain (3.31).
The situation is more complicated with second derivatives

− ∂2l(ψ)

∂ψi∂ψj
= −

(∑
k

∑
m

∂2l(θ)

∂θk∂θm

∂θk
∂ψi

∂θm
∂ψj

)
−
∑
k

∂l(θ)

∂θk

∂2θk
∂ψi∂ψj

.

When MLE are plugged in,

∂l(θ)

∂θk

∣∣∣∣
θ=θ̂

= 0

so this gives (3.33).
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Fisher Information for θ

Returning to aster models with subsampling, from (3.21) we get:

� observed Fisher information for θ is the matrix having components
y∗p∗(j)γjk and

� expected Fisher information for θ is the matrix having components
µ∗p∗(j)γjk.

Note that, since expected Fisher information depends on components of µ∗,
which cannot, in general, be calculated by the computer, use of expected
Fisher information depends on those subsampling probability distributions,
whereas the log likelihood, its derivatives, and observed Fisher information
do not depend on them.

Thus, in general, we can only use observed Fisher information.

Fisher Information for β for CAM

If I(θ) is expected Fisher information for θ derived in the preceding
section, then expected Fisher information for β is

I(β) = MT I(θ)M, when θ = a+Mβ,

because M is the derivative of θ with respect to β. We also have the anal-
ogous relationship for observed Fisher information when MLE are plugged
in

J(β̂) = MTJ(θ̂)M, when θ̂ = a+Mβ̂.

Fisher Information for β for UAM

As in the preceding section, let I(θ) and J(θ) be expected and observed
Fisher information for θ for the saturated model with subsampling, which
were derived in Section 3.2.11 above. Now let a(ϕ) denote the inverse aster
transform described in Section 1.18 above, and let A(ϕ) denote its derivative,
whose components are given by (3.17). Now the model equation is (1.47) so
M is the derivative of ϕ with respect to β.

So now expected Fisher information for β is

I(β) = MTA(ϕ)T I(θ)A(ϕ)M, when ϕ = a+Mβ and θ = a(ϕ),

and the analogous relationship for observed Fisher information when MLE
are plugged in is

J(β̂) = MTA(ϕ̂)T I(θ̂)A(ϕ̂)M, when ϕ̂ = a+Mβ̂ and θ̂ = a(ϕ̂).
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3.2.12 Prediction

Prediction for all six parameterizations of UAM discussed in Section
1.22.2 above can be handled by the aster and aster.formula methods of
the R generic function predict (that is, the functions predict.aster and
predict.aster.formula considered as non-generic functions). One calls
these functions by the name predict but must look up the help page with
help(predict.aster). These functions are in R package aster. (A referee
for Geyer et al. (2007) complained that these are not predictions but rather
parameter transformations and we agreed, but users expect to use the R
generic function predict to do this job.)

Since version 1.0 of the package, these functions have a new optional
argument is.always.parameter = TRUE which makes them “predict” ξ
rather than the vector having components E(yj | yp(j)), which is not a pa-
rameter. If we always use this option, this function can make predictions for
all parameters in the chain β → ϕ → θ → ξ → µ, and if we add τ = MTµ,
which we can do ourselves (given µ calculated by predict), we have all six
parameters.

As parameters, none of these depend on the response vector, although
they do depend on covariates because the model matrix depends on covari-
ates. Thus if the R function predict is provided an object of class "aster"
or "aster.formula" that has the MLE β̂ for the aster model with sub-
sampling as its coefficients component, and corresponding expected and
observed Fisher information matrices as its fisher and hessian compo-
nents but every other component as if subsampling had not been done, then
predict will operate to make predictions without subsampling.

We also want the deviance component of our object of class "aster"

or "aster.formula" containing the result of fitting the model with sub-
sampling to be reflect the subsampling (be minus twice the maximized log
likelihood) so that the R generic function anova does the right thing with
these objects.

3.2.13 Parameter Transformation

The methods for the R generic function predict in R package aster

cannot do all of the parameter transformations discussed in Sections 1.21
and 1.22.2 above. A function astertransform was added to this package,
but it only does transformations from θ and ϕ to any of θ, ϕ, ξ, or µ.

R package aster2 does do all of these parameter transformations. The
function transformSaturated does any of the transformations from θ, ϕ,
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ξ, or µ to any of these. The function transformConditional does any of
the transformations for a CAM without subsampling from β to θ, ϕ, ξ, or µ
(but not vice versa). The function transformUnconditional does any of the
transformations from β or τ (the only parameters that are unconstrained)
to β, θ, ϕ, ξ, µ, or τ .

Both transformSaturated and transformUnconditional are able to
transform from mean value to canonical parameters.

Calculating the parameter transformations ξ → θ or µ → ϕ for sat-
urated aster models without subsampling and τ → β for UAM without
subsampling is equivalent to doing maximum likelihood with data replaced
by unconditional mean value parameters. Theorem 1.8 covers all of these
cases.



Appendix A

The Factorization Theorem

Proof of Theorem 1.1. A valid factorization factors joint equals conditional
times marginal

pr(y) = pr(yG1 | yN\G1
) pr(yN\G1

)

The marginal on the right-hand side can then be considered a joint to be
factored further

pr(y) = pr(yG1 | yN\G1
) pr(yG2 | yN\(G1∪G2)) pr(yN\(G1∪G2))

and again and again giving

pr(y) = pr(yN\
⋃k
j=1Gj

)

k∏
i=1

pr(yGi | yN\⋃ij=1Gj
) (A.1)

and the only condition that is required to make (A.1) valid is that the index
sets Gi are disjoint. This is the only operation in classical (non-measure-
theoretic) probability theory that factorizes probability distributions. A
factorization is valid if and only if it has the form (A.1).

When we match up (1.1) and (A.1) we see that the Gi must be the
elements of G so the two products are the same. For the conditional distri-
butions to match up we must have pr(yGi | yN\⋃ij=1Gj

) in (A.1) can actually

be written as pr(yGi | yq(Gi)), that is,

� this conditional distribution actually depends only on the single vari-
able yq(Gi) not on the rest of the variables that are components of
yN\

⋃i
j=1Gj

and

� q(Gi) ∈ N \
⋃i
j=1Gj , that is, either q(Gi) ∈ Gj for some j > i or q(Gi)

is an initial node (q(Gi) /∈ Gj for any j). In either case, q(Gi) ∈ Gj
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implies i < j. Thus we have the condition of the theorem: Gi < Gj if
and only if i < j.

Finally, we must match up the marginal term on the right-hand side of
(A.1). It matches nothing in (1.1), which is the same as saying it must be
equal to one, which is they same as saying yN\J is a constant random vector,
where J =

⋃
G as always.



Appendix B

Markov Properties

Markov properties of graphical models are considered a fundamental part
of the theory (Lauritzen, 1996, Chapter 3). They are much less important
for aster models, so unimportant that the literature on aster models does
not mention them. So perhaps most readers will want to skip this appendix.
Nevertheless, perhaps these ideas might find some future use. So we do
them.

A Markov property is a conditional independence relation derived from a
graph (or for aster models from the fundamental factorization (1.1)). There
are many more Markov properties than we bother to prove here.

Lemma B.1. Let H be any subset of G. Then the random vectors yH , H ∈
H are conditionally independent given the random scalars yq(H), H ∈ H.

Note that some yj can possibly appear among some H ∈ H and in
some yq(H), H ∈ H so we have to say what that means. Conditioning on
a random variable is the same as treating it as constant, and a constant
random variable is independent of any random variables including itself.
Thus for any sets A and B, we have

pr(yA | yB) = pr(yA\B | yB). (B.1)

In (B.1), the case A \ B = ∅ is possible, in which case y∅ is the con-
stant random vector discussed in Section 1.4 above. Thus pr(y∅ | yB) = 1
regardless of what yB is.

This lemma does not say that the components of the random vectors yH
are conditionally independent. The components of yG are dependent given
yq(G) for any G. That is the whole point of dependence groups.
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Proof. Use the total order on G guaranteed to exist by Theorem 1.1 to
enumerate G as G1 < G2 < · · · < Gn. Then Hj = Gij for j = 1, . . . , m,
where 1 ≤ i1 < i2 < · · · < im ≤ n.

We integrate out yG one at a time in order skipping when G ∈ H and
also not integrating out any yq(H) for H ∈ H.

We start by sum-integrating out yG1 if G1 6= H1 obtaining

pr(yG2∪···∪Gn) =

n∏
i=2

pr(yGi | yq(Gi)).

and keep going repeating this again and again obtaining

pr(y⋃{G∈G:G≥H1 }) =
∏
G∈G
G≥H1

pr(yG | yq(G))

= pr(yH1 | yq(H1))
∏
G∈G
G>H1

pr(yG | yq(G))

(if G1 = H1 we haven’t done anything yet and this is just the same factor-
ization as (1.1) in different notation).

Now we have to be careful with our notation. Define

Q = { q(H) : H ∈ H}

we need to not sum-integrate out any components of yQ.
If Gi1+1 6= H2, then we want to sum-integrate out yGi1+1\Q obtaining

pr(yH1∪{q(H1)}∪{G∈G:G>Gi1+1 })

= pr(yH1 | yq(H1)) pr(yGi1+1∩Q | yq(Gi1+1))
n∏

j=i1+2

pr(yGi | yq(Gi))

(this uses the discussion of y∅ preceding this proof, since Gi1+1 ∩Q may or
may not be the empty set).

Continuing this process, we obtain

pr(yH1∪{q(H1)}∪{Gi2 ,...,Gn})

= pr(yH1 | yq(H1))

i2−1∏
j=i1+1

pr(yGj∩Q | yq(Gj))
n∏

j=i2

pr(yGi | yq(Gi)).
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And we can now see how this process continues

pr(yH1∪H2∪···∪Hm∪Q) =
∏
H∈H

pr(yH | yq(H))
∏

G∈G\H

pr(yG∩Q | yq(G))

And now integrating out yH\Q in order gives

pr(yQ) =
∏
H∈H

pr(yH∩Q | yq(H))
∏

G∈G\H

pr(yG∩Q | yq(G))

(Note that every yj for j ∈ Q appears “in front of the bar” in exactly one
of these conditional probabilities because G is a partition.) So

pr(yH1∪H2∪···∪Hm | yQ) =
∏
H∈H

pr(yH | yq(H))

pr(yH∩Q | yq(H))

=
∏
H∈H

pr(yH∪{q(H)})

pr(y(H∩Q)∪{q(H)})

=
∏
H∈H

pr(yH\Q | yQ)

=
∏
H∈H

pr(yH | yQ)

the last step being (B.1).

If G and H are partitions of a set J , then we say that G is finer than H
if every element of G is contained in some element of H. We also say that
H is coarser than G to indicate the same concept.

Clearly, every element of H is the union of elements of G it contains
(because G is a partition).

Theorem B.2. Suppose G and q are as in (1.1) and Theorem 1.1, and
suppose H is a coarser partition than G. Define

Q = { q(G) : (G,H) ∈ G ×H andG ⊂ H and q(G) /∈ H } (B.2)

then the random vectors yH , H ∈ H, are conditionally independent given
the random vector yQ.

Note that (B.1) is being used in this theorem too. Some yj may appear
in some yH and also in yQ.

