
Design of an R Package to do Log-Linear Models

(including Logistic Regression, Poisson Regression

with Log Link, and Multinomial Response Models)

Providing Valid Statistical Inference when

Maximum Likelihood Estimates Do Not Exist

Charles J. Geyer

February 3, 2024

Contents

1 License 4

2 R 4

3 Introduction 5

4 Exponential Family Theory 7

5 Another Look at Models 9

6 Existing Model Specification 10

7 Parameterization of Multinomial Models 11

8 Determining Whether an MLE Exists 13
8.1 Directions of Recession . 13
8.2 Poisson Sampling . 14
8.3 Binomial Sampling . 18
8.4 Multinomial Sampling . 19
8.5 Numerical Stability . 25
8.6 Proofs . 26

8.6.1 Proof of the First Kind 26

1

8.6.2 Proof of the Second Kind 27
8.6.3 Summary of Proof Theory 28
8.6.4 Proof Certificates . 29
8.6.5 Proofs Need Exact Data 29
8.6.6 Guidance About Proofs 31

8.7 Limiting Conditional Models 31

9 Reporting Multinomial Model Fits 31

10 Table-Valued Response? 33

11 Vector, Matrix, or Factor Response 34

12 Hypothesis Tests 36
12.1 Likelihood Ratio Tests . 38
12.2 Rao Tests . 38
12.3 Reporting Multiple Tests . 39
12.4 Reporting Multiple Tests for One Single Model Fit 39
12.5 R Functions Add1 and Drop1 39

13 Confidence Regions and Intervals 41
13.1 Our Proposal . 41
13.2 Conventional Confidence Regions for LCM 41
13.3 Correction for Two Confidence Regions 42
13.4 Simultaneous Coverage or Not 44
13.5 Argument Override . 44
13.6 Summary . 44
13.7 R Generic Function Predict? 45
13.8 More on Constraint Functions 46
13.9 Random Sampling? . 50
13.10Dimension of the LCM Canonical Parameter 51
13.11More on Our Theory of Confidence Regions 51

13.11.1 One-Parameter Models 51
13.11.2 Multi-Parameter Models 52

14 Information Criteria 56
14.1 Kullback-Leibler Information 56
14.2 Takeuchi Information Criterion 56
14.3 Akaike Information Criterion 56
14.4 Bayesian Information Criterion 57

2

15 Empty Models and Other Anomalies 57
15.1 Empty Models . 57
15.2 Empty Strata . 58

A Complete Separation Example of Agresti 59
A.1 Data . 59
A.2 First Linear Program . 59
A.3 Limiting Conditional Model 61
A.4 Clean Up . 62
A.5 Proof . 62
A.6 Confidence Intervals . 63

A.6.1 Constraint Set . 63
A.6.2 For Theta . 63
A.6.3 For Pi . 66
A.6.4 For Beta . 66
A.6.5 For Tau . 68
A.6.6 For Linear Function of Tau 74

B Quasi-Complete Separation Example of Agresti 75
B.1 Data . 75
B.2 First Linear Program . 75
B.3 Second Linear Program . 77
B.4 Limiting Conditional Model 78
B.5 Clean Up . 79
B.6 Proof Level 1 . 79
B.7 Proof Level 2 . 83

C Clinical Trial Example of Agresti 84
C.1 Data . 84
C.2 First Linear Program . 84
C.3 Second Linear Program . 86
C.4 Limiting Conditional Model 87
C.5 Clean Up . 89

D A Product Multinomial Example 89
D.1 Data . 89
D.2 Model Matrices and Response Vector 90
D.3 First Linear Program . 96
D.4 Second Linear Program . 98
D.5 Limiting Conditional Model 100

3

D.6 Clean Up . 102

E Another Product Multinomial Example 103
E.1 Data . 103
E.2 Model Matrices and Response Vector 103
E.3 First Linear Program . 104
E.4 Second Linear Program . 106
E.5 Third Linear Program . 108
E.6 Clean Up . 109
E.7 Proof Level 1 . 109
E.8 Proof Level 2 . 113
E.9 Limiting Conditional Model 115

F Big Data Example of Eck and Geyer 120
F.1 Data . 120
F.2 Model Matrix and Response Vector 120
F.3 Linear Programs . 121
F.4 Proof Level 1 . 123
F.5 Proof Level 2 . 125

1 License

This work is licensed under a Creative Commons Attribution-ShareAlike
4.0 International License http://creativecommons.org/licenses/by-sa/
4.0/.

2 R

� The version of R used to make this document is 4.3.2.

� The version of the knitr package used to make this document is 1.45.

� The version of the Matrix package used to make this document is
1.6.5.

� The version of the glpkAPI package used to make this document is
1.3.4.

� The version of the gmp package used to make this document is 0.7.4.

� The version of the rcdd package used to make this document is 1.6.

4

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

� The version of the CatDataAnalysis package used to make this doc-
ument is 0.1.5.

� The version of the alabama package used to make this document is
2023.1.0.

� The version of the numDeriv package used to make this document is
2016.8.1.1.

� The version of the sfsmisc package used to make this document is
1.1.17.

� The version of the mcmc package used to make this document is 0.9.8.

library("Matrix")

library("glpkAPI")

using GLPK version 4.65

library("rcdd")

If you want correct answers, use rational arithmetic.

See the Warnings sections in help pages for

functions that do computational geometry.

library("CatDataAnalysis")

library("alabama")

Loading required package: numDeriv

library("sfsmisc")

library("mcmc")

set.seed(42)

We do not load R package gmp because it overrides functions in R pack-
ages Matrix and base that we may need. We are especially worried about
it redefining R functions %*% and apply.

3 Introduction

This is the design document for an R package to fit

� log-linear models for categorical data (Agresti, 2013, Chapter 9),

5

which include, as special cases

� logistic regression (logit link) (Agresti, 2013, Chapter 5),

� Poisson regression with log link (Agresti, 2013, Section 4.3), and

� multinomial response models in which the response is nominal-valued
(not ordered categorical, exponential family canonical link) (Agresti,
2013, Section 8.1).

We aim to deal with these models just as well as existing R software,
such as R functions glm and loglin in the R core, R function loglm in
R package MASS, and R function multinom in R package nnet (these two
packages being R recommended packages that are installed by default in
every R installation).

But, even better, we aim to do the Right Thing when the MLE does
not exist in the given model but rather in the Barndorff-Nielsen completion
of the model (Geyer, 2009). And doing the Right Thing means having R
generic functions that work with regression results, like summary, anova,
predict, and confint, also do the Right Thing.

Existing R software does an abysmal job when the MLE does not exist.
R function glm does check for such a situation, but uses checks that are
weak and give false positives and false negatives. R function loglin uses
the mean value parameterization only and hence provides (up to inaccuracy
of computer arithmetic) valid maximum likelihood estimates of mean value
parameters even when maximum likelihood estimates of canonical parame-
ters do not exist, provided the user correctly gives a starting value with the
correct pattern of structural zeros (if any).

No R packages known to us implement valid methods of statistical in-
ference in such situations.

The technical report that goes with Geyer (2009) does show how to
do such valid statistical inference using R package rcdd, which is on CRAN
(Geyer, et al., 2023). But the code is very slow on big data, and it is not user
friendly. Eck and Geyer (2021) describe faster methods. Here we describe
even faster and more reliable methods.

We call this package llmdr for “log-linear models done right” which is a
rip-off of the title of the book Linear Algebra Done Right (Axler, 2024).

Unlike R function glm we only fit statistical models that are regular full
exponential families. There is no choice of link functions.

6

4 Exponential Family Theory

A statistical model is an exponential family of distributions if it has a
log likelihood of the form

l(θ) = 〈y, θ〉 − c(θ) (1)

where

� y is a vector statistic, called the canonical statistic,

� θ is a vector parameter, called the canonical parameter,

� c is called the cumulant function, and

� 〈 · , · 〉 is a bilinear form placing two vector spaces in duality

(Geyer, 2009). The last means

〈y, θ〉 =
∑

i yiθi

when we consider vectors to be tuples (like R does).
A canonical affine submodel of an exponential family has parameteriza-

tion of the form
θ = a+Mβ (2)

where

� a is a known vector called the offset vector,

� M is a known matrix called the model matrix, and

� β is the submodel parameter vector

(Geyer, Wagenius, and Shaw, 2007). Barndorff-Nielsen (1978, Section 8.2)
used the term “affine hypothesis” for the same concept. Here “known”
means not considered random. Either a or M may depend on covariates,
but all statistical inference is done conditional on covariates, as is usual for
regression-like statistical models. M is also called the design matrix, but R
does not use this terminology, so we don’t either. R function glm calls β the
coefficients vector and calls y the response vector.

When we need to contrast a canonical affine submodel with the model
having log likelihood (1) that it is a submodel of, we call the latter the
saturated model, because it is the largest possible canonical affine submodel
(the one with model matrix equal to the identity matrix).

7

Generalized linear models (GLM) that are exponential families (logistic
regression and Poisson regression with log link) are a special case. Geyer,
et al. (2007) call them affine models rather than linear models because (2)
makes θ an affine function of β.

