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1 Licence

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License http://creativecommons.org/licenses/by-sa/
4.0/.

2 R

� The version of R used to make this document is 4.3.2.

� The version of R package knitr used to make this document is 1.45.

� The version of R package potts used to make this document is 0.5.11.

Load libraries.

library("potts")

Also set the random number generator seed for reproducibility.

set.seed(42)

3 Introduction

We use the method of (Geyer, 1990, Chapter 6).

4 Data

First we generate some data.
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ncolor <- as.integer(2)

beta <- log(1 + sqrt(ncolor))

theta <- c(rep(0, ncolor), beta)

nrow <- 1000

ncol <- 1000

x <- matrix(1, nrow = nrow, ncol = ncol)

foo <- packPotts(x, ncolor)

out <- potts(foo, theta, nbatch = 1, nspac = 1000)

cstat <- as.vector(out$batch)

cstat

## [1] 747318 252682 1704974

According to the documentation (?potts::potts), the components of
the canonical statistic vector (cstat) are the number of pixels of color one,
the number of pixels of color two, and the number of concordant (same color)
neighbor pairs of pixels. Each of the first two has a maximum value (with
toroidal boundary conditions, which are being used here) of nrow * ncol

= 106. The last has a maximum value (with toroidal boundary conditions)
of 2 * nrow * ncol = 2× 106.

5 Sampling the Distribution

5.1 Markov Chain Monte Carlo Sample

Now we want a sample from the distribution of the canonical statis-
tic vector. This has to be a Markov chain Monte Carlo (MCMC) sample,
since there is no way to do ordinary Monte Carlo (OMC) that we have im-
plemented in R (Propp and Wilson, 1996, show how to do OMC with the
assistance of Markov chains).

out <- potts(out, nbatch = 1e4, nspac = 1)

5.2 Diagnostic Plots

We do some MCMC diagnostic plots on our sample, particularly looking
at the third canonical statistic (number of concordant neighbor pairs).
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Figure 1: Time series plot of third canonical statistic (number of concor-
dant neighbor pairs) for Ising model with zero external field and at critical
temperature.
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Figure 1 (page 3) shows a time series plot for the third canonical statistic.
It shows no trend and good mixing.

Figure 2 (page 5) shows statistically significant autocorrelation perhaps
to lag 100 or perhaps to lag 150 (the negative sample autocorrelations are
probably just noise).

5.3 Distribution of the Canonical Statistic Vector

5.3.1 At Critical Temperature

Figure 3 (page 6) shows the distribution of the canonical statistic vectors
as a scatterplot.

5.3.2 Above and Below Critical Temperature

We redo Figure 3 changing β to be above critical temperature (lower β,
lower dependence, magnetization disappears).

frac.above <- 0.997

theta <- c(rep(0, ncolor), frac.above * beta)

out.above <- potts(out, theta, nbatch = 1e4, nspac = 1)

frac.below <- 1.003

theta <- c(rep(0, ncolor), frac.below * beta)

out.below <- potts(out, theta, nbatch = 1e4, nspac = 1)

Figure 4 (page 7) shows this distribution.

6 One Dimension

6.1 Monte Carlo Likelihood Approximation

Here we assume we know the first two canonical parameters (external
field) are zero, so we have only the third canonical parameter to estimate.

We use the details of being careful with inexact computer arithmetic
discussed in Geyer (2020, Section 9).

The approximate log likelihood is given by

l(β) = xobsβ − log

(
n∑
i=1

exi(β−βsim)−c

)
where
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Figure 2: Autocorrelation plot of third canonical statistic (number of concor-
dant neighbor pairs) for Ising model with zero external field and at critical
temperature.
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Figure 3: Scatterplot of canonical statistics for Ising model at critical tem-
perature (β = 0.88137) and zero external field. First canonical statistic is
number of pixels of first color. Third canonical statistic is number of con-
cordant neighbor pairs of pixels. (Second canonical statistic is redundant,
lattice size minus first canonical statistic.)