Also we repeat the comment following the lemma. The theorem does
not assert conditional independence of the components of yH for any H.
The components of yG being dependent given yq(G) is the whole point of
dependence groups.
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Proof. We prove this by induction. The induction variable is the partition
H. We start with H = G. Then we change H to coarser and coarser
partitions until we get to the H in the theorem statement.

The base of the induction is the case H = G in which case the lemma
and the theorem say the same thing. So that establishes the base of the
induction.

In each induction step we decrease the cardinality of H by one. This
means we take two elements H ′ and H ′′ of H and merge them to make one
element of H after the induction step, and all other elements of H remain
unchanged (in this particular induction step). We need to show that if the
assertion of the theorem is true before the induction step, then it is true
after the induction step, when H is changed as described.

Let Hbefore denote H before the induction step and Hafter denote H after
the induction step, so all elements of Hbefore and Hafter are the same except

� Hbefore has elements H ′ and H ′′ which are not in Hafter and

� Hafter has the element H ′ ∪H ′′ which is not in Hbefore.

Let Qbefore denote Q before the induction step and Qafter denote Q after
the induction step, so all of the elements of Qbefore and Qafter are the same
except

� q(G), G ∈ G such that G ⊂ H ′ ∪H ′′ and q(G) ∈ H ′ ∪H ′′ are not in
Qafter. (Some of these may not have been in Qbefore either.)

In case Qbefore = Qafter there is nothing to prove. Conditional indepen-
dence of yH , H ∈ Hbefore given yQbefore

clearly implies conditional indepen-
dence of yH , H ∈ Hafter given yQafter

in this case where Qbefore = Qafter. The
latter statement just forgets part of the assertion of the former. (It forgets
about conditional independence of yH′ and yH′′ .)

In case Qbefore 6= Qafter there is more work to be done. The induction
hypothesis says

pr(y | yQbefore
) =

∏
H∈Hbefore

pr(yH | yQbefore
).

First we notice
Qbefore \Qafter ⊂ H ′ ∪H ′′ (B.3)

so by the induction hypothesis

pr(yH | yQbefore
) = pr(yH | yQafter

), H ∈ Hbefore ∩Hafter. (B.4)
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Now

pr(yH′ | yQbefore
) pr(yH′′ | yQbefore

) pr(yQbefore
)

= pr(yH′∪H′′ | yQbefore
) pr(yQbefore

)

= pr(yH′∪H′′∪Qbefore
)

= pr(yH′∪H′′∪Qafter
)

the first equality being the conditional independence asserted by the induc-
tion hypothesis and the last equality being (B.3). So

pr(yH′∪H′′ | yQafter
) =

pr(yH′∪H′′∪Qafter
)

pr(yQafter
)

= pr(yH′ | yQbefore
) pr(yH′′ | yQbefore

)
pr(yQbefore

)

pr(yQafter
)

= pr(yH′ | yQbefore
) pr(yH′′ | yQbefore

) pr(yQbefore
| yQafter

)

By a similar argument we have

pr(y | yQafter
) = pr(yQbefore

| yQafter
)

∏
H∈Hbefore

pr(yH | yQbefore
)

= pr(yH′ | yQbefore
) pr(yH′′ | yQbefore

) pr(yQbefore
| yQafter

)

×
∏

H∈Hbefore∩Hafter

pr(yH | yQbefore
)

= pr(yH′∪H′′ | yQafter
)

∏
H∈Hbefore∩Hafter

pr(yH | yQbefore
)

= pr(yH′∪H′′ | yQafter
)

∏
H∈Hbefore∩Hafter

pr(yH | yQafter
)

=
∏

H∈Hafter

pr(yH | yQafter
)

where the next-to-last step is (B.4). And reading from end to end gives the
assertion that the induction step must prove. Hence we are done.

Let
Ginitial = {G ∈ G : q(G) /∈ J }

(the notation is perhaps a bit misleading, this is the subset of G whose
elements have predecessors that are initial nodes). Now for G ∈ Ginitial, let

HG = { j ∈ J : (∃k ∈ G)(j � k) }
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where, as usual � denotes the reflexive transitive closure of the predecessor
relation. These HG are the node sets for what are called aster graphs for
“individuals” (in scare quotes) in Section 1.9 above. Let

H = {HG : G ∈ Ginitial }. (B.5)

Corollary B.3. The random vectors yH , H ∈ H, with H defined by (B.5)
are (unconditionally) independent.

Proof. Immediate from the theorem because the Q corresponding to this H
consists of initial nodes only so yQ is a constant random vector, and condi-
tioning on a constant has no effect. Any things conditionally independent
given yQ are unconditionally independent given yQ.



Appendix C

Regularity

As mentioned in Section 1.16 where the exponential family assumption
for aster models was introduced, the cumulant function for the degenerate
family concentrated at zero is the zero function that is everywhere equal
to zero. The family consisting of this distribution only is a regular full
exponential family because cG is everywhere finite. So the full canonical
parameter space of this family is RG.

Theorem C.1. If Yq(G) = 0 almost surely for any dependence group G,
replace the family for this dependence group by the degenerate family con-
centrated at zero so cG is the zero function. Then, if families for every
dependence group of the aster model are regular full exponential families,
then so is the (joint) distribution of the aster model. The full (uncondi-
tional) canonical parameter space of the aster model is the range of the aster
transform. The cumulant function of the aster model is given by (1.36) for
parameter values where it is finite.

Let ΘG denote the full canonical parameter space of the exponential
family for dependence group G, which is the set of points where cG is finite.
The the set of all θ values that correspond to possible distributions in the
aster model is

Θ =
∏
G∈G

ΘG (C.1)

where the product denotes Cartesian product: this is the set of all θ such
that θG ∈ ΘG for all G. If we temporarily give the aster transform a letter
f , then the range of this function is denoted Φ = f(Θ). This is the set of
all vectors ϕ that correspond to vectors θ that parameterize distributions in
the aster model.
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Note that we don’t have an explicit description of Φ. We don’t even have
a closed-form expression for f , only the recursive definition (1.35). But we
know that f is a function having domain Θ and range Φ, and the inverse
aster transform is a function having domain Φ and range Θ.

One assertion of the theorem is that when we calculate the cumulant
function of the (joint) distribution of the aster model using (1.26) the result
is finite if and only if ϕ ∈ Φ and when it is finite the result agrees with
(1.36). Another assertion of the theorem is that Φ is an open subset of the
vector space where ϕ takes values.

Proof. From (1.26)

c(ϕ) = c(ϕ∗) + log
{
Eϕ∗

(
e〈Y,ϕ−ϕ

∗〉)}
or

ec(ϕ)−c(ϕ
∗) = Eϕ∗

(
e〈Y,ϕ−ϕ

∗〉) (C.2)

(what were θ and ψ in (1.26) have become ϕ and ϕ∗, respectively, here
because we want to emphasize that they are both possible values of the un-
conditional canonical parameter vector). Let θ and θ∗ denote the conditional
canonical parameter vectors corresponding to ϕ and ϕ∗, respectively.

We also note that (1.26) holds for each dependence group

ecG(θG)−c(θ
∗
G) = Eϕ∗

(
e〈YG,θG−θ

∗
G〉
∣∣∣Yq(G) = 1

)
(C.3)

and since the cumulant function for sample size n is n times the cumulant
function for sample size one

eyq(G)[cG(θG)−c(θ∗G)] = Eϕ∗
(
e〈YG,θG−θ

∗
G〉
∣∣∣yq(G)

)
(C.4)

Use the total order on G guaranteed to exist by Theorem 1.1 to enumerate
G as G1 < G2 < · · · < Gn, and for k = 0, . . . , n define

Gk = {G1, . . . , Gk }

where the notation is intended to mean that G0 is another notation for the
empty set. We claim

Eϕ∗
(
e〈Y,ϕ−ϕ

∗〉)
= Eϕ∗

 ∏
G∈Gk

q(G)/∈
⋃
Gk

eYq(G)[cG(θG)−cG(θ∗G)]
∏

G∈G\Gk

e〈YG,ϕG−ϕ
∗
G〉

 (C.5)
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hold for k = 0, . . . , n and we prove this by induction.
The base of the induction is the case k = 0 in which case the first product

is empty and by convention equal to one. Then (C.5) is obviously equivalent
to (C.2).

To prove the induction step we assume (C.5) and prove (C.5) with k
replaced by k + 1. Note that (1.35) says

θj − θ∗j = ϕj − ϕ∗j +
∑
G∈G
q(G)=j

[cG(θG)− cG(θ∗G)] (C.6)

so

Eϕ∗

 ∏
G∈Gk

q(G)/∈
⋃
Gk

eYq(G)[cG(θG)−cG(θ∗G)]
∏

G∈G\Gk

e〈YG,ϕG−ϕ
∗
G〉

 =

Eϕ∗

 ∏
G∈Gk

q(G)/∈
⋃
Gk+1

eYq(G)[cG(θG)−cG(θ∗G)]
∏

G∈G\Gk+1

e〈YG,ϕG−ϕ
∗
G〉e
〈YGk ,θGk−θ

∗
Gk
〉



= Eϕ∗

 ∏
G∈Gk

q(G)/∈
⋃
Gk+1

eYq(G)[cG(θG)−cG(θ∗G)]
∏

G∈G\Gk+1

e〈YG,ϕG−ϕ
∗
G〉

× Eϕ∗
{
e
〈YGk ,θGk−θ

∗
Gk
〉
∣∣∣Y⋃(G\Gk)

}
and this is equal to (C.5) with k replaced by k + 1 by the Markov property

Eϕ∗
{
e
〈YGk ,θGk−θ

∗
Gk
〉
∣∣∣y⋃(G\Gk)

}
= Eϕ∗

{
e
〈YGk ,θGk−θ

∗
Gk
〉
∣∣∣yq(Gk)}

and (C.4). That finishes the proof of the induction claim.
The k = n case of (C.5) is

Eϕ∗
(
e〈Y,ϕ−ϕ

∗〉) = Eϕ∗

 ∏
G∈G
q(G)/∈J

eYq(G)[cG(θG)−cG(θ∗G)]
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and because every Yq(G) appearing in the expectation is a constant random
variable at an initial node, the expectation does nothing, so

Eϕ∗
(
e〈Y,ϕ−ϕ

∗〉) =
∏
G∈G
q(G)/∈J

eyq(G)[cG(θG)−cG(θ∗G)]

so by (C.2)

c(ϕ) = c(ϕ∗) +
∑
G∈G
q(G)/∈J

yq(G)[cG(θG)− cG(θ∗G)]

Now (1.26) only determines the cumulant function up to an arbitrary con-
stant, and here all of the starred parameters are constant, so this does agree
with (1.36) up to an arbitrary constant (which is all it can do).

We have now established that (1.36) gives the cumulant function of the
(unconditional, joint) distribution of the aster model when the parameter
vectors in that formula are in the parameter space.

To prove the assertion of the theorem about when the cumulant function
of the (unconditional, joint) distribution of the aster model is infinite, we
need all the cases of (C.5) for k = 1, . . . , n. Since θ∗ and ϕ∗ must be valid
parameter vectors, cG(θ∗G) is always finite. In (C.5) it is unclear which G
the first product runs over (it depends on the graph, or, alternatively, on the
predecessor function), but we always know that Gk /∈

⋃
Gk because that is

the way the total order on G works: q(Gk) must either be an initial node or
must be in some Gm with k < m. Thus case k of (C.5) tells us the expression
is infinite if cGk(θGk) = ∞ and Yq(Gk) is not zero almost surely. But the
former implies the latter cannot happen by the first sentence of the theorem
statement: if Yq(Gk) = 0 almost surely, then cGk is the zero function.