A canonical affine submodel is itself an exponential family with log like-
lihood

l(β) = 〈y,Mβ〉 − c(a+Mβ)

= 〈MT y, β〉 − csub(β)

and hence

� submodel canonical statistic MT y,

� submodel canonical parameter β, and

� submodel cumulant function csub

(Geyer, et al., 2007, Section 2.4; Geyer, 2009, Section 3.9).
Theoretically, there would be no problem in not considering vectors as

tuples, but rather as elements of an abstract vector space as defined in
linear algebra and then replacing (2) with an arbitrary known affine function
between vector spaces, although then there is a little difficulty in defining
what MT y means (M is the the derivative of the affine function that replaces
(2), that derivative being a linear function as defined in functional analysis
(Lang, 1993, Chapter XIII, Section 2), and MT is its adjoint linear function
as defined in functional analysis (Lang, 1993, Chapter V, Section 2)).

R package aster (Geyer, 2023) actually does this. It makes y a matrix
and M a three-way array. But this turned out to be a design mistake
that limited the generality of models the package could handle and made
dealing with model matrices a pain for users. R package aster2 (Geyer,
2017) did not repeat this design mistake. In fact, R package aster has had
many changes to ameliorate this design mistake (accepting either matrices
or three-way arrays as “model matrices”).

Not only users dislike this sort of thing, but R also dislikes it. R wants
y and β to be what it considers vectors, and it wants M to be what it
considers a matrix, the result returned by R function model.matrix or
sparse.model.matrix. The dimension of y is the row dimension of M ,
and the dimension of β is the column dimension of M . The offset vector a,
when present, has the the same dimension as the response vector y.

The R functions discussed above also do this. Collectively, they allow
y to be a vector or matrix or factor or array or table and allow β to be a

8

vector or matrix or nothing (R functions loglin and loglm fit canonical
affine submodels using the iterative proportional fitting (IPF) algorithm,
which makes no explicit use of any of the mathematical objects in (2)). Our
experience with R package aster tells us this is also a design mistake, but
(as with R package aster) it is a design mistake that is impossible to change
for reasons of backward compatibility.

Since we are starting with a clean slate, we need to be careful to do
something sane.

5 Another Look at Models

As is well known, the term log-linear model does not specify a statistical
model. Different sampling schemes are possible. These are

� Poisson,

� multinomial, and

� product multinomial.

In all three the components of the response vector are counts. There is
another sampling scheme

� binomial,

but this is a special case of product multinomial (although our code will do
this as a special case).

In Poisson sampling the components of the response vector are assumed
to be independent Poisson random variables (having different means, which
are determined by the offset vector and model matrix, which in turn is
determined by the model formula and covariates).

In multinomial sampling the response vector is assumed to have a multi-
nomial distribution. R function loglin in the R core does not use formulas
to specify these models, but R function loglm in R package MASS does use
formulas to specify them.

In product multinomial sampling, the response vector is assumed to be
partitioned into subvectors that have independent multinomial distributions.
R function multinom in R package nnet uses formulas to specify these mod-
els. It specifies the partition by making the response vector a matrix: the
rows of the matrix are independent multinomial random vectors. We will
allow arbitrary partitions.

9

The elements of the partition we call strata, as in stratified random
sampling.

These three sampling schemes are not always distinguished because like-
lihood ratio tests and Pearson chi-squared tests of goodness of fit give the
same test statistics and P -values for any of these sampling schemes. This is
taught even in intro statistics classes. When doing categorical data analysis
of a two-dimensional table, intro stats teaches two hypothesis tests

� the test of independence (of the random variable whose values are the
row labels of the table and the random variable whose values are the
column labels of the table) and

� the test of homogeneity of proportions where each row (resp. column)
of the table is assumed to be an independent multinomial random
vector, that is, the row (resp. column) totals were fixed by experimen-
tal design (not random). The null hypothesis is that each of these
multinomial distributions has the same parameter vector.

The first is the multinomial sampling scheme, and the second is the prod-
uct multinomial sampling scheme, although intro stats books do not call
them that (nor do they mention Poisson sampling). Ditto for R function
chisq.test which does these tests when given a matrix of counts as its
first argument and does not distinguish between Poisson, multinomial, or
product multinomial sampling.

It is a general theorem of categorical data analysis that these three sam-
pling schemes lead to identical point estimates of the mean value parameter
vector (the vector of expectations of components of the response vector, the
vector of mean cell counts). They also lead to identical test statistics for
likelihood ratio tests and Pearson chi-squared tests of goodness of fit. Thus
the sampling scheme can often be ignored.

But not always ignored. The different sampling schemes have models of
different dimensions, so point estimates of mean value parameters are the
same but sampling distributions of those point estimates are different. Also,
Rao and Wald test statistics are different. So we will have to be careful to
distinguish the sampling schemes when necessary.

6 Existing Model Specification

Existing R software dealing with these models uses quite complicated
model specification.

10

The simplest model specification is for those models this package shares
with R function glm: logistic regression and Poisson regression with log link.
The formula determines the model matrix, and in all cases the response
vector is or can be converted to a vector of counts. When the response
is a factor (binomial family), the response vector is zero-or-one-valued, zero
indicating the first level of the factor (this is a bizarre convention but the one
used by R function glm). When the response is a matrix (binomial family),
it must have two columns, and the response vector is the first column, and
the row sums are the binomial sample sizes.

After that model specifications get complicated.

� For R function multinom in R package nnet the response “vector”
cannot be a vector; it must be a matrix or a factor.

� For R function loglin the response “vector” must be an array (or an
object of class "table" but such an object is also an array). There
is no formula. Instead there is a specification of which margins of the
array have observed values matched to maximum likelihood expected
values in estimation of the model. We have to decide whether we want
any similar non-formula specification for our package.

� For R function loglm in R package MASS the response “vector” can be
an array as for R function loglin but can also be a vector, in either
case a formula is used in conjunction with the “shape” of the response
“vector” but the meaning of the formula is radically different for the
two shapes. In R-4.1.0 R function loglm calls R function loglin to
do its model fitting, but, of course, this could be changed in future
versions.

All of these models we consider to have product multinomial sampling,
but we will call this family = "multinomial" following the precedent of R
function glm calling product binomial sampling family = "binomial".

7 Parameterization of Multinomial Models

We use the symmetric parameterization of multinomial models, which is
not identifiable. Let y be the response vector having index set I, and let A
be a partition of I. Then the model assumes that the subvectors yA, A ∈ A
are independent multinomial random vectors (this is the most general form
of product multinomial sampling).

11

If θ is the canonical parameter vector of the saturated model (called the
“linear predictor“ in GLM parlance), then the cell probabilities are

πi =
eθi∑
j∈A e

θj
, i ∈ A ∈ A.

and the cell expected values are

µi = nAπi, i ∈ A ∈ A,

where nA is the sample size for stratum A.
Agresti (2013, Section 8.1.1) uses the baseline category logit parame-

terization to obtain identifiability. Like R function multinom in R package
nnet, he lets y be a matrix whose rows are the strata. Then he keeps (2)
but has every term be a matrix, that is, θ and a and Mβ are matrices hav-
ing the same shape as y. This makes β a matrix, whose row dimension is
the column dimension of M and whose column dimension is the size of the
strata (the column dimension of y).

Then our other equations above must be matrix equations

πij =
eθij∑
k∈J e

θik

where J is the column index set of θ and β and the response matrix, and

µij = niπij .

The baseline category logit parameterization constrains the first column
of β considered as a matrix to be the zero vector. This makes the first column
of θ considered as a matrix to also be the zero vector. This is problematic.

� It is not obvious what the “first” element of each stratum is in general
stratified sampling.

� Constraining certain parameters to be zero in advance of determin-
ing whether the MLE exists in the conventional sense considerably
complicates that, as we shall see in Section 8 below.

� Worse. This response is a matrix stuff makes every stratum the same
size, which is a serious limitation on model specification. Not every
application will be covered. So this is really just a bad idea.

12

Thus we do not worry about identifiability yet and use the symmetric pa-
rameterization. We will eventually have to adopt some constraints to force
identifiability, but do so just before model fitting.

In order to have unified notation in the rest of the document, we will stick
to the general product multinomial sampling scheme. The response vector
is a vector, so is the offset vector, and the submodel canonical parameter
vector β. The strata are given by an arbitrary partition A of the index set
of the response vector.

None of this β is a matrix stuff. Our software will have to deal with
that, but our theory does not have to deal with that.

8 Determining Whether an MLE Exists

8.1 Directions of Recession

From Section 3.9 of Geyer (2009) we see that if y is the response vector
and M is the model matrix, then MT y is the submodel canonical statistic
vector. Theorems 1, 3, and 4 in Geyer (2009) say that an MLE exists for
the submodel canonical parameter vector (called the coefficients vector by R
function glm) if and only if every direction of recession of the log likelihood
is also a direction of constancy, where, if Y denotes a random realization
of the response vector and y the observed value of the response vector, a
vector δ in the submodel canonical parameter space is

� a direction of recession (DOR) if and only if (Y − y)TMδ ≤ 0 almost
surely and

� a direction of constancy (DOC) if and only if (Y − y)TMδ = 0 almost
surely.

The set of all DOR is denoted NCsub
(MT y). For this notation see Geyer

(2009), Section 3.2, Theorem 3, and Sections 3.9 and 3.10. A DOR δ is
generic (is a GDOR) if NCsub

(MT y) is not a vector subspace and δ is in the
relative interior of NCsub

(MT y) (Geyer, 2009, Section 3.6).
An MLE does not exist in the OM if and only if NC(MT y) is not a vector

subspace (Geyer, 2009, Theorem 4). The relative interior of a nonempty
convex set is always nonempty (Geyer, 2009, Section 3.6). Hence an MLE
does not exist in the OM if and only if a GDOR exists.