6



2e+05 3e+05 4e+05 5e+05 6e+05 7e+05 8e+05

16
90

00
0

17
00

00
0

17
10

00
0

17
20

00
0

first canonical statistic

th
ird

 c
an

on
ic

al
 s

ta
tis

tic

Figure 4: Scatterplot of canonical statistic vector for Ising models. All mod-
els have external field zero. Red dots sample from 0.997 of critical canonical
parameter value. Green dots sample from critical canonical parameter value.
Blue dots sample from 1.003 of critical canonical parameter value.
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� xobs is the observed value of the (third) canonical statistic.

� β is the corresponding canonical parameter, a variable.

� βsim is the another value of this canonical parameter, a known con-
stant.

� x is a vector having components xi which is a MCMC sample from the
distribution having parameter βsim.

� c is an arbitrary constant, which we choose to be

c = max
1≤i≤n

xi(β − βsim)

This choice of c avoids overflow and minimizes underflow and catastrophic
cancellation in the log.

We use a function factory to make the log likelihood.

logl.factory <- function(xobs, x, beta.sim) {
stopifnot(is.numeric(xobs))

stopifnot(is.finite(xobs))

stopifnot(length(xobs) == 1)

stopifnot(is.numeric(x))

stopifnot(is.finite(x))

stopifnot(is.numeric(beta.sim))

stopifnot(is.finite(beta.sim))

stopifnot(length(beta.sim) == 1)

function(beta) {
stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == 1)

foo <- x * (beta - beta.sim)

foomax <- max(foo)

i <- which(foo == foomax)

i <- i[1] # just in case there was more than one largest term

foo <- foo[- i]

bar <- foomax + log1p(sum(exp(foo - foomax)))

xobs * beta - bar

}
}

logl <- logl.factory(cstat[3], out$batch[ , 3], beta)
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6.2 Monte Carlo Maximum Likelihood Estimate

Now find the (Monte Carlo approximation to the) maximum likelihood
estimate (MCMLE) of this canonical parameter.

oout <- optimize(logl, lower = beta / 2, upper = beta * 2, maximum = TRUE)

beta.hat <- oout$maximum

beta.hat

## [1] 0.8808082

6.3 Parametric Bootstrap of MCMLE

In a real application we would not know the true unknown parameter
value. So we would simulate from the distribution given by the MCMLE β̂.

We get a smaller sample for the bootstrap than we used to approximate
the log likelihood. This is important. In order for the approximate log
likelihood to be good over the whole range of estimates, we need a very
good likelihood approximation. Hence a very large sample for that.

theta.hat <- c(rep(0, ncolor), beta.hat)

out.boot <- potts(out, theta.hat, nbatch = 199, nspac = 50)

Now we estimate for each bootstrap data point.

xboot <- out.boot$batch[ , 3]

nboot <- length(xboot)

beta.star <- double(nboot)

for (iboot in 1:nboot) {
logl <- logl.factory(xboot[iboot], out$batch[ , 3], beta)

oout <- optimize(logl, lower = beta / 2, upper = beta * 2, maximum = TRUE)

beta.star[iboot] <- oout$maximum

}

Now we look at the bootstrap distribution (Figure 5, page 10).
That is remarkably ugly. How many bootstrap estimates fail?

sum(beta.star < 0.8)

## [1] 2
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Figure 5: Histogram of bootstrap distribution of MCMLE. Vertical dashed
line is MCMLE.
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Figure 6: Histogram of bootstrap distribution of MCMLE. Vertical dashed
line is MCMLE. Two bootstrap estimates were off the figure to the left.
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Just 2 out of 199. So that is not a problem.
Try again (Figure 6, page 11).
Since this distribution seems to be fairly close to symmetric about the

MLE (which plays the role of the true unknown parameter in the bootstrap
world) perhaps a bootstrap percentile interval is not too bad.

We chose bootstrap sample size 199 so that order statistics would be nat-
ural estimators of quantiles having denominators 200. So for 95% confidence
two-sided we choose quantiles

conf.level <- 0.95

idx <- (length(beta.star) + 1) * c(1 - conf.level, 1 + conf.level) / 2

idx

## [1] 5 195

sort(beta.star)[idx]

## [1] 0.8794244 0.8816619

beta

## [1] 0.8813736

We see that our confidence interval happens to work. Although, of
course, it needen’t have. It is supposed to miss 5% of the time.
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