Putting these statements together for all k, we see that (C.5) is infinite
whenever θ /∈ Θ, where Θ is given by (C.1). Putting together everything
we have proved so far, the cumulant function for the (unconditional, joint)
distribution of the aster model is finite and given by (1.36) for θ in (C.1)
and is infinite for θ not in (C.1).

Now letting f denote the aster transform as in the comments immediately
preceding the theorem statement, we have also shown that the cumulant
function for the (unconditional, joint) distribution of the aster model is
finite and given by (1.36) for ϕ in Φ = f(Θ) and is infinite for ϕ not in
Φ = f(Θ).

By assumption every ΘG is an open set in the vector space containing it.
Hence, a Cartesian product of open sets being an open set, Θ is an open set
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in the vector space containing it. We know that the aster transform and its
inverse are (infinitely) differentiable hence continuous. Hence for any ϕ ∈ Φ
the point θ = f−1(ϕ) is in the interior of Θ (because Θ is an open set),
hence there is a neighborhood W of θ contained in Θ, but then f(W ) is a
neighborhood of ϕ contained in Φ. Thus Φ is a neighborhood of each of its
points, hence an open subset of the vector space containing it.

Thus the (unconditional, joint) distribution of the aster model is a reg-
ular full exponential family.

The first sentence of the theorem statement is for limiting conditional
models. An aster model in which no family is degenerate and no initial node
is zero does not need this first sentence: we never have Yj = 0 almost surely
for any j. This is easily proved by induction, but we won’t bother because
limiting conditional models are a thing, so the theorem needs to be stated
the way it is.

Theorem C.2. If the saturated aster model is a regular full exponential
family, then so is any unconditional canonical affine submodel.

Conditions for the saturated model to be a regular full exponential family
are the subject of Theorem C.1.

Proof. Applying (1.26) to the saturated model and a submodel give

c(ϕ) = c(ϕ∗) + log
{
Eϕ∗

(
e〈Y,ϕ−ϕ

∗〉
)}

csub(β) = csub(β∗) + log
{
Eβ∗

(
e〈M

TY,β−β∗〉
)}

and

Eβ∗
(
e〈M

TY,β−β∗〉
)

= Eβ∗
(
e〈Y,M(β−β∗)〉

)
= Eβ∗

(
e〈Y,a+Mβ−(a+Mβ∗)〉

)
= Eϕ∗

(
e〈Y,ϕ−ϕ

∗〉
)

where ϕ and ϕ∗ are the saturated model unconditional canonical parameter
vectors corresponding to β and β∗. Hence

c(ϕ)− c(ϕ∗) = csub(β)− csub(β∗)

so the two cumulant functions agree up to constants (which is all (1.26) can
give us. In particular, they are both finite or both infinite for corresponding
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arguments. Thus the full canonical parameter space for the unconditional
canonical affine submodel is

B = {β ∈ RK : a+Mβ ∈ Φ },

where K is the index set of the parameter β and Φ is the full uncondi-
tional canonical parameter space of the saturated model characterized by
Theorem C.1. If Φ is an open subset of RJ , then B is an open subset of
RK because the pre-image of an open subset is open when the mapping is
continuous, and every affine mapping is continuous.

Theorem C.3. If nq(G) = 0 for any dependence group G, replace the family
for this dependence group by the degenerate family concentrated at zero so
cG is the zero function. Then, if the saturated aster model is a regular
full exponential family, then so is the associated independence model of a
conditional aster model.

Proof. This is just a combination of bits of earlier proofs. First, (1.55)
has exponential family form (pretending the nq(G) therein are nonrandom).
Denoting ΘG and Θ as in (C.1), this is clearly the full canonical parameter
space of this exponential family. And Θ is open because the Cartesian
product of open sets is open.

We can also write the saturated associated independence model log like-
lihood (1.55) as

l(θ) =

∑
j∈J

yjθj

−∑
G∈G

nq(G)cG(θG)

= 〈y, θ〉 − c̃(θ)

where
c̃(θ) =

∑
G∈G

nq(G)cG(θG)

so the submodel associated independence model log likelihood can be written

l(β) = 〈MT y, β〉 − c̃sub(β)

where
c̃sub(β) = c̃(a+Mβ)

so this (submodel) associated independence model is an exponential family
and its full canonical parameter space is, by an argument similar to the
preceding proof

B = {β ∈ RK : a+Mβ ∈ Θ }.
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Since affine functions are continuous, B is an open subset of the vector space
where β takes values.



Appendix D

Families

D.1 Bernoulli

A random variable is Bernoulli if its possible values are zero and one.
In other words, every Bernoulli random variable is zero-or-one-valued, and
vice versa.

This is the rationale for the distribution, any dichotomous (two-valued)
random variable can be coded as Bernoulli.

This is a discrete random variable.
This is a special case of the binomial distribution, which we do next.

D.2 Binomial

A random variable is binomial if it is the sum of IID Bernoulli random
variables. Hence the Bernoulli distribution is the binomial distribution for
sample size one (for one term in the sum).

The probability mass function is

f(y) =

(
n

y

)
py(1− p)n−y, y = 0, 1, . . . , n, (D.1)

where p is the usual parameter, the probability that any of the n Bernoulli
random variables in the sum is equal to one.

The mean and variance are

E(y) = np

var(y) = np(1− p)

127
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This is an exponential family. From (D.1) the log likelihood is

l(θ) = y log(p) + (n− y) log(1− p) = y · log

(
p

1− p

)
+ n log(1− p)

from which we see that we have an exponential family with canonical statistic
y and canonical parameter

θ = log

(
p

1− p

)
The right-hand side is so important that it is given a name. The logit
function (pronounced low-jit) is given by

logit(p) = log

(
p

1− p

)
, 0 < p < 1.

Its inverse function is

logit−1(θ) =
eθ

1 + eθ
, −∞ < θ <∞.

The cumulant function is

c(θ) = −n log(1− p)

= −n log

(
1− eθ

1 + eθ

)
= −n log

(
1

1 + eθ

)
= n log

(
1 + eθ

)
Note that, as required for any sum of IID random variables, the cumulant
function for sample size n is n times the cumulant function for sample size
one (Section 1.15.2 above).

We check that this has the correct derivatives

c′(θ) =
neθ

1 + eθ
= np

and

c′′(θ) =
neθ

1 + eθ
− neθeθ

(1 + eθ)2
=

neθ

1 + eθ

[
1− eθ

1 + eθ

]
= np(1− p)
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The mean value parameter is ξ = np.
The canonical parameter space is the range of the logit function, which

is the whole real line, −∞ < θ <∞.
The mean value parameter space is n times the domain of the logit func-

tion 0 < ξ < n.
Theorem 2.1 says limiting conditional models are conditioned on the

boundary of the closed convex support. The closed convex support is the
closed interval [0, n], and its boundary consists of two points 0 and n.

Thus there are two limiting conditional models, one of which contains
only the distribution concentrated at zero and one of which contains only
the distribution concentrated at n.

In one-dimensional space there are only two directions. Every positive
vector points in the same direction and gives the same LCM. Every negative
vector points in the same direction and gives the same LCM. (And, of course,
the zero vector points in no direction and gives the original model back as
the LCM corresponding to it.)

As discussed in Theorem 2.2 above and its following comments, it is
important that we use (2.6) to determine the cumulant function for the
LCM.

So

c−1(θ) = c(θ) + log Prθ(Y = 0)

= n log
(

1 + eθ
)

+ n log(1− p)

= n log
(

1 + eθ
)

+ n log

(
1

1 + eθ

)
= 0

and

c+1(θ) = c(θ) + log Prθ(Y = n)

= n log
(

1 + eθ
)

+ n log(p)

= n log
(

1 + eθ
)

+ n log

(
eθ

1 + eθ

)
= nθ

Addition rule: the sum of m independent and identically distributed
binomial random variables with sample size n and usual parameter p has
the binomial distribution with sample size mn and usual parameter p.
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Hence if yp(j) −→ yj is a binomial arrow for sample size n the conditional
distribution of yj given yp(j) is binomial for sample size nyp(j).

This family is not implemented in either R package aster or R package
aster2. Only the n = 1 special case, the Bernoulli family is implemented.

D.3 Poisson

A random variable is Poisson if it has the probability mass function

f(y) =
ξy

y!
e−ξ, y = 0, 1, 2, . . . , (D.2)

where ξ is the usual parameter, which turns out to be the mean and variance
of the distribution, hence also the mean-value parameter.

This is a discrete random variable.
There are two rationales for this distribution, both so closely related that

they are almost one rationale. First, the Poisson distribution is an approxi-
mation to the binomial(n, p) distribution when n is very large and p is very
small and the mean np is moderate sized. An example is a lottery. Every
week millions, sometimes hundreds of millions of tickets are sold (that’s n),
the probability of any one ticket winning is very small — for example, for
the Powerball lottery, the probability is one over 292,201,338 (as we write
this, the rules change from time to time) — (that’s p), and np is moderate
sized. In weeks where the jackpot is small and few tickets are sold, there are
still tens of millions of tickets sold, so np is less than one but not very small.
In weeks where the jackpot is large, there may be many hundreds of millions
of tickets sold, so np is greater than one and multiple winners are expected
(they split the jackpot among them). But regardless, the distribution of the
number of winners is well approximated by the Poisson(np) distribution.

Before we can discuss the second rationale, we discuss the addition rule:
the sum of independent Poisson random variables is again Poisson. It is
not required that the independent Poisson random variables be identically
distributed. Since the expectation of a sum is the sum of the expectations,
the sum of independent Poisson random variables having means ξ1, . . . , ξn
has the Poisson(ξ1 + · · ·+ ξn) distribution.

It follows (not obviously, but the derivation can be found in books about
spatial point processes) that the sum of n independent Bernoulli random
variables is well approximated by a Poisson distribution provided n is very
large and the means of all of the Bernoulli random variables are very much
smaller than the mean of the Poisson random variable. Again, if the means
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of the Bernoulli random variables are ξ1, . . . , ξn, then the mean of the
Poisson random variable is ξ1 + · · · + ξn. So we are assuming that each ξi
is very much smaller than the sum. To return to our lottery example, it
does not matter that each player is playing the same game. So long as the
expectation of any one ticket winning is negligible compared to the expected
number of winners (for all tickets), the distribution of the number of winners
will be approximately Poisson.

Let’s take a biological example. Suppose we are counting ants, and we
have divided up the region in which we are counting ants with a very fine
grid. If our grid is fine enough, the probability of counting more than one
ant in a grid cell will be negligible, perhaps impossible (if our grid cells
are so small that more than one ant could not fit). Then the number of
ants in any one cell is a Bernoulli (zero-or-one-valued) random variable,
and the number of ants in any region that contains a very large number
of grid cells is very well approximated by the Poisson distribution. If we
take the limit as the size of the grid cells goes to zero we get exact Poisson
distributions. Except that we forgot to mention independence. This assumes
the Bernoulli random variables are independent, that where one ant is has
nothing whatsoever to do with where any other ant is. If we can accept
this independence assumption, then the count of ants in any region of any
size large enough to have a moderate sized expected number of ants can be
assumed Poisson.