13

8.2 Poisson Sampling

Theorem 1. If y is the observed value of the response vector and M is the
model matrix for a Poisson model and η = Mδ, then δ is a DOR if and only
if both of the following conditions hold,

ηi ≤ 0, for all i,

and
ηi < 0 implies yi = 0, for all i.

A direction δ is a DOC if and only if Mδ = 0.

Proof. From the preceding section, δ is a DOR if and only if (Y − y)T η ≤ 0
almost surely.

If both conditions of the theorem statement hold, then (Y − y)T η ≤ 0
almost surely, because Yi is nonnegative-integer-valued.

Conversely, suppose one or the other of the conditions of the theorem
statement fails to hold. If ηi > 0 for some i, then there is positive probability
that Yi > yi and Yj = yj for j 6= i. But when that event occurs we have
(Y − y)T η = (Yi − yi)ηi > 0, and δ cannot be a direction of recession.
If ηi < 0 and yi > 0 for some i, then there is positive probability that
Yi < yi and Yj = yj for j 6= i. But when that event occurs we have
(Y − y)T η = (Yi − yi)ηi > 0, and δ cannot be a direction of recession.

Suppose η = Mδ 6= 0, so there exists an i such that ηi 6= 0. It is
possible that Yi 6= yi and Yj = yj for j 6= i. But when that event occurs
we have (Y − y)T η = (Yi − yi)ηi 6= 0, so δ cannot be a DOC. Conversely, if
η = Mδ = 0, then 〈Y − y, η〉 = 0 and δ is a DOC.

Theorem 2. In the same situation as in Theorem 1, let I be the index set
of the response vector, and let I∗∗ be the set of i ∈ I for which there exists
a DOR δ such that η = Mδ and ηi < 0. Then a DOR δ is a GDOR if and
only if I∗∗ is nonempty, η = Mδ, and ηi < 0 for all i ∈ I∗∗.

A GDOR fails to exist and an MLE exists in the OM if and only if I∗∗

is empty.

Proof. With the definition of I∗∗ in the theorem statement, NCsub
(MT y) is

the set of all δ such that η = Mδ and

ηi ≤ 0, i ∈ I∗∗ (3a)

ηi = 0, i ∈ I \ I∗∗ (3b)

14

Being the solution set of a finite set of linear equalities and inequalities,
NCsub

(MT y) is a polyhedral convex cone (Geyer, 2009, Section 3.5). It
follows that the relative interior of NCsub

(MT y) is the set of all δ such that
η = Mδ and

ηi < 0, i ∈ I∗∗

ηi = 0, i ∈ I \ I∗∗

This follows from Proposition 2.42 in Rockafellar and Wets (1998) plus the
fact that for a half space the relative interior is the same as the interior plus
the fact that the inequalities (3a) do not collectively imply an equality (by
definition of I∗∗).

We can search for DOR with linear programming. Consider the following
linear programming problem. Let I be the index set of the response vector
and the saturated model canonical parameter vector, let J be the index set
of the submodel parameter vector, and let mij denote the components of
the model matrix. Let I∗ = { i ∈ I : yi = 0 }, where y is the observed value
of the response vector.

minimize
∑
i∈I∗

∑
j∈J

mijδj

subject to
∑
j∈J

mijδj = 0, i ∈ I \ I∗ (4)

− 1 ≤
∑
j∈J

mijδj ≤ 0, i ∈ I∗

Here δ is the (vector) variable in the linear program, δj are its components,
J is its index set, and mij are the components of the model matrix M .

Theorem 3. An MLE exists in the OM if and only if the linear program
(4) has optimal value zero. When the optimal value is negative, it must
be less than or equal to −1, the solution δ is a DOR that is not a DOC,
and taking limits in that direction gives a limiting conditional model having
smaller support than the original model.

See Theorem 6 and the following discussion in Geyer (2009) for discussion
of limits in directions of recession and the resulting limiting conditional
models.

Proof. It is clear from Theorem 1 that the feasible region (the set of δ
satisfying the constraints) of the linear program (4) contains some positive

15

scalar multiple of every DOR (the reason why it does not include every DOR
is to be a bounded region so the linear program has a solution) and contains
no vectors that are not DOR.

Optimal solutions exist, because the feasible region is nonempty (it al-
ways contains the zero vector) and because the feasible region is bounded in
the direction of the gradient of the objective function, and every solution is
a DOR. If the optimal value is zero, then the solution set is the null space
of the model matrix, so the solution is a DOC, and an MLE does exist in
the OM (but is not unique if the solution is nonzero).

If a DOR δ exists that is not a DOC, then then we can rescale this δ so
that every component of η = Mδ is between −1 and 0 (inclusive) and some
component is equal to −1. For this rescaled δ the objective function is less
than or equal to −1. Hence the optimal value of the linear program must
be less than or equal to −1, and the solution must also be a DOR that is
not a DOC.

The support of the LCM taking limits in the direction δ that is the
solution of the linear program is

{ y : ηi < 0 implies yi = 0 }

where η = Mδ. When the optimal value is negative, this is clearly smaller
than the support of the OM.

Although this linear program is guaranteed to find a DOR that is not
a DOC if one exists, it is not guaranteed to find a GDOR. To do that, we
need to solve multiple linear programs. Let I∗∗∗ be any nonempty subset
of the I∗ defined just before the linear program (4), and consider the linear
program.

minimize
∑
i∈I∗∗∗

∑
j∈J

mijδj

subject to
∑
j∈J

mijδj = 0, i ∈ I \ I∗ (5)

− 1 ≤
∑
j∈J

mijδj ≤ 0, i ∈ I∗∗∗

∑
j∈J

mijδj ≤ 0, i ∈ I∗ \ I∗∗∗

Theorem 4. A DOR δ exists such that η = Mδ satisfies ηi < 0 for some
i ∈ I∗∗∗ if and only if the linear program (5) has negative optimal value,

16

in which case that optimal value must be less than or equal to −1 and the
solution is such a DOR.

Proof. The feasible region of the linear program (5) still contains only DOR
and contains some positive scalar multiple of every DOR. Hence the solution
is a DOR.

If the optimal value is zero, then we have proved that no DOR δ has
η = Mδ and ηi < 0 for some i ∈ I∗∗∗.

If the optimal value is negative, then we can rescale the solution δ so
that η = Mδ has every ηi for i ∈ I∗∗∗ is between −1 and 0 (inclusive) and
one of these ηi is equal to −1. For this rescaled δ the objective function
is less than or equal to −1. Hence the optimal value of the linear program
must be less than or equal to −1.

Algorithm 1 Find GDOR, Poisson Sampling

Set I∗∗ = ∅
Set I∗∗∗ = { i ∈ I : yi = 0 }
Set γ = 0
repeat {

Solve the linear program (5)
if (linear program has no solution) error
if (optimal value is zero) break
Set δ to be the solution of the linear program
Set γ = γ + δ
Set η = Mδ
Set I∗∗ = I∗∗ ∪ { i ∈ I : ηi < 0 }
Set I∗∗∗ = I∗∗∗ \ I∗∗
if (I∗∗∗ = ∅) break

}

Theorem 5. Algorithm 1 constructs the set I∗∗ of Theorem 2, and, if that
set is nonempty, constructs a GDOR γ.

If the algorithm stops after the first linear program because it had opti-
mal value zero, then it stops with γ = 0, which is, of course, a DOR that is
a DOC and not a GDOR.

Another way to describe the set I∗∗ is that it is the set { i ∈ I : ηi < 0 }
where η = Mγ.

17

The set I∗∗ in the program is, of course, not the set I∗∗ in Theorem 2
until the algorithm terminates. One can think of it as the set of indices
that we have established to be in I∗∗ of the theorem at that point of the
computation.

Proof. If the result is that I∗∗ is empty, then from Theorem 1 the MLE
exists in the OM. Otherwise, the algorithm continues searching for compo-
nents of I∗ that should be in I∗∗ until all are found. Since a positive linear
combination of DOR is another DOR, the result γ is a DOR that satisfies
the conditions of Theorem 2 to be a GDOR.

8.3 Binomial Sampling

The situation becomes only slightly more complicated for binomial sam-
pling. Now we not only have the response vector y but also a sample size
vector n with 0 ≤ yi ≤ ni for all i.

The following theorems are similar to those in the preceding section.
Since the proofs are also similar, we omit them.

Theorem 6. For a binomial model, if y is the observed value of the response
vector, n is the sample size vector, M is the model matrix, and η = Mδ,
then δ is a DOR if and only if both of the following conditions hold,

ηi > 0 implies yi = ni, for all i.

and
ηi < 0 implies yi = 0, for all i.

Theorem 7. In the same situation as in Theorem 6, let I be the index set
of the response vector, and let I∗∗ be the set of i ∈ I for which there exists
a DOR δ such that η = Mδ and ηi 6= 0. Then a DOR δ is a GDOR if and
only if I∗∗ is nonempty, η = Mδ, and ηi 6= 0 for all i ∈ I∗∗.

Let I∗ = { i ∈ I : yi = 0 or yi = ni }, where y is the observed value of the
response vector, and let I∗∗∗ be any nonempty subset of I∗.