Now we abstract away from ants to be counting any things in regions of
any dimension. The number of stars visible to the naked eye in a region of
sky, the number of raisins in slice of carrot cake, the number of white blood
cells in a drop of blood on a microscope slide, the number of ants in a square
meter region of your back yard, the number of leaves on a tree, the number
of calls arriving at a call center in a specified time interval, and many other
things can be assumed Poisson.

The independence assumption is crucial. Pheromone trails and perhaps
other phenomena may make our counts of ants noticeably non-Poisson. But
if it can be plausibly asserted that the probability of any one thing being
counted is independent of all the other things counted or not counted, then
the distribution of the total count is Poisson.

And even if the distribution of a count random variable fails to be exactly
Poisson due to some failure of the independence assumption, the Poisson
distribution may still may be a pretty good approximation (or may fail
badly if the independence assumption is grossly wrong).
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As stated above, the mean and variance are

E(y) = ξ

var(y) = ξ

This is an exponential family. From (D.2) the log likelihood is

l(θ) = y log(ξ)− ξ

(the term log(y!) can be dropped because it does not contain the parameter),
from which we see that we have an exponential family with canonical statistic
y and canonical parameter

θ = log(ξ),

so
ξ = eθ.

The cumulant function is

c(θ) = ξ = eθ

We check that this has the correct derivatives (and this is trivial)

c′(θ) = eθ = ξ

and
c′′(θ) = eθ = ξ

The mean value parameter is also the usual parameter ξ.
The canonical parameter space is the range of the log function, which is

the whole real line, −∞ < θ <∞.
The mean value parameter space is the domain of the log function

0 < ξ <∞.
Thinning rule: in the following graph

y1
Poi−−−−→ y2

Ber−−−−→ y3

the conditional distribution of y3 given y1 (both arrows combined) is
Poisson(ξ3ξ2). A thinned Poisson process is another Poisson process, where
“thinning” means we take each “point” counted and accept or reject it in-
dependently with the same probability.

As discussed at the end of the preceding section, LCM are conditioned
on the boundary of the closed convex support. The closed convex support
is the closed interval [0,∞), and its boundary consists of the single point 0.
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Thus there is one limiting conditional model, which contains only the
distribution concentrated at zero.

Also as discussed at the end of the preceding section, it is important that
we use (2.6) to determine the cumulant function for the LCM. So

c−1(θ) = c(θ) + log Prθ(Y = 0)

= eθ + log(e−ξ)

= eθ − ξ
= 0

So, again as in the preceding section, the cumulant function for the LCM
concentrated at zero is the zero function.

As mentioned in Section 1.17 above, the Poisson distribution is infinitely
divisible. This is easily verified from its cumulant function. For any positive
real number r

rc(θ) = reθ = eθ+log(r)

is a cumulant function. In fact, it is a cumulant function for the Poisson
family. One log likelihood for the Poisson family is

l(θ) = yθ − eθ

but if we make the substitution θ = ψ + log(r) we get

l(ψ) = yψ + y log(r)− eψ+log(r)

and we can drop the term that does not contain the new parameter ψ ob-
taining

l(ψ) = yψ − eψ+log(r)

and we see this has exponential family form with canonical statistic y, canon-
ical parameter ψ, and cumulant function c(ψ) = eψ+log(r).

This is just a special case of the fact, noted without proof in Sec-
tion 1.15.1, that adding a constant to a canonical parameter gives another
canonical parameter.

Another way of thinking about this fact is that our new parameterization
just puts an offset log(r) in the exponential family. But we know from Sec-
tion 1.15.3 above that canonical affine submodels of full exponential families
are again exponential families.

Note that in going from Section D.1 to Section D.2 we just went from
the family having cumulant function c(θ) = 1 + eθ to the family having
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cumulant function nc(θ), something we know from Section 1.15.2 above is
always valid. So we might think that we would need another section to go
from the family having cumulant function c(θ) = eθ to the family having
cumulant function rc(θ), which is valid only when the family is infinitely
divisible. But we have just found that that does not give us a new family,
but rather the same old Poisson family (with an offset), so we do not need
a new section for a new family.

D.4 Zero-Truncated Poisson

The zero-truncated Poisson distribution is the Poisson distribution con-
ditioned on being nonzero.

The rationale is that it can be used to incorporate zero-inflated Poisson
random variables into aster models.

This is a discrete distribution.
If f is the PMF of the Poisson distribution, then the PMF of the zero-

truncated Poisson distribution is

g(y) =
f(y)

1− f(0)
, y = 1, 2, . . . , (D.3)

that is, if m is the mean of the untruncated Poisson distribution, then the
PDF of the zero-truncated Poisson distribution is

g(y) =
mye−m

y!(1− e−m)
, y = 1, 2, . . . . (D.4)

Since this is not a “brand name distribution” the mean and variance
cannot just be looked up. In aid of this calculation we prove a rather trivial
general theorem.

Theorem D.1. Suppose X is a nonnegative-integer-valued random variable,
and Y is the corresponding zero-truncated random variable. Then

E(Y k) = E(Xk)/Pr(X > 0)

for any positive integer k.

Proof. For this proof let f denote the PMF of X and g the PMF of Y , so
the relationship between the two is given by (D.3) even though we are no
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longer assuming X is Poisson. Then

E(Y k) =

∞∑
y=1

ykg(y)

=
1

1− f(0)

∞∑
x=1

xkf(x)

=
1

1− f(0)

∞∑
x=0

xkf(x)

=
E(X)

1− f(0)

=
E(X)

Pr(X > 0)

where the third equality is the fact that the x = 0 term in the sum is equal
to zero.

Together with

var(Y ) = E(Y 2)− E(Y )2

E(Y 2) = var(Y ) + E(Y )2

which are well known from elementary probability theory, we can use the
theorem to calculate the mean and variance of zero-truncated random vari-
ables.

For the Poisson distribution, we have E(X) = var(X) = m so E(X2) =
m+m2, so

E(Y ) =
E(X)

Pr(X > 0)
=

m

1− e−m
(D.5)

and

var(Y ) = E(Y 2)− E(Y )2

=
E(X2)

Pr(X > 0)
−
(

E(X)

Pr(X > 0)

)2

=
m+m2

1− e−m
−
(

m

1− e−m

)2

(D.6)

This is an exponential family. From (D.4) the log likelihood is

l(θ) = y log(m)−m− log(1− e−m)
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(the term log(y!) can be dropped because it does not contain the parameter),
from which we see that we have an exponential family with canonical statistic
y and canonical parameter

θ = log(m),

so
m = eθ,

the relation between θ and m being the same as for the Poisson distribution.
But the usual parameter m is not the mean value parameter, which is

ξ =
m

1− f(0)
=

m

1− e−m
=

exp(θ)

1− exp(− exp(θ))
(D.7)

as we know from general exponential family theory, the mapping θ 7→ ξ
given by the formula above is strictly increasing and invertible and both it
and its inverse mapping ξ → θ are infinitely differentiable. But in this case
the inverse mapping ξ → θ seems to have no closed-form expression. The
map ξ → θ is what is called a link function in the terminology of generalized
linear models (GLM). The failure of some families to have link functions
in useful form is one reason why aster model theory and practice never
mentions link functions. They make sense for some families but not others.

The cumulant function is

c(θ) = m+ log(1− e−m) = eθ + log(1− exp(− exp(θ))) (D.8)

We check that this has the correct derivatives

c′(θ) = eθ +
exp(− exp(θ)) exp(θ)

1− exp(− exp(θ))

= m+
me−m

1− e−m

=
m

1− e−m

and

c′′(θ) = eθ +
exp(− exp(θ)) exp(θ)

1− exp(− exp(θ))
− exp(− exp(θ)) exp(θ)2

1− exp(− exp(θ))

− exp(− exp(θ))2 exp(θ)2

(1− exp(− exp(θ)))2

= m+
me−m

1− e−m
− m2e−m

1− e−m
− m2e−2m

(1− e−m)2
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and this does simplify to be equal to our other expression for variance.
Two other formulas for the variance are also useful (Geyer, 2017c).

var(y) = ξ(1 +m− ξ) (D.9a)

= ξ(1− ξe−m) (D.9b)

As θ → −∞ and m → 0 the mean value parameter ξ converges (using
L’Hospital’s rule) to

lim
m→0

m

1− e−m
= lim

m→0

1

em
= 1

and (D.9a) shows the variance converges to zero as m → 0 and ξ → 1. As
θ →∞ and m→∞ the mean value parameter ξ is approximately equal to
m because f(0) = e−m is approximately zero. Then ξe−m is small compared
to one, and and (D.9b) shows the variance is also approximately equal to
ξ ≈ m.

As we said above, the mean value parameter ξ is not the usual parameter
m.

As can be seen from that fact that (D.8) is finite for all θ, the canonical
parameter space is the whole real line, −∞ < θ <∞.

As we saw when discussing variance formulas, ξ → 1 as m→ 0. Thus the
lower end of the mean value parameter space is one. And from m being the
mean of a Poisson distribution so m has no upper bound, and from m ≈ ξ
when either is large, we see that ξ also has no upper bound. Thus the mean
value parameter space is 1 < ξ <∞.

As discussed at the end of the two preceding sections, LCM are condi-
tioned on the boundary of the closed convex support. The closed convex
support is the closed interval [1,∞), and its boundary consists of the single
point 1.

Thus there is one limiting conditional model, which contains only the
distribution concentrated at one.

Also as discussed at the end of the two preceding sections, it is important
that we use (2.6) to determine the cumulant function for the LCM. So

c−1(θ) = c(θ) + log Prθ(Y = 1)

= m+ log(1− e−m) + log

(
me−m

1− e−m

)
= log(m)

= θ
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So the cumulant function of the distribution concentrated at one is the
identity function.

This just happens to agree with the n = 1 case for the binomial distri-
bution (Section D.2 above), but it need not have. It all depends on how
we defined the cumulant functions for these families in the first place. We
could have added different arbitrary constants to the cumulant functions of
these families and they would still be cumulant functions.

D.5 Normal Location

The univariate normal distribution has probability density function
(PDF)

f(y) =
1√
2πσ

e−
(y−ξ)2

2σ2 , −∞ < y <∞. (D.10)

This is a continuous random variable; except when incorporated into
an aster model, it is a mixture of discrete and continuous. For a normal-
location arrow, when the predecessor is zero the conditional distribution of
the successor is the degenerate random variable concentrated at zero, which
is discrete, and when the predecessor is greater than zero, the conditional
distribution of the successor is continuous.

The rationale is the celebrated central limit theorem, or more precisely,
theorems, because there are many variants. In non-technical terms these
theorems say that a random variable that is the sum of a large number of
random variables that are not too dependent, not too heavy tailed, and not
too unequal in size will be well approximated by a normal distribution. (If
the random variable in question is the sum of a large number of independent
random variables, then Lindeberg’s central limit theorem using Lindeberg’s
condition specifies what “not too heavy tailed, and not too unequal in size”
means. If the random variable in question is the sum of the components of
a dependent stochastic process, then various stationary process central limit
theorems, Markov chain central limit theorems, and the martingale central
limit theorem, give various notions of what “not too dependent” means.)

Everybody believes in the law of errors, the experimenters
because they think it is a mathematical theorem, the mathe-
maticians because they think it is an experimental fact.