18

For binomial we need the following linear program.

minimize
∑
i∈I∗∗∗
yi=0

∑
j∈J

mijδj −
∑
i∈I∗∗∗
yi=ni

∑
j∈J

mijδj

subject to
∑
j∈J

mijδj = 0, i ∈ I \ I∗ (6)

− 1 ≤
∑
j∈J

mijδj ≤ 0, i ∈ I∗∗∗ and yi = 0

0 ≤
∑
j∈J

mijδj ≤ 1, i ∈ I∗∗∗ and yi = ni∑
j∈J

mijδj ≤ 0, i ∈ I∗ \ I∗∗∗ and yi = 0

0 ≤
∑
j∈J

mijδj , i ∈ I∗ \ I∗∗∗ and yi = ni

Theorem 8. When I∗∗∗ = I∗, an MLE exists in the OM if and only if
the linear program (6) has optimal value zero. When the optimal value is
negative, it must be less than or equal to −1, the solution δ is a DOR that
is not a direction of constancy, and taking limits in that direction gives a
limiting conditional model having smaller support than the original model.

Theorem 9. A DOR δ exists such that η = Mδ satisfies ηi 6= 0 for some
i ∈ I∗∗∗ if and only if the linear program (6) has negative optimal value,
in which case that optimal value must be less than or equal to −1 and the
solution is such a DOR.

Theorem 10. Algorithm 2 (page 20) constructs the set I∗∗ of Theorem 7,
and, if that set is nonempty, constructs a GDOR γ.

8.4 Multinomial Sampling

Let I be the index set of a Poisson GLM having response vector Y and
let A be a partition of I. For any A ∈ A, let

NA =
∑
i∈A

Yi (7)

and let N denote the random vector having components NA, A ∈ A.

19

Algorithm 2 Find GDOR, Binomial Sampling

Set I∗∗ = ∅
Set I∗∗∗ = { i ∈ I : yi = 0 or yi = ni }
Set γ = 0
repeat {

Solve the linear program (6)
if (linear program has no solution) error
if (optimal value is zero) break
Set δ to be the solution of the linear program
Set γ = γ + δ
Set η = Mδ
Set I∗∗ = I∗∗ ∪ { i ∈ I : ηi 6= 0 }
Set I∗∗∗ = I∗∗∗ \ I∗∗
if (I∗∗∗ = ∅) break

}

Theorem 11. Consider a Poisson GLM having response vector Y and mean
value parameter vector µ. The conditional distribution of Y given N = n,
where N is defined by (7), is product multinomial with cell probabilities

πi =
µi∑
j∈A µj

, i ∈ A ∈ A,

and mean value parameter vector having components

µi = nAπi, i ∈ A ∈ A. (8)

When A = {I} is the trivial partition, we say the sampling model is
“multinomial” rather than “product multinomial”.

Proof. The probability mass function (PMF) of the Poisson model is

fµ(y) =
∏
i∈I

µyii
yi!

e−µi

Because sum of independent Poisson is Poisson, the marginal distribution
of N is

fµ(n) =
∏
A∈A

(∑
i∈A

µi

)nA

exp

(
−
∑
i∈A

µi

)
1

nA!

20

Hence the conditional PMF of Y given N is

fµ(y | n) =
∏
A∈A

nA!(∑
i∈A µi

)nA

∏
i∈A

µyii
yi!

=
∏
A∈A

(
nA
yA

)∏
i∈A

(
µi∑
j∈A µj

)yi
where we have introduced the notation yA for the “subvector” having index
set A and components yi and the multinomial coefficient(

nA
yA

)
= nA!

∏
i∈A

1

yi!

This conditional PMF is the product of multinomial PMF’s.

Theorem 12. For a product multinomial model induced by a partition A
having observed value of the canonical statistic vector y and model matrix
M , a vector δ is a DOR if and only if η = Mδ and the following condition
holds

i ∈ A ∈ A and ηi < max
j∈A

ηj implies yi = 0 (9)

And a vector δ is a DOC if and only if

i ∈ A ∈ A implies ηi = max
j∈A

ηj (10)

Proof. The vector δ is a DOR if and only if 〈Y − y, η〉 ≤ 0 almost surely.
Define

ζA = max
i∈A

ηi, A ∈ A. (11)

Then

〈Y − y, η〉 =
∑
A∈A

∑
i∈A

(Yi − yi)ηi

=
∑
A∈A

∑
i∈A

(Yi − yi)(ηi − ζA)

holds almost surely because∑
i∈A

Yi =
∑
i∈A

yi = nA, almost surely.

If (9) holds, since ηi − ζA 6= 0 implies ηi − ζA < 0 and Yi − yi ≥ 0, we have
〈Y − y, η〉 ≤ 0.

Conversely, suppose (9) fails to hold, that is, there exists an i ∈ A ∈ A
such that ηi < ζA but yi > 0. Then there is positive probability that Yi < yi

21

and Yj = yj for j 6= i. When that event occurs we have 〈Y − y, η〉 =
(Yi − yi)ηi > 0, and δ cannot be a DOR.

A vector δ is a DOC if and only if 〈Y − y, η〉 = 0 almost surely.
If (10) holds then i ∈ A implies ηi − ζA = 0, so 〈Y − y, η〉 = 0.
Conversely, if (10) fails to hold, then there exist i ∈ A ∈ A such that

ηi < ζA. And there is positive probability that Yi 6= yi and Yj = yj for j 6= i.
When that event occurs we have 〈Y − y, η〉 = (Yi − yi)ηi 6= 0, and δ cannot
be a DOC.

Theorem 13. For a product multinomial model induced by a partition A
having observed value of the canonical statistic vector y and model matrix
M , a vector δ is a GDOR if and only if the following condition holds.

Define the set I∗∗ as the set of i ∈ I such that there exists a DOR δ such
that η = Mδ and

ηi < max
j∈A

ηj , for the A ∈ A such that i ∈ A.

Then a vector δ is a GDOR if and only if I∗∗ is nonempty and η = Mδ and

i ∈ A ∈ A and i ∈ I∗∗ implies ηi < max
j∈A

ηj . (12)

Proof. From Theorem 12 we know the set of all DOR is the set of all δ
such that η = Mδ satisfies (9). The set of all DOR is a closed convex cone
(Geyer, 2009, Theorem 3 and Section 3.2).

Now we rewrite (9) as⋂
A∈A

⋂
i∈I∗∗∩A

⋃
j∈A\{i}

{ η ∈ RI : ηi ≤ ηj } (13a)

and (12) as ⋂
A∈A

⋂
i∈I∗∗∩A

⋃
j∈A\{i}

{ η ∈ RI : ηi < ηj } (13b)

Clearly (13a) is a closed set and (13b) is an open set. If (13b) is nonempty,
then it is the relative interior of (13a) by the relative interior criterion (Rock-
afellar and Wets, 1998, Exercise 2.41). So it only remains to be shown that
(13b) is nonempty. We know for every i ∈ I∗∗ there exists a vector η = Mδ
such that

ηi < max
j∈A

ηj

where A is the unique element of A containing i. Let H be the set of all
such η (one for each element of I∗∗). Then

∑
η∈H η is in (13b).

22

According to the arguments in Section 3.17 of Geyer (2009) we can use
our results for Poisson models to determine GDOR for multinomial and
product multinomial models. Following this line we depart from the way our
analysis went in preceding sections, presenting an algorithm for determining
GDOR for product multinomial sampling. Instead we will use Algorithm 1.

Theorem 14. Consider a Poisson GLM having response vector Y , mean
value parameter vector µ, canonical parameter vector θ given by θi = log(µi),
i ∈ I, and model matrix M , and let A be a partition of I. Suppose the
indicator vectors uA, A ∈ A, having components uA(i) given by

uA(i) =

{
1, i ∈ A
0 i ∈ I \A

(14)

are all in the column space of M . Then the MLE mean value parameter
vector of this Poisson GLM, if it exists, is equal to the MLE mean value
parameter vector for the product multinomial model obtained by conditioning
as described in Theorem 11.

Moreover, the (possibly unique) MLE canonical parameter vector for this
Poisson GLM, if it exists, is also a (nonunique) MLE canonical parameter
vector for this product multinomial model, when the canonical parameter-
ization for the product multinomial model is obtained from the canonical
parameterization of the Poisson model by conditioning as described in The-
orem 11 and the same model matrix and offset vector are used for both
models.

When the MLE does not exist in the Poisson GLM, any GDOR for this
model is also a GDOR for the product multinomial model, when the canonical
parameterization for the product multinomial model is as described above.

Proof. The assertions about MLE follow from the “observed equals ex-
pected” property of maximum likelihood in a regular full exponential family.

Define I∗∗ to be the set of all i ∈ I such that there exists a δ satisfying
the conditions of Theorem 1 and ηi < 0 where η = Mδ. Then by Theorems 1
and 2 a vector δ is a GDOR for the Poisson GLM if and only if for η = Mδ
we have ηi < 0 for i ∈ I∗∗ and ηi = 0 for i /∈ I∗∗.

It is clear by Theorem 13 that any such GDOR for the Poisson problem
is also a GDOR for the multinomial problem if the sets I∗∗ defined by
Theorems 2 and 13 are the same. From theorems 1 and 12 it is clear that
every DOR for the Poisson problem is also a DOR for the multinomial
problem. Hence the set I∗∗ for the Poisson problem is a subset of the set
I∗∗ for the multinomial problem.

23

Conversely, suppose δ is a DOR for the multinomial problem and η =
Mδ. To say that uA, A ∈ A are in the column space of M is to say that
each uA is a linear combination of the columns of M , or, what is equivalent,
that there exist δA, A ∈ A such that uA = MδA. Define ζA, A ∈ A by (11)
and

δpois = δ −
∑
A∈A

ζAδA

and
ηpois = Mδpois = η −

∑
A∈A

ζAuA

Then for each A ∈ A we have

max
i∈A

ηpois = ζA − ζA = 0

So ηpois is a DOR for the Poisson problem. And ηpois has negative compo-
nents that are the same as the components of η that were less than ζA for
the A that contains the index of that component. This shows set I∗∗ for the
multinomial problem is a subset of the set I∗∗ for the Poisson problem.