— Lippman, quoted by Poincaré, quoted by Cramér (1951)

“The law of errors” is an old name for the normal distribution. It has
also been named after de Moivre, Laplace, and Gauss. The term “normal
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distribution” was popularized by K. Pearson in the early twentieth century.
Like the term “law of errors” it builds into the name the idea that it is
the main, principle, or only distribution for random data. Also note the
Lippman quote is sarcastic. Justification for this belief was always known
to be shaky. (Harald Cramér and Henri Poincaré are, of course, famous. It
is unclear who the Monsieur Lippman was that Poincaré attributed this to.)

Since the nonparametrics revolution (Hollander et al., 2014), the ex-
ploratory data analysis revolution (Tukey, 1977), the bootstrap revolution
(Efron and Tibshirani, 1993; Davison and Hinkley, 1997), and the robust-
ness revolution (Huber and Ronchetti, 2009; Hampel et al., 1986) no user of
statistics aware of these developments wants to blindly assume normality,
especially when it can be demonstrated to be grossly incorrect using any of
these tools. But the normal distribution may fit data well, so it continues
to be used. It just is no longer considered the only distribution for data,
as it was before 1950 (mostly, there was the chi-square test for contingency
tables).

The other rationale for this distribution (which has nothing to do with
aster models) is that the usual assumption of homoscedastic normal errors
for linear models makes the distribution of point estimates exactly normal
and the distribution of various test statistics exactly t or exactly F . This
rationale is often attributed to Gauss and is why the normal distribution
is sometimes called Gaussian, because Gauss independently co-invented the
method of least squares and more-or-less gave this rationale (more-or-less
because his discussion was Bayesian rather than frequentist), but of course
this was a century before the t and F distributions were invented.

The mean and variance are

E(y) = ξ

var(y) = σ2

When used in R package aster every family must be a one-parameter expo-
nential family of distributions, so when we consider this as such a family we
must pick one parameter to be treated as unknown and the other parameter
to be treated as known. Because the location parameter ξ is the mean value
parameter, we pick this to be the unknown parameter.

With this understanding, the log likelihood is

l(θ) = −(y − ξ)2

2σ2

(the term
√

2πσ can be dropped because it does not contain the unknown
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parameter ξ. If we expand the quadratic, we get

l(θ) = − y2

2σ2
+
yξ

σ2
− ξ2

2σ2

and can now drop another term not containing ξ obtaining

l(θ) =
yξ

σ2
− ξ2

2σ2

from which we see that we have an exponential family with canonical statistic
y and canonical parameter

θ =
ξ

σ2

so the mean value parameter is

ξ = σ2θ

The cumulant function is

c(θ) =
ξ2

2σ2
=
σ2θ2

2

We check that this has the correct derivatives

c′(θ) = σ2θ = ξ

and
c′′(θ) = σ2

Addition rule: the sum of n independent and identically distributed
normal random variables with mean ξ and variance σ2 has the normal dis-
tribution with mean nξ and variance nσ2.

General Addition rule: any sum of independent normal random variables
is again normal (identically distributed is not required), but this has no
application in aster model theory.

There are no limit degenerate distributions. This is because the bound-
ary of the closed convex support, which is the interval (−∞,+∞) is empty.
We can never observe data on the boundary.
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D.6 Negative Binomial

D.6.1 Basics

According to the help("NegBinomial") in R, the negative binomial dis-
tribution has probability mass function

f(y) =
Γ(α+ y)

Γ(α) y!
pα(1− p)y, y = 0, 1, 2, . . . . (D.11)

where α > 0 is the shape parameter and 0 < p ≤ 1 is the usual parameter
(success probability). The case α = 1 is the geometric distribution.

The first rationale for this distribution is inverse sampling, and for this
rationale α must be a positive integer. If one has an infinite sequence of IID
Bernoulli random variables with usual parameter p, then the distribution of
the number of observed zero outcomes before the α-th nonzero outcome is
negative binomial with shape parameter α and usual parameter p, that is, if
one observes y successes in n trials, then the distribution of y is binomial if
n was fixed and the distribution of n− y is negative binomial if y was fixed.
But this rationale has nothing to do with aster models.

The second rationale for this distribution is overdispersed Poisson. This
distribution arises as a mixture of Poisson distributions, as is discussed below
(Section D.6.2). This is the reason it is implemented in R package aster.
For this rationale α can be any positive real number.

The mean and variance in terms of these parameters are

E(y) =
α(1− p)

p

var(y) =
α(1− p)

p2

From (D.11) the log likelihood is

l(θ) = log Γ(α+ y)− log Γ(α)− log(y!) + α log(p) + y log(1− p).

from which we can see that if α is considered an unknown parameter, this
is not an exponential family, so we consider α known, which means we can
drop terms not containing p obtaining

l(θ) = y log(1− p) + α log(p)

from which we see that we have an exponential family with canonical statistic
y and canonical parameter

θ = log(1− p)
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and solving for p gives
1− p = eθ

and
p = 1− eθ

The cumulant function is

c(θ) = −α log(p) = −α log(1− eθ)

As p goes from zero to one, θ goes from zero to −∞ so the formula above
does not define the cumulant function on the whole real line and equation
(5) in Geyer (2009), which is (1.26) in this book, must be used

c(θ) = c(ψ) + logEψ
(
ey(θ−ψ)

)
where ψ is a fixed canonical parameter value, θ varies over the whole real
line, and the cumulant function has the value∞ where the expectation does
not exist.

Evaluating this we get, using the theorem associated with the negative
binomial distribution (Geyer, 2019b),

c(θ) = c(ψ) + log

 ∞∑
y=0

ey(θ−ψ) · Γ(α+ y)

Γ(α) y!
pα(1− p)y


= c(ψ) + log

pα ∞∑
y=0

Γ(α+ y)

Γ(α) y!

[
(1− p)eθ−ψ

]y
= c(ψ) + log

(
pα
[
1− (1− p)eθ−ψ

]−α)
(D.12)

where p is the usual parameter value corresponding to canonical parameter
value ψ, that is, ψ = log(1−p) and the formula is only valid when the infinite
sequence converges, which it does if and only if −1 < (1− p)eθ−ψ < +1.

Now 1−p = eψ, so we can simplify (1−p)eθ−ψ = eθ. So the convergence
criterion is eθ < 1 or θ < 0, and the formula simplifies to

c(θ) = c(ψ) + α log(p)− α log
(

1− eθ
)

but the formula only determines the cumulant function up to an arbitrary
constant (which does not matter) so we can take the cumulant function to
be

c(θ) =

{
−α log(1− eθ), θ < 0

∞, θ ≥ 0
(D.13)
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So the full canonical parameter space is, as we guessed before,

Θ = { θ ∈ R : θ < 0 } (D.14)

and (D.13) agrees with what we derived just from looking at the log likeli-
hood wherever the function is finite.

Let’s check that this cumulant function gives the correct mean and vari-
ance.

c′(θ) =
αeθ

1− eθ

=
α(1− p)

p

c′′(θ) =
d

dθ

αeθ

1− eθ

=
αeθ

1− eθ
− αe2θ

(1− eθ)2

=
α(1− p)

p

(
1− 1− p

p

)
=
α(1− p)

p2

as we had already been told but now have derived from exponential family
theory.

The mean value parameter

ξ =
α(1− p)

p
(D.15)

is not the usual parameter p. Solving for p gives

p =
α

α+ ξ
(D.16)

The canonical parameter space is (D.14) which is not the whole real line.
The mean value parameter space is the range of the derivative of the

cumulant function 0 < ξ <∞.
As discussed at the end of the Sections D.2, D.3, and D.4, LCM are con-

ditioned on the boundary of the closed convex support. The closed convex
support is the closed interval [0,∞), and its boundary consists of the single
point 0.

Thus there is one limiting conditional model, which contains only the
distribution concentrated at zero.
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Also as discussed at the end of the those sections, it is important that
we use (2.6) to determine the cumulant function for the LCM. So

c−1(θ) = c(θ) + log Prθ(Y = 0)

= −α log(1− eθ) + log (pα)

= 0

So the cumulant function of the family concentrated at zero is the zero
function, as we also found in Sections D.2 and D.3 above. But as mentioned
at the end of Section D.4 above, this agreement just happened because of
arbitrary choices of arbitrary constants in cumulant functions.

D.6.2 Negative Binomial as Mixture of Poisson

As stated above, one rationale for the negative binomial distribution is
that it is a mixture of Poisson distributions. Let the conditional distribution
of Y given µ be Poisson with mean µ, and let the marginal distribution of
µ be Gamma(α, λ). Then the marginal distribution of Y is given by

f(y) =

∫
f(y | µ)g(µ) dµ

=

∫ ∞
0

µye−µ

y!
· λα

Γ(α)
µα−1e−λµ dµ

=
1

y!
· λα

Γ(α)

∫ ∞
0

µy+α−1e−(1+λ)µ dµ

=
1

y!
· λα

Γ(α)

Γ(y + α)

(1 + λ)y+α

using the theorem associated with the gamma distribution (Geyer, 2019b).
For this to be equal to (D.11) we need

1

y!
· λα

Γ(α)

Γ(y + α)

(1 + λ)y+α
=

Γ(α+ y)

Γ(α) y!
pα(1− p)y

that is
λα

(1 + λ)y+α
= pα(1− p)y

or (
λ

1 + λ

)α( 1

1 + λ

)y
= pα(1− p)y

which happens if and only if p = λ/(1 + λ) and 1 − p = 1/(1 + λ) so
λ = p/(1− p).
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D.6.3 Poisson as Limit of Negative Binomial

Reparameterize the negative binomial distribution so the parameters are
α and ξ so the usual parameter is (D.16) and the PMF (D.11) becomes

f(y) =
Γ(α+ y)

Γ(α) y!

(
α

α+ ξ

)α( ξ

α+ ξ

)y
=

1

y!

(
α

α+ ξ

)α( ξ

α+ ξ

)y y∏
k=1

(α+ k − 1)

=
ξy

y!

(
1− ξ

α+ ξ

)α y∏
k=1

α+ k − 1

α+ ξ

→ ξy

y!
e−ξ

so as α → ∞ with ξ fixed, we recover the Poisson distribution. But this
does not happen if we let α → ∞ with some other parameter, such as p or

θ, fixed. (The limit
(

1− ξ
α+ξ

)α
→ e−ξ as α → ∞, which was used in the

derivation above, follows from (1 + x/n)n → ex as n → ∞, which can be
found in any calculus book.)

The upshot of this section is that if the shape parameter α of a negative
binomial distribution is large, then it is well approximated by a Poisson
distribution. One only needs the negative binomial family when the shape
parameter is small.

The limit in this section is not like the limits in other sections of this
appendix. In those other sections we took limits as the canonical parameter
of the exponential family went to plus or minus infinity. Since the canonical
parameter is considered unknown, this kind of limit can arise in the process
of maximum likelihood. In this section we took a limit as the shape param-
eter α went to infinity. Since this parameter is considered known, this kind
of limit cannot arise in the process of maximum likelihood.