One might ask, since logistic regression is a special case of product multi-
nomial sampling, why Algorithm 2? Couldn’t we use Algorithm 1 instead,
as we did for product multinomial? The answer is, yes we could, but

� Doing so doubles the size of the linear programming problem. Al-
gorithm 1 will have n more variables and n more constraints than
Algorithm 2, where n is the number of cases (row dimension of the
model matrix).

� Doing so complicates the understanding of GDOR as we saw in The-
orems 6 and 7, but only slightly. We still have ηi 6= 0 for a GDOR if
and only if Yi = yi almost surely in the LCM.

So, conversely, one might ask, if we use Algorithm 2 especially for product
multinomial when multinomial is binomial, why don’t we also use a special
algorithm for general multinomial?

� Doing so increases the size of the linear programming problem. Algo-
rithm 1 will have n more variables and n more constraints than needed
to express the set of DOR for the multinomial, where n is the number
of strata.

But this cost is less than for binomial, because the strata are larger,
hence fewer.

24

� Doing so complicates the understanding of GDOR as we saw in Theo-
rems 12 and 13. It would similarly complicate any algorithm developed
specifically for the product multinomial case.

� It is not even clear there is an algorithm analogous to algorithms 1
and 2 for the multinomial case.

Of course, there are algorithms. Geyer (1990, Algorithms R and P)
and Geyer (2009, Sections 3.12 and 3.13) give algorithms. But those
algorithms are already known to be a lot slower than Algorithm 1.
Eck and Geyer (2021, Supplementary Material) give algorithms. But
those algorithms are already known to be more numerically unstable
than Algorithm 1 (they need to compute the null space of the Fisher
information matrix, a numerically difficult task, whereas Algorithm 1
makes its decisions based on whether the optimal value of the linear
programming problem is zero or less than or equal to minus one).

If we try to invent a new algorithm especially for the multinomial case
that works analogously to Algorithm 1 we have the difficulty of try-
ing to minimize ηi − maxj∈A ηj for each i. But max is not a linear
operation. maxj∈A ηj is a convex function of η, so this takes us into
general nonsmooth convex programming. Of course, such problems
can be converted into linear programming problems by the method of
slack variables. But this increases the size of the problem. Follow-
ing this idea would perhaps take us to a linear program of the size
of Algorithm 1 anyway. Since Algorithm 1 has such a nice natural
interpretation when applied to multinomial sampling, we prefer it.

8.5 Numerical Stability

Since we are discussing computer programs, we have to consider whether
the computer can approach the results described by our theorems. Our the-
orems use real real numbers. The computer does not. Its default computer
arithmetic is inexact, having less than 16 significant figures (decimal) in its
representation of what it calls real numbers.

This is not a problem for the computations recommended by Geyer
(2009) which can use the exact rational arithmetic in R package rcdd (Geyer,
et al., 2023) and thereby make no errors due to inexact computer arithmetic.
But those algorithms are very slow on non-toy problems.

We could also use R function lpcdd in R package rcdd to solve linear
programs. But it is slow and does not scale, getting far too slow for large
problems.

25

We need something faster, hence Algorithm 1, which in this package uses
R package glpkAPI (Gelius-Dietrich, 2022), which uses the default inexact
computer arithmetic. Hence the concern about stability of solutions of linear
programming.

It is simply a sad fact of life that computing with inexact computer
arithmetic is not guaranteed to give correct answers. This is true of linear
programming just as much as with any other area of computing that uses
so-called floating point computer arithmetic.

At least we are using linear programs such that the answers should be
clear for most problems. Our decision as to whether the optimal value is
zero or not can use very sloppy tolerances because the optimal value is either
zero or less than or equal to minus one.

The same goes for our decisions about what indices go in the set I∗∗

that is the set of indices for which components of η = Mδ for GDOR δ are
nonzero. If we use a very sloppy tolerance for those decisions, then we will
only make incorrect decisions in the direction of making I∗∗ smaller. But
this is OK in the middle of Algorithm 1 or 2 because any index that does
not get put in I∗∗ in one iteration of the loop will be reconsidered in other
iterations.

When the algorithm stops because the optimal value of the linear pro-
gram it does in some iteration is zero, the algorithm has tried to make some
component of η with index in I∗ \ I∗∗ less than or equal to minus one, and
could not. So we can hopefully assume that it could not make them negative.
So we are again, in a sense, using very sloppy tolerance.

8.6 Proofs

However, we do not actually care about the results of Algorithm 1 or 2
and certainly not that they were produced by linear programming. All we
care about is whether or not there exists a δ such that η = Mδ has the
correct signs for its components.

How can we check that? We have the results: γ the putative GDOR and
I∗∗, the index set of the components of the response vector that the LCM
conditions on. Can we easily check that with exact rational arithmetic?

8.6.1 Proof of the First Kind

R package gmp (Lucas, et al., 2024) has methods for R generic func-
tion solve that use infinite precision rational arithmetic or modular integer
arithmetic. Can we use that to get an exact construction of the GDOR?

26

We suggest the following problem. Find the vector x closest to γ such
that Mx has the zero components it is supposed to have. Let Z be the
matrix, whose rows are the rows of M indexed by i ∈ I \ I∗∗. We then solve
the following optimization problem

minimize 1
2(x− γ)T (x− γ)

subject to Zx = 0
(15)

The Lagrangian function for this problem is

L = 1
2(x− γ)T (x− γ) + λTZx

where λ is a vector of Lagrange multipliers. The Kuhn-Tucker conditions
are then

x− γ + ZTλ = 0

Zx = 0
(16)

This is a set of simultaneous linear equations to solve for x and λ. If it yields
a solution such that Mx has the correct signs, then we have a mathematical
proof that x is a DOR.

Note that there is nothing to be done for this kind of proof if Algorithm 1
or 2 stops in the first iteration with the result γ = 0 and I∗∗ = ∅.

Note that there is also nothing to be done for this kind of proof if Algo-
rithm 1 or 2 stops with I∗∗ = I in which case all components of η are far
from zero, so we can presumably trust inexact computer arithmetic. But we
can turn this observation into a formal mathematical proof by calculating
η = Mδ by infinite precision rational arithmetic and checking the signs of
the components of η.

8.6.2 Proof of the Second Kind

In order to prove that Algorithm 1 or 2 stopped correctly if it did stop
with optimal value zero (rather than I∗∗∗ = ∅), we need to do redo that
linear program with exact infinite precision rational arithmetic. R function
lpcdd in R package rcdd can do this.

This proof, if successful, shows that the DOR found by the proof of the
first kind is a GDOR. Hence it shows the MLE in the LCM does exist and
is the MLE in the Barndorff-Nielsen completion of the OM.

In Section B below we see an example where the check of the linear
program is trivial because the gradient of the objective function is the zero
vector, hence the optimal value can only be zero. And we know there always

27

is an optimal value because the zero vector is always feasible. If we want to
check for this as a special case, we can.

Note that there is nothing to be done for this kind of proof if Algorithm 1
or 2 stops with I∗∗∗ = ∅ in which case I∗∗ = I∗. In this case, the DOR
found in the preceding proof is automatically a GDOR.

8.6.3 Summary of Proof Theory

In the following,

� “the algorithm” means Algorithm 1 or 2 as the case may be,

� “nearly zero” means equal to zero according to the tolerance specified
for the algorithm, and

� “use rational arithmetic” means

– for matrix multiplication use R function qmatmult in R package
rcdd or R function %*%.bigq in R package gmp, whichever is
convenient,

– for solving linear equations use R function solve in R package
gmp, and

– for linear programming use R function lpcdd in R package rcdd,
and

� “η has the correct signs” means satisfies the conditions of Theorem 1
or 6, as the case may be.

If the algorithm stops with γ = 0 and proofs = 2 was requested, then
redo the linear program the algorithm did using rational arithmetic. If the
optimal value is zero, then report proofs = 2.

If the algorithm stops with no component of η = Mγ nearly equal to
zero, then compute η = Mγ using rational arithmetic (regardless of what
level of proof was requested). If η has the correct signs, then report proofs
= 2.

If the algorithm stops with γ 6= 0 and some component of η = Mγ
nearly equal to zero and proofs >= 1 was requested, then solve the linear
equations (16) and calculate η = Mx, both using rational arithmetic. If η
has correct signs, then report proofs = 1 if proofs = 1 was requested, else
redo the last linear program the algorithm did using rational arithmetic. If
the optimal value is zero, report proofs = 2.

In all other cases report proofs = 0.

28

8.6.4 Proof Certificates

As checkable proofs need to be, we need to return “certificates” of the
proofs. For level one proofs, this would be the rational arithmetic version
of the GDOR. One can then easily check that η = Mδ has correct signs.
For level two proofs, this would be the rational arithmetic primal and dual
solutions of the linear program. The primal solution is a DOC because the
optimal value is zero. The dual solution is the vector of Lagrange multipliers.
One can then (more or less) easily check that the final linear program has a
solution and the optimal value is zero, as in Section 5 of the vignette for R
package rcdd.

This seems pretty esoteric for almost all users. The linear program is
a bit hard to set up. One could, of course, look at the source code for R
function lpcdd. But if one trusts that it is right, then one can also trust
when it returns proofs = 2. And if one does not trust that source code,
then one has to do the code check oneself. Perhaps we need a section on the
help page for R function lpcdd about this. And an example.

8.6.5 Proofs Need Exact Data

All of this assumes we have the model matrix in some exact form, either
integer-valued or rational-valued. But R function sparse.model.matrix,
which we are using to turn formulas into model matrices does not do rational
arithmetic. So, unless the model matrix happens to be integer-valued, we
are in trouble anyway.

Consider the logistic regression example with quasi-complete separation
of Agresti (2013, Section 6.5.1) that we analyze below (Section B). Agresti
does not say whether we are supposed to treat the predictor variable as
integer-valued or not. If we can take it to be integer-valued, and if we
realize that we have two components of the response vector with the same
predictor value, then we can rearrange the data so the predictor values are
unique.

x <- seq(10, 90, 10)

success <- as.numeric(x >= 50)

failure <- as.numeric(x <= 50)

y <- cbind(success, failure)

data.frame(x, y)

x success failure

1 10 0 1

29

2 20 0 1

3 30 0 1

4 40 0 1

5 50 1 1

6 60 1 0

7 70 1 0

8 80 1 0

9 90 1 0

Now the data say that one success and one failure are associated with
the same predictor value (x = 50).

There is, when the data are given in this form, no trouble with inaccu-
racy of computer arithmetic. It is easily proven that the GDOR found in
Section B is actually a GDOR.

But when the data are given in the form actually used in Section B the
problem becomes insoluble. Then we do not know that one success and one
failure are associated with the predictor value x = 50 if those values came
from some previous calculation that might have involved inexact computer
arithmetic.

Suppose the two predictor values that we entered as 50 were instead
50−ε and 50+ε for some small ε. Then the problem is either an example of
complete separation or quasi-complete separation depending on which pre-
dictor value is associated with the success and which with the failure. And
if we cannot know which (because we suspect inaccuracy of computer arith-
metic is the cause), then there is no way to achieve mathematical certainty
about what the LCM is.

Thus if our regression function is to follow the usual R pattern in which
the model is specified by a formula and data in a data frame with no indi-
cation of how accurate the data are, then the problem of provably correct
GDOR is insoluble. Even if we were to allow some optional way of indicating
accuracy of data, naive users would not use it.

As we know, naive users do not read the documentation, and those naive
users who keep asking question 7.31 of the R FAQ (Hornik, 2020) have never
even encountered the idea that computer arithmetic is inexact. If our R
package has to deal with users like that, then we can never know whether
the answers it computes are correct. We have to apply Algorithms 1 and 2
and hope.

30

8.6.6 Guidance About Proofs

For less naive readers we can provide the guidance to make the model ma-
trix integer-valued if they can. This means making quantitative covariates
(class "numeric") integer-valued. Dummy variables are, of course, zero-or-
one valued, so qualitative variables (class "character" or class "factor")
present no problems.

We can also give advice to avoid duplicate predictor values if possible,
but that advice may be hard to follow in complicated applications.

8.7 Limiting Conditional Models

Theorem 15. For Poisson sampling, if the set I∗∗ defined in Theorem 2 is
nonempty, then the LCM conditions on the event

Yi = yi, i ∈ I∗∗. (17)

For binomial sampling, if the set I∗∗ defined in Theorem 7 is nonempty,
then the LCM conditions on the event (17). For multinomial or product
multinomial sampling with partition A, if the set I∗∗ defined in Theorem 13
is nonempty, then the LCM conditions on the event (17). But, if we define

I∗∗+ =
⋃
{A ∈ A : A \ I∗∗ is a singleton set },

then the LCM also conditions on the event

Yi = yi, i ∈ I∗∗ ∪ I∗∗+.

Proof. If δ is a GDOR and η = Mδ, then the LCM conditions on the event
〈Y − y, η〉 = 0, and in all cases this is equivalent to (17). In the multinomial
or product multinomial case if for some A ∈ A the event (17) conditions
yi = 0 for all but one i ∈ A, then it also conditions yj = nA for the j ∈ A
such that yj 6= 0.

9 Reporting Multinomial Model Fits

Theorem 14 already tells us we can use the results of fitting a Poisson
GLM or detecting whether a GDOR exists for a Poisson GLM to fit or detect
whether a GDOR exists for a multinomial or product multinomial LLM.

An issue remains. The regression coefficients for the regressors uA de-
fined by (14) are not identifiable because each uA is a direction of constancy

31

of the saturated model. Thus we do not report these coefficients. They
would not be coefficients if we were fitting the correct model (multinomial
or product multinomial rather than Poisson).

And another issue remains. For the regression coefficients that we do
report, standard errors, Fisher information, and inverse Fisher information
should be based on the multinomial or product multinomial distribution
rather than the Poisson distribution.

Fisher information for the saturated model canonical parameter vector
is, of course,

I(θ) = var(Y)

and for product multinomial sampling with strata set A the i, j component
is

var(Yi) = nAπi(1− πi), i ∈ A ∈ A, i = j

cov(Yi, Yj) = −nAπiπj , i ∈ A ∈ A, j ∈ A
cov(Yi, Yj) = 0, i ∈ A ∈ A, j /∈ A

We see that the Fisher information matrix is block diagonal with blocks
being strata and off-diagonal terms not in the same block being equal to
zero. We can get this block structure with what is called modmat.strata in
the examples in the appendix. Here we denote this matrix Ms. Its columns
say which components of the response vector are in a stratum. Thus MsM

T
s

is a matrix of the same shape as the Fisher information matrix that says
which components of the Fisher information matrix are nonzero.

We also have to deal with different strata having different sample sizes,
but we can use (8) for that. If mu is the mean value parameter vector and
pi is the usual parameter vector, whose components satisfy (8) then

(Diagonal(x = mu) - tcrossprod(mu, pi)) * tcrossprod(modmat.strata)

computes the Fisher information matrix for the saturated model canonical
parameter vector (this uses R functions in R package Matrix).

Then the Fisher information matrix for the submodel canonical param-
eter vector is

I(β) = MT I(θ)M

where M is the model matrix for the submodel (for the coefficients we keep
in the submodel, not the ones we throw away as explained above).

32

10 Table-Valued Response?

No. Just no. Although we find the idea of fitting contingency tables
as contingency tables, as R function loglin does and as R function loglm

in R package MASS optionally does, elegant, it is just too confusing when
combined with solutions at infinity.

The way these functions work is to use the iterative proportional fitting
(IPF) algorithm to operate on mean values only. They never use canoni-
cal parameters in any way. This allows them to estimate solutions on the
boundary correctly (at infinity for canonical parameters is on the boundary
for mean value parameters), in the sense that the cells of the contingency
table that have mean value zero in the LCM converge to zero (slowly) as IPF
continues to iterate. IPF also deals with structural zeros correctly if given
a starting position that has the correct structural zeros (it never changes a
zero cell to nonzero).

But if one wants more than point estimates, if one wants to do valid
hypothesis tests and confidence intervals following Geyer (2009), then one
needs GDOR, canonical parameter estimates for the LCM, and so forth. So
one needs to ignore what R function loglin or loglm does and start over
with the methods described in this document.

It is easy to convert a contingency table to a data frame

data(exercise_6.28)

foo <- xtabs(counts ~ ., data = exercise_6.28)

class(foo)

[1] "xtabs" "table"

dim(foo)

[1] 2 2 2 3 2

bar <- as.data.frame(foo)

identical(exercise_6.28, bar)

[1] FALSE

names(bar)

[1] "Occupational_aspirations"

[2] "Socioeconomic_status"

33

[3] "IQ"

[4] "Residence"

[5] "Gender"

[6] "Freq"

for (i in levels(bar$Occupational_aspirations))

for (j in levels(bar$Socioeconomic_status))

for (k in levels(bar$IQ))

for (l in levels(bar$Residence))

for (m in levels(bar$Gender))

stopifnot(with(exercise_6.28,

counts[Occupational_aspirations == i &

Socioeconomic_status == j & IQ == k &

Residence == l & Gender == m]) ==

with(bar, Freq[Occupational_aspirations == i &

Socioeconomic_status == j & IQ == k &

Residence == l & Gender == m]))

So it is a bit annoying that this procedure re-orders the data, but since
any order is equivalent, this doesn’t matter.

Thus users can easily go from tabular or array data to dataframe data
using R function as.data.frame.

Thus users can easily use the methods already described that want data
as a dataframe rather than as a table or array.

11 Vector, Matrix, or Factor Response

For binomial or multinomial family, we need to figure out the order in
which to deal with the possibilities. There is a natural order, although it was
not apparent before doing the examples in the appendix of this document
(to your humble author).

If the response y is a factor, convert it to a matrix with the command

y <- sparse.model.matrix(~ 0 + y)

but save the original response factor for putting in the output (perhaps).
If family == "binomial" then it is easy to convert this matrix to a

response vector y and a sample size vector n with the commands

34

n <- rowSums(y)

y <- y[, 1]

but save the response matrix for putting in the output (perhaps).
If family == "multinomial" then it is more complicated to convert

this matrix to response and strata vectors. But the following commands do
the job

strata <- paste0("row", row(y))

y <- as.vector(y)

but save the response matrix for putting in the output (perhaps).
And now we are done except in the case where the response was originally

a vector. If family == "binomial" then we have to create a sample size
vector n to be in tune with what we get when the response comes in other
forms.

n <- rep(1, length(y))

If family == "multinomial" then we have to create a strata model
matrix and a covariates model matrix. Both are tricky.