D.7 Zero-Truncated Negative Binomial

This section is just like Section D.4 above mutatis mutandis.
The zero-truncated negative binomial distribution is the negative bino-

mial distribution conditioned on being nonzero.
The rationale is that it can be used to incorporate zero-inflated negative

binomial random variables into aster models.
This is a discrete distribution.
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If f is the PMF of the negative binomial distribution, then the PMF of
the zero-truncated negative binomial distribution is

g(y) =
f(y)

1− f(0)
, y = 1, 2, . . . , (D.17)

that is, if α is the shape parameter and p is the usual parameter of the
untruncated negative binomial distribution, then the PDF of the zero-
truncated negative binomial distribution is

g(y) =
Γ(α+ y)pα(1− p)y

Γ(α) y! (1− pα)
, y = 1, 2, . . . . (D.18)

Since this is not a “brand name distribution” the mean and variance
cannot just be looked up. We still use Theorem D.1 and the comment
following it to calculate the mean and the variance but now

E(X) =
α(1− p)

p

var(X) =
α(1− p)

p2

E(X2) =
α(1− p)

p2
+

(
α(1− p)

p

)2

Pr(X > 0) = 1− pα

so

E(Y ) =
α(1− p)
p(1− pα)

and

var(Y ) = E(Y 2)− E(Y )2

=
E(X2)

Pr(X > 0)
−
(

E(X)

Pr(X > 0)

)2

=
1

1− pα

[
α(1− p)

p2
+

(
α(1− p)

p

)2
]
−
(
α(1− p)
p(1− pα)

)2

With the assumptions of Section D.6 above (α known and p unknown)
this is an exponential family. From (D.18) the log likelihood is

l(θ) = log Γ(α+ y) +α log(p) + y log(1− p)− log Γ(α)− log(y!)− log(1− pα)
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and we may drop terms that do not contain the unknown parameter p ob-
taining

l(θ) = y log(1− p) + α log(p)− log(1− pα)

from which we see that we have an exponential family with canonical statistic
y and canonical parameter

θ = log(1− p)

(the same as for the untruncated negative binomial distribution) and solving
for p gives

p = 1− eθ

(the same as for the untruncated negative binomial distribution).
The cumulant function is

c(θ) = −α log(p) + log(1− pα) = −α log(1− eθ) + log(1− (1− eθ)α)

As in Section D.6 this does not define the cumulant function on the whole
real line so we use

c(θ) = c(ψ) + log

 ∞∑
y=1

ey(θ−ψ) · Γ(α+ y)pα(1− p)y

Γ(α) y! (1− pα)


= c(ψ) + log

 pα

1− pα
∞∑
y=1

Γ(α+ y)

Γ(α) y!

[
(1− p)eθ−ψ

]y
= c(ψ) + log

 pα

1− pα

−1 +

∞∑
y=0

Γ(α+ y)

Γ(α) y!

[
(1− p)eθ−ψ

]y


= c(ψ) + log

(
pα

1− pα
{
−1 +

[
1− (1− p)eθ−ψ

]−α})
where the last equality is the theorem associated with the negative binomial
distribution (Geyer, 2019b) and where, as in (D.12), p is the usual parameter
that goes with ψ not θ so p is a known constant and (1 − p)eθ−ψ = eθ and
the infinite series converges if and only if θ < 0. Thus our formula simplifies
to

c(θ) = c(ψ) + log

(
pα

1− pα

)
+ log

(
−1 + (1− eθ)−α

)
and we may drop the terms that do not contain θ obtaining

c(θ) =

{
log
(
(1− eθ)−α − 1

)
, θ < 0

∞, θ ≥ 0
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With some rearrangement, this agrees with what we deduced from looking
at the log likelihood.

Let’s check that this cumulant function gives the correct mean and vari-
ance.

c′(θ) =
−α(1− eθ)−α−1(−eθ)

(1− eθ)−α − 1

=
α(1− eθ)−α−1eθ

(1− eθ)−α − 1

=
αeθ

(1− eθ)[1− (1− eθ)α]

=
α(1− p)
p(1− pα)

c′′(θ) =
d

dθ

αeθ

(1− eθ)[1− (1− eθ)α]

=
αeθ

(1− eθ)[1− (1− eθ)α]
+

αeθeθ

(1− eθ)2[1− (1− eθ)α]

− α2eθeθ(1− eθ)α−1

(1− eθ)[1− (1− eθ)α]2

=
α(1− p)
p(1− pα)

+
α(1− p)2

p2(1− pα)
− α2(1− p)2pα−2

(1− pα)2

And after some rearrangement c′′(θ) agrees with the variance calculated
above.

The mean value parameter

ξ =
α(1− p)
p(1− pα)

=
αeθ

(1− eθ)[1− (1− eθ)α]
(D.19)

is not the usual parameter p. As with zero-truncated Poisson, we find that
the inverse mapping ξ → θ has no closed-form expression. As stated in
Section D.4 above we know from general exponential family theory that this
mapping ξ → θ is strictly increasing, invertible, and infinitely differentiable.
But in this case the inverse mapping ξ → θ seems to have no closed-form
expression. Also as stated in Section D.4 above, this means that this family
does not have what GLM theory calls a link function in any useful form.

The full canonical parameter space is (D.14) as it was for the negative
binomial.
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Taking the limit in (D.19) as θ → −∞ and p→ 1 we see that

lim
p↑1

α(1− p)
p(1− pα)

= lim
p↑1

−α
1− pα − pαpα−1

= 1

(using L’Hospital’s rule). Taking the limit in (D.19) as θ →∞ and p→ 0 we
see that ξ → ∞ in this case. And since we know from general exponential
family theory that c′(θ) is a continuous increasing function, it follows that
the mean value parameter space is 1 < ξ <∞.

As discussed at the end of the Sections D.2, D.3, D.4, and D.6.1, LCM
are conditioned on the boundary of the closed convex support. The closed
convex support is the closed interval [1,∞), and its boundary consists of the
single point 1.

Thus there is one limiting conditional model, which contains only the
distribution concentrated at one.

Also as discussed at the end of the those sections, it is important that
we use (2.6) to determine the cumulant function for the LCM. So

c−1(θ) = c(θ) + log Prθ(Y = 1)

= log
(

(1− eθ)−α − 1
)

+ log

(
αpα(1− p)

1− pα

)
= log

(
p−α − 1

)
+ log

(
αpα(1− p)

1− pα

)
= log

(
1− pα

pα

)
+ log

(
αpα(1− p)

1− pα

)
= log(α) + log(1− p)
= log(α) + θ

Thus we see that unlike in Sections D.2 and D.4, the cumulant function
for the family concentrated at one is not the identity function but rather
the identity function plus a constant function.

D.8 Multivariate Bernoulli

A random vector is multivariate Bernoulli if it always has exactly one
component equal to one and the rest of its components are equal to zero.

This is the rationale for the distribution. In categorical data analysis,
where we have IID individuals that can take values in a finite number of cat-
egories, the result for each individual can be coded as multivariate Bernoulli.
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The category corresponding to the component of the random vector that is
equal to one says which category the individual is in.

This is a discrete random vector.
This is a special case of the multinomial distribution, which we do next.
This family is implemented in R package aster2. When incorporated in

an aster model, this family is a dependence group. Because it is multivariate,
it cannot be implemented in R package aster, which allows only univariate
families. Although R package aster2 calls this family “multinomial” created
by the family function fam.multinomial, it is not the general multinomial
described in the following section, but the multivariate Bernoulli described
in this section, which is the n = 1 special case of the general multinomial.

D.9 Multinomial

This family is multi-dimensional and hence cannot be implemented in R
package aster.

When IID individuals (a simple random sample) are classified into mu-
tually exclusive and exhaustive categories (every individual falls in exactly
one category), the vector of category counts has the multinomial distribu-
tion. This is one rationale for this distribution.

The other rationale is that when the sample size (predecessor) is equal
to one, this family serves as a k-way switch if there are k categories (and
this n = 1 special case is the multivariate Bernoulli family described in the
preceding section).

This is the distribution of a random vector, not a random variable.
The Bernoulli and binomial distributions are related to the multinomial

distribution, but the multinomial distribution with two categories is still a
two-dimensional random vector, so it is not Bernoulli or binomial, which
are one-dimensional distributions (of random variables). If Y is a Bernoulli
random variable, then (Y, 1− Y ) is a multivariate Bernoulli random vector.
If Y is a binomial random variable with sample size n, then (Y, n− Y ) is a
multinomial random vector with sample size n.

This is a discrete random vector.
The probability mass function is

f(y) =
n!∏
i∈I yi!

∏
i∈I

pyii , y ∈ S, (D.20)
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where p is the usual parameter vector, which is a probability vector satisfying

pi > 0∑
i∈I

pi = 1

where y is the the vector of counts (nonnegative integers) satisfying

yi ≥ 0 (D.21a)∑
i∈I

yi = n (D.21b)

where n is the sample size (the number of IID individuals classified), where
S is the sample space for y, the set

S =

{
y ∈ NI :

∑
i∈I

yi = n

}
, (D.22)

where N denotes the natural numbers {0, 1, 2, 3, . . .}, and where we have
chosen the index set of y and θ to be an arbitrary finite set I rather than
{1, . . . , k} for some k to fit in with the conventions of aster models (in an
aster model I would be a subset of nodes of the aster graph comprising a
multinomial dependence group, see Section 1.4 for vectors and subvectors).

The mean vector and variance matrix have components

E(Yi) = npi (D.23a)

var(Yi) = npi(1− pi) (D.23b)

cov(Yi, Yj) = −npipj , i 6= j (D.23c)

The mean of a random vector Y is the vector whose components are the
means of the components of Y . Here E(Y ) = ξ and ξi = npi. The variance
of a random vector Y is the matrix whose components are the covariances
of the components of Y . Here var(Y ) = M has components mij which are
given by (D.23b) when i = j and by (D.23c) when i 6= j.

This is an exponential family. From (D.20) the log likelihood is

l(θ) =
∑
i∈I

yi log(pi) (D.24)

from which we see that we have an exponential family with canonical statistic
vector y and canonical parameter vector θ having components

θi = log(pi), i ∈ I. (D.25)
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Trying to read the cumulant function off of (D.24) seems to say c(θ) is
the constant function everywhere equal to zero, and this is correct because
the pi must sum to one, and as we shall see the cumulant function does have
the value zero when ∑

i∈I
eθi = 1. (D.26)

But we want the cumulant function defined on the whole vector space
where θ lives, so we must use equation (5) in Geyer (2009), which is (1.26)
in this book,

c(θ) = c(ψ) + logEψ

{
e
∑
i∈I yi(θi−ψi)

}
= c(ψ) + log

∑
y∈S

e
∑
i∈I yi(θi−ψi) · n!∏

i∈I yi!

∏
i∈I

pyii

= c(ψ) + log
∑
y∈S

n!∏
i∈I yi!

∏
i∈I

(pie
θi−ψi)yi

= c(ψ) + log

(∑
i∈I

pie
θi−ψi

)n

= c(ψ) + n log

(∑
i∈I

pie
θi−ψi

)

where the last equality is the multinomial theorem also called the theorem
associated with the multinomial distribution (Geyer, 2019b). Here ψ is a
possible value of the canonical parameter vector (held fixed) and p is the
usual parameter vector corresponding to it so pi = eψi and pie

θi−ψi = eθi .
So dropping c(ψ), which is an arbitrary constant, we obtain

c(θ) = n log

(∑
i∈I

eθi

)
. (D.27)

Since this is finite for all vectors θ, the full canonical parameter space is the
whole vector space RI where θ lives.