In the case that strata was missing we create the strata model matrix
with the command

modmat.strata <- model.matrix(~ 1)

In the case that strata was specified as a factor we create the strata
model matrix with the command

modmat.strata <- sparse.model.matrix(~ 0 + strata)

(this includes the case where the response was supplied as a matrix and we
created strata as a character vector, which will be treated like a factor by R
function sparse.model.matrix)

In the case that strata was specified as a formula f we create the strata
model matrix with the command

modmat.strata.formula <- sparse.model.matrix(strata, data)

modmat.strata.formula <- as.matrix(modmat.strata.formula)

strata <- apply(modmat.strata.formula, 1, paste0)

strata <- as.factor(strata)

35

Now for the model matrix for covariates. In the case that the response
was specified originally as a vector, we just make this model matrix in the
usual way applying R function sparse.model.matrix to the formula.

But in the case that the response was specified originally as a matrix or
factor (by now converted to a matrix) we have to back up, or at least use
that matrix (which we have saved rather than clobbered). We make a model
matrix (not the final one) by applying R function sparse.model.matrix to
the formula. Then we make a list, all of whose components are the same,
this non-final model matrix. Then we do something to change the column
names of the matrices in this list so they are all distinct. Then we run this
list through R function bdiag making a block diagonal matrix, and that is
the final model matrix for covariates. All of this is illustrated in Section D.2
in the appendix.

12 Hypothesis Tests

As usual for R packages for regression-like analysis, R generic function
anova does hypothesis tests, and we write methods for it handling objects
of class "llmdr" output by R function llmdr.

The fundamental theory of hypothesis testing when the MLE does not
exist in the OM is given by Section 3.15 in Geyer (2009), where it is at-
tributed to Stephen Fienberg (who outlined this theory in answer to a ques-
tion from your humble author during a talk).

Firstly, the hypothesis test involves (as always) only the distribution
under the null hypothesis (we are not discussing power calculation here, and
even if we were, they only involve local alternatives near the null hypothesis).
Hence the only computational geometry (solutions as infinity) involves the
null hypothesis.

If the MLE exists for the OM for the null hypothesis, then we could do
the hypothesis test using R functions glm and anova, ignoring any warnings
because we know this actually does the right thing despite the warnings.

If the MLE does not exist for the OM for the null hypothesis, then
we need the theory in Geyer (2009) (attributed to Fienberg). This says
we use the same conditioning for both models, null and alternative, and
this conditioning is that for the LCM for the null hypothesis. We pay no
attention to directions of recession, solutions at infinity, and so forth for
the alternative hypothesis. This means we have to recalculate the degrees
of freedom for the alternative hypothesis. It is not necessarily either of the
degrees of freedom in the output of R function llmdr. Those are the degrees

36

of freedom for the alternative hypothesis if the MLE exists in the OM for
the null hypothesis and the degrees of freedom for the alternative hypothesis
if it were (contrary to fact) treated as the null hypothesis.

The degrees of freedom for the alternative hypothesis is a bit compli-
cated. Let η be the GDOR for the saturated model for the null hypothesis,
and let M be the model matrix for the alternative hypothesis. then, if the
family is not multinomial, the degrees of freedom is the dimension of the
column space of M [η = 0,] in R notation, that is, the part of M consisting
of the rows for which the components of η are zero.

For multinomial sampling, the degrees of freedom recalculation is even
more complicated. Let Ms be the model matrix for strata for the alternative
hypothesis, then we consider both M [η = 0,] and Ms[η = 0,]. Let V denote
the column space of the former, and Vs denote the column space of the latter.
The degrees of freedom for the alternative hypothesis is the dimension of the
vector V ∩ V ⊥s .

This last recipe is so complicated, that R function anova.llmdr passes
the buck to R function glm.fit. It fits the multinomial response model
having model matrix M , model matrix for strata Ms, and subset vector
η == 0. And following Theorem 14 we fit this model using R function
glm.fit giving it the model matrix

cbind(modmat.strata, modmat)[eta == 0, , drop = FALSE]

in R notation, where modmat, modmat.strata, and eta are M , Ms, and η
in the notation above. The coefficients component of the result is what
R function glm.fit thinks is MLE for this model, and that vector has NA

for components that are not identifiable. But we know that none of the
components that corresponded to Ms are identifiable for the corresponding
product multinomial model. Hence the degrees of freedom are given by the
R code

beta <- gout$coefficients

remove components for strata

beta <- beta[- seq(1, ncol(modmat.strata))]

df.alt <- sum(! is.na(beta))

where gout is the result returned by R function glm.fit and df.alt is
the degrees of freedom for this model when considered as an alternative
hypothesis and the null hypothesis has GDOR η for the saturated model
canonical parameterization. (This beta is what R function llmdr would

37

report for the coefficients vector for this model if (contrary to fact) eta
were the GDOR for this model rather than for the null hypothesis.)

12.1 Likelihood Ratio Tests

(Also called the Wilks test.) The maximized value of the log likelihood is
the same when done by R function llmdr as when done by R functions glm
or multinom (the latter in R package nnet), modulo inexactness of computer
arithmetic.

Thus we take the deviances computed by R function llmdr and the
degrees of freedom discussed above (recalculating the degrees of freedom
for the alternative hypothesis), and do the test in the usual way except
for calculating the degrees of freedom differently than from what other R
functions would do.

12.2 Rao Tests

(Also called score tests, also called Lagrange multiplier tests.) These
were not mentioned in Geyer (2009) but have been an option for R function
anova since R version 2.14.0 (released in October, 2011). So we should have
them too.

Theoretically, there is no issue. Rao tests only depend on the MLE
for the null hypothesis. They do not use anything about the alternative
hypothesis except its model matrix. For this section, just call this matrix
Malt. Then the score that gives the score test its name is

MT
alt(y − µ̂)

where y is the response vector and µ̂ is its MLE expected value under the
null hypothesis. This would, of course, be the zero vector if we replaced
Malt by the analogous model matrix for the null hypothesis. This vector has
asymptotic variance matrix

MaltInull(θ̂)M
T
alt

where the middle factor is the Fisher information matrix for the saturated
model canonical parameter (also called linear predictor) for the null hypoth-
esis. The exact variance matrix is, of course,

MaltInull(θ)M
T
alt

38

where θ is the true unknown parameter value (assumed to be in the null
hypothesis). Thus the Rao test statistic is

(y − µ̂)TMT
alt

(
MaltInull(θ̂)M

T
alt

)−1
Malt(y − µ̂)

The degrees of freedom are, of course, the same as for the likelihood ratio
test.

12.3 Reporting Multiple Tests

R function anova traditionally does multiple tests when given a sequence
of models, testing each adjacent pair of models.

When solutions at infinity are involved, a model has two different degrees
of freedom: one considered as a null hypothesis and one considered as an
alternative. So we have to report both. This complicates the traditional
version of an ANOVA table, giving it an extra column.

12.4 Reporting Multiple Tests for One Single Model Fit

R function anova traditionally does a bunch of tests when given one
model object. We don’t allow this.

One gets more or less the same featurality from R function drop1 if we
implement that.

12.5 R Functions Add1 and Drop1

R users expect R functions add1 and drop1 to work with objects re-
turned by model fitting functions like llmdr, that is, although users don’t
necessarily think of it this way, there must be methods of these functions
for objects of class "llmdr".

Looking at the source code for R functions add1.glm and drop1.glm

one finds that they produce the following:

� for drop1, vectors of indices of columns of the model matrix of the
given model that give the submodels of the given model resulting from
the “drops”

� and, for add1, a model matrix for a model containing all terms to add
and vector of indices of columns of this new model matrix that give
the supermodels of the given model resulting from the “adds”.

39

Thus we need a version of R function llmdr that works with model matrices
explicitly.

Also experience shows that there are models one wants to fit that cannot
be expressed in the R fofmula mini-language. So such a function is needed
anyway. It should be documented and exported by the package. We could
call this function llmdr.fit analogous to glm.fit but we could also make
R function llmdr generic and give it methods for objects of class formula

to handle formulas and a default method to handle model matrices. (This
is what R package aster does with its model-fitting function)

But with llmdr we have the issue that not all families need the same
sorts of objects to specify them. To review

� for Poisson family, we just need the response vector and the model
matrix,

� for binomial family, we just need the the model matrix and the re-
sponse vector, matrix, or factor as the case may be, and

� for multinomial family, we just need the the model matrix and the
response vector, matrix, or factor as the case may be and we may also
need strata specified by a factor or a formula.

So we need a proposal about how to specify this extra stuff.
For the response, we propose providing it in the same form for both

methods, that is, for binomial or multinomial family, it can be vector, ma-
trix, or factor. And the same form has the same meaning for both methods.

The number of rows of the model matrix and the response matrix are the
same (if the response is provided as a matrix). If the response is a vector or
a factor, then the length of the response is the number of rows of the model
matrix.

We need a specification of strata only if the family is multinomial and
the response is a vector. Even then we allow strata to be missing, which is
taken to mean that there is exactly one stratum (so the sampling scheme is
multinomial rather than product multinomial).

For the formula method of R generic function llmdr the strata can be
specified by a factor or a formula. For the default method, since we don’t
allow formulas to specify the model matrix, then perhaps we shouldn’t allow
them to specify the strata either. We propose that strata should be specified
by another model matrix whose elements are zero-or-one-valued and whose
columns indicate the strata. Let y denote the response vector and Ms this
model matrix for strata (this same concept of model matrix for strata and the

40

same notation Ms was used in Sections 9 and 12 above). This model matrix
for strata is also returned by R function llmdr as component modmat.strata
of the object it returns. So users can get this matrix from any previous call
of R function llmdr applied to the same sampling scheme for the same data.