This gives a log likelihood valid on the whole vector space where θ lives

l(θ) = 〈y, θ〉 − c(θ)

=

(∑
i∈I

yiθi

)
− n log

(∑
i∈I

eθi

)
(D.28)
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We check that (D.27) has the correct derivatives

∂c(θ)

∂θi
=

neθi∑
j∈I e

θj
(D.29a)

∂2c(θ)

∂θ2i
=

neθi∑
j∈I e

θj
− neθieθi(∑

j∈I e
θj
)2 (D.29b)

∂2c(θ)

∂θiθj
= − neθieθj(∑

k∈I e
θk
)2 (D.29c)

But here we have a problem that this does not even make sense with our
previous notion of canonical parameters, which, recall, was defined by (D.25)
but only subject to the constraint (D.26). So we do not have a notion of what
the map θ → p should be for values of θ that do not satisfy the constraint
(D.26).

We solve this problem by using the fundamental relationship between
cumulant functions and means and variances (Section 1.15.5 above), which
says the derivatives above have to give means, variances, and covariances.
Thus (D.29a) must give the correct mean values

neθi∑
j∈I e

θj
= npi

so

pi =
eθi∑
j∈I e

θj
, i ∈ I, (D.30)

gives the correct mapping between our new canonical parameters (now θ
can be any vector in RI) and the usual parameters.

This function is not invertible. If one adds the same constant to all of
the θi, then the value of pi does not change

eθi+c∑
j∈I e

θj+c
=

eceθi

ec
∑

j∈I e
θj

=
eθi∑
j∈I e

θj

This illustrates another thing wrong with the concept of the link func-
tion: it forces the canonical parameterization to be identifiable even when
this is inadvisable. Using our choice of parameterization here there can be
no link function because the map θ → ξ is not one-to-one, so its inverse map-
ping does not exist (an that inverse mapping is supposed to be the “link”
function).
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We also clear up a mystery left hanging and check that (D.27) does
indeed evaluate to zero when the constraint (D.26) holds.

Having made the identification (D.30) we see that (D.29b) and (D.29c)
do give the correct variances and covariances

∂2c(θ)

∂θ2i
= var(yi) = npi(1− pi)

∂2c(θ)

∂θi∂θj
= cov(yi, yj) = −npipj

The canonical parameter space is the whole vector space where θ lives.
The mean value parameter vector, as stated above, is the vector ξ having

components ξi = npi. In case n = 1, the mean value parameter vector is the
usual parameter vector. Otherwise, not.

The mean value parameter space is the relative interior of the convex
hull of S

Ξ =

 ξ ∈ RI : ξi > 0, i ∈ I and
∑
j∈I

ξj = n

 (D.31)

To see this we note that θi = log(ξi) always defines a point in the canonical
sample space so long as the ξi are strictly positive. And that point maps
via (D.30) to

pi =
eθi∑
j∈I e

θj
=

ξi∑
j∈I ξj

=
ξi
n

which makes the pi sum to one. So every point in Ξ is a mean value param-
eter vector value, and, conversely, every point θ ∈ RI maps to a value ξ that
satisfies ξi > 0 for all i and

∑
i∈I ξi = n.

Theorem D.2. The closed convex support of the multinomial family is

C =

 ξ ∈ RI : ξi ≥ 0, i ∈ I and
∑
j∈I

ξj = n


the closure (D.31). The support function is given by

σC(δ) = nmax(δ), (D.32)

where
max(δ) = max

i∈I
δi.
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Define the hyperplane

Hδ = { y ∈ RI : 〈y, δ〉 = σC(δ) },

which is (2.3) with the index set I instead of J . Then the cumulant function
for the LCM conditioned on Hδ is

cδ(θ) = n log

 ∑
i∈I

δi=max(δ)

eθi

 . (D.33)

If we define
G = { i ∈ I : δi = max(δ) },

then under the LCM conditioned on Hδ, the family of distributions for yG
is multinomial with sample size n and yI\G = 0 almost surely.

Proof. For any i ∈ I define the vector v(i) (we use the temporary notation of

superscript in parenthesis to denote a sequence of vectors) having v
(i)
i = n

and v
(i)
j = 0 for j ∈ I \ {i}. Clearly, each such v(i) is in the sample space

(D.22) and has probability pni > 0. Thus it must be in any support. Now
the formula

C =

∑
i∈I

piv
(i) : pi ≥ 0, i ∈ I and

∑
j∈I

pj = 1


shows that C is the convex hull of the vectors v(i). Thus C must be contained
in the closed convex support. On the other hand, C contains S, so C is
the smallest closed convex set containing S. Hence C is the closed convex
support.

We now claim that any vector v having vj = 0 when δj < max(δ)
maximizes 〈 · , δ〉 over C. We have

〈v, δ〉 =
∑
i∈I

δi=max(δ)

viδi = max(δ)
∑
i∈I

δi=max(δ)

vi = max(δ)
∑
i∈I

vi = nmax(δ)

and for any x ∈ C we have

〈v, δ〉 =
∑
i∈I

viδi ≤ max(δ)
∑
i∈I

vi = nmax(δ)
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Thus (D.32) is correct.
Now if y ∈ C such that

〈y, δ〉 = σC(δ) = nmax(δ) (D.34)

we must have, as we have already seen, yj = 0 if δj < max(δ). Conversely,
if y ∈ C and yj = 0 if δj < max(δ), then (D.34) holds. Hence conditioning
the original model on Y ∈ Hδ is the same as conditioning on YI\G = 0.
Then the usual formulas for conditionals for multinomials show that YG is
multinomial with sample size n, as asserted.

It only remains to calculate the cumulant function for the LCM using
(2.6).

cδ(θ) = c(θ) + log Prθ(Y ∈ Hδ)

= n log

(∑
i∈I

eθi

)
+ log

(∑
i∈G

pi

)n

= n log

(∑
i∈I

eθi

)
+ n log

(∑
i∈G

pi

)

= n log

(∑
i∈I

eθi

)
+ n log

(∑
i∈G e

θi∑
i∈I e

θi

)

= n log

(∑
i∈G

eθi

)

D.10 Normal Location-Scale

The univariate normal distribution is curious in that it remains an ex-
ponential family even if we consider both parameters unknown, but then
the dimensions of the canonical statistic vector and the canonical parame-
ter vector must match. So if the canonical parameter vector is going to be
two-dimensional so must be the canonical statistic vector.

Let’s see how that happens. We already have the probability density
function (D.10) of the normal distribution. Now if we write down the log
likelihood not dropping any terms that contain either parameter we get

l(θ) = − log(σ)− (x− ν)2

2σ2
= − log(σ)− x2

2σ2
+
xν

σ2
− ν2

2σ2
(D.35)
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where for reasons to be discussed presently we have changed the notation
for the random variable from y to x and the notation for the mean from ξ
to ν.

As was discussed in Section 1.15.1 in the main text, there is some freedom
in choosing the canonical statistic vector and the canonical parameter vector
we must have the terms containing both data and parameters in exponential
family form, that is,

− x2

2σ2
+
xν

σ2
= y1θ1 + y2θ2

but that still allows lots of choices. We could, for example, choose y1 = x
or y1 = x2 or y1 = −x2/2. And each such choice forces a different choice of
the corresponding canonical parameter.

The choice made in the implementation in R package aster2 is

y1 = x,

y2 = x2,

θ1 =
ν

σ2

θ2 = − 1

2σ2

We have had many examples where the usual parameters are not the canon-
ical parameters. Here is our first example where the usual statistics are not
the canonical statistics (the usual statistic is one canonical statistic but not
the other).

In terms of the canonical parameters, the usual parameters are

σ2 = − 1

2θ2

ν = θ1σ
2 = − θ1

2θ2

The first canonical parameter is unrestricted −∞ < θ1 < ∞ but the
second canonical parameter is restricted −∞ < θ2 < 0. Thus our guess at
the cumulant function from looking at the log likelihood

c(θ) = log(σ) +
ν2

2σ2

=
1

2
log

(
− 1

2θ2

)
+

(
− θ1

2θ2

)2

· 1

2
· (−2θ2)

=
1

2
log

(
− 1

2θ2

)
− θ21

4θ2

(D.36)
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(this agrees with the cumulant function for this family in R package aster2).
Notice that in going from the PDF to the log likelihood (D.35), on a

factor of 1/
√

2π was dropped, so the PDF of the family (with respect to
Lebesgue measure) can now be written

fθ(x) =
1√
2π
exθ1+x

2θ2−c(θ)

and the fact that PDF integrate to one gives∫
exθ1+x

2θ2 dx =
√

2πec(θ)

Because our guess at the cumulant function is not defined on a whole
vector space we use equation (5) in Geyer (2009), which is (1.26) in this
book, as we have done several times before in this appendix

c(θ) = c(ψ) + logEψ
(
ey1(θ1−ψ1)+y2(θ2−ψ2)

)
= c(ψ) + logEψ

(
ey1(θ1−ψ1)+y2(θ2−ψ2)

)
= c(ψ) + log

(
1√
2π

∫
ex(θ1−ψ1)+x2(θ2−ψ2)exψ1+x2ψ2)−c(ψ) dx

)
= log

(
1√
2π

∫
exθ1+x

2θ2 dx

)
and, as we have already seen, the last expression is equal to c(θ) for θ such
that θ2 < 0. In case θ2 ≥ 0 the integrand is either constant or goes to
infinity as x → ∞ or x → −∞ or both. In any case the integral does not
exist. Thus the canonical parameter space is indeed

Θ = { θ ∈ R2 : θ2 < 0 }. (D.37)

The canonical sample space for sample size one is

S = { y ∈ R2 : y21 = y2 }

which is a curve. Thus any intersection with a tangent line consists of a
single point. And, because this is a continuous distribution, single points
have probability zero. Thus in the limiting conditional model theorem (The-
orem 2.1 above) we are in the case where the probability of Y ∈ Hδ is equal
to zero (regardless of what δ is). So there are no LCM for this family.

For sample size one, the data are on the curve S with probability one.
So the MLE does not exist with probability one. This is no surprise. One
cannot estimate two parameters from one variable x.
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For sample size greater than one, the data are in the interior of the convex
hull of the curve S with probability one. So the MLE exists with probability
one. This is no surprise either. One can estimate the two parameters of the
normal distribution from data x1, x2, . . ., xn for n ≥ 2.

So we don’t need the theory of limiting conditional models for this family.
That theory is only needed for discrete families.

We forgot to check that (D.36) has the correct derivatives. Let’s do that
now.

∂c(θ)

∂θ1
= − θ1

2θ2
∂c(θ)

∂θ2
= − 1

2θ2
+

θ21
4θ22

∂2c(θ)

∂θ21
= − 1

2θ2

∂2c(θ)

∂θ1∂θ2
=

θ1
2θ22

∂2c(θ)

∂θ22
=

1

2θ22
− θ21

2θ32

Translating these back to functions of x and the original parameters, they
say

E(X) = ν

E(X2) = σ2 + ν2

var(X) = σ2

cov(X,X2) = 2νσ2

var(X2) = 4ν2σ2 + 2σ4

The first three of these are well known. The other two do check (in Mathe-
matica).

D.11 Gamma Rate

The gamma distribution has PDF

f(y) =
λα

Γ(α)
yα−1e−λy, 0 < y <∞, (D.38)

where α > 0 and λ > 0 are parameters.
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This is a continuous random variable; except when incorporated into
an aster model, it is a mixture of discrete and continuous. For a gamma-
rate arrow, when the predecessor is zero the conditional distribution of the
successor is the degenerate random variable concentrated at zero, which
is discrete, and when the predecessor is greater than zero, the conditional
distribution of the successor is continuous.

This is the most well known continuous distribution after the normal
distribution, and it has many rationales, but these rationales do not seem
to justify its inclusion in aster models, which is why R packages aster and
aster2 do not include it. This family includes the exponential distribution
(case α = 1) and the chi-square distributions (case α = n/2 and λ = 1/2)
as special cases.

The main rationale is vague. This is the most well-known distribution
with support (0,∞). So it is a TTD (thing to do) when one wants such.

The mean and variance are

E(y) =
α

λ
(D.39a)

var(y) =
α

λ2
(D.39b)

In this section, we treat this as a one-parameter family with α known
and λ unknown.

With this understanding, the log likelihood is

l(θ) = α log(λ)− λy

(we have dropped terms that do not contain λ). From this we see that we
have an exponential family with canonical statistic y, canonical parameter
θ = −λ, and cumulant function

c(θ) = −α log(λ) = −α log(−θ). (D.40)

We check that this has the correct derivatives

c′(θ) =
α

−θ
=
α

λ

and
c′′(θ) =

α

θ2
=

α

λ2
.

Because our guess at the cumulant function is not defined on a whole
vector space we use equation (5) in Geyer (2009), which is (1.26) in this
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book, as we have done several times before in this appendix

c(θ) = c(ψ) + logEψ
(
ey(θ−ψ)

)
= c(ψ) + log

∫
ey(θ−ψ)fψ(y) dy

= c(ψ) + log

∫
ey(θ−ψ)

λαψ
Γ(α)

yα−1e−λψy dy

where λψ = −ψ so

c(θ) = log

∫
1

Γ(α)
yα−1eyθ dy

and this integral clearly exists if and only if θ < 0 in which case, by (D.38)
integrating to one, we get (D.40), as we must.

Hence the full canonical parameter space of this family is

Θ = { θ ∈ R : θ < 0 }.

The mean value parameter is

ξ =
α

−θ

Addition rule: the sum of n independent and identically distributed
gamma random variables with shape parameter α and rate parameter λ has
the gamma distribution with shape parameter nα and rate parameter λ.

General addition rule: the sum of n independent gamma random vari-
ables with shape parameters α1, . . . , αn and rate parameter λ (same for all)
has the gamma distribution with shape parameter α1 + · · · + αn and rate
parameter λ.

There are no limit degenerate distributions. This is because the bound-
ary of the closed convex support, which is the interval [0,∞) is the point
zero. We can never observe data on the boundary, because continuous dis-
tributions put probability zero at any point.

D.12 Gamma Shape-Rate

If we take the gamma distribution with PDF (D.38) to have both pa-
rameters unknown, then the log likelihood is

l(θ) = α log(λ)− log Γ(α) + α log(x)− λx
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(we have dropped terms that do not contain α or λ and have changed the
data variable from y to x). This has the form of a two-dimensional expo-
nential family with canonical statistics y1 = x and y2 = log x, canonical
parameters θ1 = −λ and θ2 = α, and cumulant function

c(θ) = log Γ(α)− α log(λ) = log Γ(θ2)− θ2 log(−θ1) (D.41)

With this definition of canonical parameters and statistics, we can rewrite
the PDF as

fθ(y) =
λα

Γ(α)
xα−1e−λx

= x−1e〈y,θ〉−c(θ)

= y−11 e〈y,θ〉−c(θ)

(D.42)

Because our guess at the cumulant function is not defined on a whole vector
space we use equation (5) in Geyer (2009), which is (1.26) in this book, as
we have done several times before in this appendix

c(θ) = c(ψ) + logEψ
(
e〈y,θ−ψ〉

)
= c(ψ) + log

∫
e〈y,θ−ψ〉fψ(y) dy

= c(ψ) + log

∫
e〈y,θ−ψ〉y−11 e〈y,ψ〉−c(ψ) dx

= log

∫
y−11 e〈y,θ〉 dx

We know that (D.42) integrates if and only if α > 0 and λ > 0 (Geyer,
2019a, Slides 27–30). It follows that the full canonical parameter space is

Θ = { θ ∈ R2 : θ1 < 0 and θ2 > 0 }

and in order that (D.42) integrate to one when the integral exists, the last
integral above must be c(θ).
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Let us check that (D.41) has the correct derivatives

∂c(θ)

∂θ1
= −θ2

θ1
∂c(θ)

∂θ2
= digamma(θ2)− log(−θ1)

∂2c(θ)

∂θ21
=
θ2
θ21

∂2c(θ)

∂θ1∂θ2
= − 1

θ1
∂2c(θ)

∂θ22
= trigamma(θ2)

Translating these back to functions of x and the original parameters, they
say

E(X) =
α

λ
E{log(X)} = digamma(α)− log(λ)

var(X) =
α

λ2

cov{X, log(X)} =
1

λ
var{log(X)} = trigamma(α)

where the digamma function is the first derivative of log Γ( · ), and the
trigamma function is the second derivative of this function.

Two of these agree with the known formulas for the mean and variance of
a gamma random variable (D.39a) and (D.39b). The others involve integrals
we don’t know how to do other than by the method of cumulant functions
(what we just did). (But Mathematica knows how to do these integrals.)

The mean value parameter is the two-dimensional vector ξ having com-
ponents

ξ1 = −θ2
θ1

ξ2 = digamma(θ2)− log(−θ1)

The addition rules for the gamma distribution were given in the preced-
ing section (they do not depend on which parameters are considered known
or unknown).
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The canonical sample space for sample size one is

S = { y ∈ R2 : y1 = ey2 }

which is a curve. Thus any intersection with a tangent line consists of a
single point. And, because this is a continuous distribution, single points
have probability zero. Thus in the limiting conditional model theorem (The-
orem 2.1 above) we are in the case where the probability of Y ∈ Hδ is equal
to zero (regardless of what δ is). So there are no LCM for this family.

For sample size one, the data are on the curve S with probability one.
So the MLE does not exist with probability one. This is no surprise. One
cannot estimate two parameters from one variable x.

For sample size greater than one, the data are in the interior of the convex
hull of the curve S with probability one. So the MLE exists with probability
one. This is no surprise either. One can estimate the two parameters of the
normal distribution from data x1, x2, . . ., xn for n ≥ 2.

So we don’t need the theory of limiting conditional models for this family.
That theory is only needed for discrete families.

The last three paragraphs almost exactly repeat what was said about
the normal-location-scale family. The reasoning applies to any continuous
distribution. The details distinguishing one of these families from the other
do not matter in this argument.

D.13 K-Truncated Families

R package aster implements k-truncated Poisson and k-truncated neg-
ative binomial for any nonnegative integer k. Example 3 in Shaw et al.
(2008b) used two-truncated negative binomial. We no longer think using
this family is the best way to do this example. Moreover we know of no
other examples in life history analysis that need these families (except for
the zero-truncated ones already discussed). Therefore we omit further dis-
cussion of them.
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Index of Notation

R the real number system
N the natural number system, which starts at zero
N the set of nodes of the full aster graph, including initial nodes
J the set of non-initial nodes of the full aster graph
G the family of dependence groups, a partition of J
q the set-to-index predecessor function, which maps G → N
p the index-to-index predecessor function, which maps J → N
RA the set of all functions A→ R considered as a vector space
yj a component of the vector y: if y ∈ RA and j ∈ A, then yj is the

value of the function y at argument j
yA a subvector of the vector y: if y ∈ RB and A ⊂ B, then yA is the

restriction of the function y to the set A
pr(y) unconditional distribution of the random vector y described some-

how (Section 1.6)
pr(yA | yB) conditional distribution of the random vector yA described some-

how (Section 1.6 and equation (B.1) and the surrounding discus-
sion)

θ conditional canonical parameter vector of the saturated model
ϕ unconditional canonical parameter vector of the saturated model
ξ conditional mean value parameter vector of the saturated model
µ unconditional mean value parameter vector of the saturated model
β unconditional canonical parameter vector of a canonical affine sub-

model
τ unconditional mean value parameter vector of a canonical affine

submodel
a offset vector
M model matrix
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fn the function f composed with itself n times; f0 being the identity
function, and f1 = f

� transitive closure of the predecessor relation
� reflexive transitive closure of the predecessor relation
≺ transitive closure of the successor relation
� reflexive transitive closure of the successor relation
〈 · , · 〉 bilinear form placing dual vector spaces in duality



Index

affine function, 31–32, 34
arrow, 8

Bernoulli, 20–22, 24
Poisson, 21
zero-truncated Poisson, 20–22

aster graph, 8
for “individual”, 11, 12, 119
full, 11
of lines, 8, 9

aster model, 1
canonical affine submodel

unconditional, 53–54, 57
canonical parameter

conditional, 41
unconditional, 41

dependence group
canonical parameter, 37
canonical statistic, 37
cumulant function, 37

log likelihood, 38
mean value parameter

conditional, 17, 48
unconditional, 17, 47

property
at most one predecessor, 10
factorization, 6
full, 120
Markov, 114
predecessor is sample size, 16
regular, 120

saturated, 35, 53
unconditional, 53–54, 57

aster transform, 40
inverse, 40–41

canonical affine submodel, see under
exponential family, see un-
der aster model

canonical parameter, see under ex-
ponential family, see under
aster model

canonical statistic, see under expo-
nential family, see under aster
model

convolution, 15
Creative Commons, ii
cumulant function, see under expo-

nential family, see under aster
model

dependence group, 10, see also ar-
row, see under aster model

multinomial, 22
normal, 24

dual vector spaces, 31

Echinacea angustifolia, 20
Echinacea project, 20
edge, 8
exponential family, 30

canonical affine submodel, 33–35
canonical parameter, 31

space, 32
submodel, 35

canonical statistic, 31
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mean vector, 37
submodel, 35
variance matrix, 37

cumulant function, 31, 32, 36
submodel, 35

cumulant generating function, 36
curved, 32
Fisher information, 43
full, 32, 120
independent and identically dis-

tributed, 33
log likelihood, 31
mean value parameter, 44–45
moment generating function, 35
regular, 32, 120

factorization, see under aster model
Fisher information, see under expo-

nential family

generating function, see under expo-
nential family

Github, ii
graph, see aster graph

infinitely divisible, 39
initial node, see under node

license, ii
life history analysis, 1–2
line, 8
log likelihood, see under exponential

family, see under aster model

Markov property, see under aster model

node, 8
initial, 9
predecessor, 9
root, 11
successor, 9

terminal, 9

parameter vector
canonical, see under aster model,

see under exponential family
mean value, see under aster model,

see under exponential family
Poisson distribution

zero-inflated, 24
zero-truncated, 21

predecessor function
index-to-index, 13
set-to-index, 13

predecessor is sample size, see under
aster model

predecessor node, see under node
predecessor random variable

nonnegative integer valued, 16
real valued, 39

predecessor relation
reflexive transitive closure, 14
transitive closure, 14

R package
aster, 2
aster2, 2
pooh, 7

reflexive closure, see under predeces-
sor relation, see under suc-
cessor relation

root node, see under node

subvector, 4
successor node, see under node
successor relation

reflexive transitive closure, 15
transitive closure, 15

terminal node, see under node
topological sort, 7
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transitive closure, see under prede-
cessor relation, see under suc-
cessor relation