13 Confidence Regions and Intervals

13.1 Our Proposal

We are going to start by slightly modifying the proposal of Geyer (2009),
Section 3.16.2. Let H denote these support of the LCM, which is described
by Theorem 15. Conditioning on the event Y ∈ H turns the OM into the
LCM.

Then a confidence region for how close the true unknown parameter
value is to infinity in the canonical parameter space or how close it is to the
boundary in the mean value parameter space is the set

{β : prβ(Y ∈ H) ≥ α } (18)

where the desired coverage probability is 1−α (or any other parameterization
can be substituted for β).

This is a confidence region that completely ignores the data for the LCM.
It just says how close in the OM we are likely to be to the LCM. Now for any
function g(β) (or of any other parameter, we can form a confidence interval
by minimizing and maximizing g(β) over (18). All of these intervals have
simultaneous coverage because they are based on the same confidence region
(18).

13.2 Conventional Confidence Regions for LCM

Another confidence region is more conventional. We make a likelihood-
based confidence region for the parameters of the LCM. If lLCM is the log
likelihood for the LCM, then this region is

{β : lLCM(β) ≥ lLCM(β̂)− crit } (19)

where β is the same parameter as in (18), the parameter of the OM, and crit
is an appropriate chi-square critical value that uses the degrees of freedom
(number of parameters estimated) of the LCM.

We should make it perfectly clear that the β in (19) is the full vector
β, the submodel canonical parameter of the OM. It is not the β that is

41

estimated in the LCM with components dropped to make the LCM have
identifiable canonical parameterization. Thus this β is not an identifiable
parameter of the LCM (usually we make sure it is an identifiable parameter
of the OM), and this means the region (19) is also unbounded in certain
directions, those that are directions of constancy of the LCM.

Neither of the regions (18) or (19) are much good by themselves. They
tell us something but not everything. In general, we have to combine them
by some correction for multiple testing to get all the information.

But there are two special cases where we only want one of these confi-
dence regions and not the other. If the MLE exists in the OM so the LCM is
the OM, then we only want the conventional confidence region (19), which
in this case is a bounded region. When we use only this, we get conventional
results. More on this later. The second special case is when the LCM is a
completely degenerate distribution, which says the only value the response
vector could have is the one that was observed. In this case the LCM has
no identifiable parameters and (19) just gives the whole vector space where
β lives. Since it does nothing, we should ignore it and only use (18).

Note that we can write lLCM as

lLCM(β) = log prβ(y | Y ∈ H)

from which we see that (18) only depends on a marginal distribution and (19)
only depends on the corresponding conditional distribution. Alternatively,
(18) only depends on the components of the response vector that are fixed
by the conditioning event Y ∈ H, and (19) only depends on the rest of the
components of the response vector (that are unaffected by the conditioning
event Y ∈ H).

The probabilities multiply (joint equals marginal times conditional) so
we should be able to get a better correction for simultaneous coverage than
Bonferroni.

Further discussion of the theory of these confidence intervals is deferred
to Section 13.11 below.

13.3 Correction for Two Confidence Regions

If α1 is the probability that (18) fails to cover and α2 is the probability
that (19) fails to cover, then the probability that they both cover is

(1− α1)(1− α2) = 1− α1 + α2 + α1α2

42

whereas Bonferroni would give the probability that either fails to cover is
less than α1 + α2 hence the probability that they both cover is at least

1− α1 + α2

A check with Wikipedia (2021) shows this method of correcting for multiple
comparisons is well known when the data for hypothesis tests or confidence
intervals are independent (they do not mention joint equals marginal times
conditional), but they do not give a name for this procedure.

So our method of multiplying probabilities using joint equals marginal
times conditional does do better than Bonferroni. So it seems that we had
better change the name of the argument of R function confint.llmdr from
what we guessed would make sense at first: bonferroni. This has now been
done.

Anyway, that function has arguments to determine 1−α1 and 1−α2 that
are simultaneous = TRUE (more about this later), bonferroni = c(1, 1)

which was supposed to mean α1 = α2 and in general that the proportions
of 1 − α1 and 1 − α2 are what is specified, and level = 0.95, the desired
overall confidence level, (1− α1)(1− α2). So this gives us two equations to
solve for 1− α1 and 1− α2

level1

level2
=

bonferroni[1]

bonferroni[2]

level1 ∗ level2 = level

where level1 = 1− α1 and level2 = 1− α2. Solving for level1 gives

bonferroni[1]

bonferroni[2]
∗ level2 = level1 =

level

level2

so

level2 =

√
level ∗ bonferroni[2]

bonferroni[1]

level1 =

√
level ∗ bonferroni[1]

bonferroni[2]

except we need to think of another name for bonferroni.
Note that these equations can make level1 and level2 outside the

range of (0, 1), in which case we must mean that one of these is equal to
level and the other to one (meaning we don’t use that kind of region, the
only way one gets 100% confidence is to make no restriction). Also note
that we cannot have both components of bonferroni equal to zero because
then we get 0 / 0 = NaN.

43

13.4 Simultaneous Coverage or Not

Now for the intended meaning of simultaneous = FALSE. Geyer (2009)
tries to provide something analogous to the confidence intervals provided
by most R functions, which are not corrected for simultaneous coverage, al-
though it snarkily says those are “something users think they can interpret”
(emphasis added), meaning users actually misinterpret these (all users, al-
ways). Now there is just no way that the confidence region (18) can be made
into non-simultaneous intervals for different parameters. It is inherently si-
multaneous. Being close to the boundary for mean value parameters or close
to infinity for canonical parameters is not a function of one parameter alone
but of all of them together. But there is a way to make non-simultaneous
confidence intervals based on (19): just use one degree of freedom in cal-
culating the chi-square critical value rather than the number of identifiable
parameters of the LCM. In hindsight, we now think we might as well just get
the benefit of simultaneous coverage, except perhaps when the MLE exists
in the OM. Or except perhaps when the number of identifiable parameters
of the LCM is large.

The argument above does not agree with Geyer (2009). There our confi-
dence region (18) is made smaller in an attempt to make it nonsimultaneous.
We no longer think this is a good idea. Hence the proposal in this document.

13.5 Argument Override

Argument override = TRUE (the default) means use confidence region
(18) by itself when the LCM is completely degenerate and use confidence
region (19) by itself when the MLE exists in the OM. And override =

FALSE would say that even in these cases we should use level1 and level2

even though that wastes some of our coverage probability. The only reason
we are even providing this option is because we don’t feel we completely
understand this stuff, although we understand it a lot better than we did in
2009.

13.6 Summary

So this gives us an algorithm.

� Determine level1 and level2 as discussed based on arguments level,
bonferroni, override, and whether the LCM is completely degener-
ate, LCM = OM, or otherwise.

44

� determine α1 and crit using the argument simultaneous, as dis-
cussed in determining crit

� For each function g(β) that determines a parameter we want to esti-
mate solve the optimization problem

minimize or maximize g(β)

subject to prβ(Y ∈ H) ≥ α1

lLCM(β) ≥ lLCM(β̂)− crit

For one-sided confidence intervals, the maximum or minimum will be at
infinity or minus infinity for canonical parameters and on the boundary
(equal to the MLE) for mean value parameters, and our code should recog-
nize this situation and give the appropriate answer without invoking some
optimization algorithm which will have no clue about how to find an answer
at infinity. The GDOR helps here. We know that β goes to infinity in the
GDOR direction.

For these nonlinear optimization problems we have had good results from
R function auglag in R package alabama (Varadhan, 2023).

13.7 R Generic Function Predict?

One last consideration: our function confint.llmdr almost completely
replaces R generic function predict, which is misnamed anyway (a referee
for Geyer, et al. (2007) complained that it doesn’t make “predictions” except
for linear models, it just provides parameter estimates and standard errors)
and the author of R package aster (Geyer, 2023) agreed but replied that R
generic function predict is the function that does this job, misnamed or
no, and we have to use it.

Now we are thinking that maybe we don’t need a method for R generic
function predict for objects of class "llmdr". Maybe the confint method
does everything wanted? Not quite.

� Methods for R generic function predict usually have a newdata ar-
gument that allows predictions for hypothetical individuals not in the
observed data. So unless we add a newdata argument to our method
for R generic function confint, we cannot replace R generic function
predict.

� But the way predict usually works, providing estimates and (if re-
quested) standard errors, won’t work for us, because standard errors

45

are meaningless when the MLE is in the LCM (they would all be infi-
nite).

� Also in R package aster (Geyer, 2023) the method of R generic func-
tion predict for aster models provides not only estimates of all the
kinds of parameters that our method of R generic function confint

for LLMDR objects does but also provides estimates and (if requested)
standard errors for any linear functions of them. Since our methods of
producing confidence intervals do not involve normal approximation
and the delta method, we can allow confidence intervals for arbitrary
functions of any of the parameters.

The only issue with allowing arbitrary functions (arbitrary g in our
notation above) is that the optimizer may return a local optimum
that is not a global optimum, and thus give the wrong endpoint of the
confidence interval.

But we punt on all of this. Leave it for future versions of the package.

13.8 More on Constraint Functions

Theorem 16. For Poisson sampling, the probability in (18) has log

q1(β) = −
∑
i∈I∗∗

µi (20a)

where, as usual, θ = a + Mβ and µ = exp(θ), the exp function operating
componentwise, as in R, and I∗∗ is computed by Algorithm 1. And the log
likelihood in (19) is

q2(β) =
∑

i∈I\I∗∗
(yiθi − µi) (20b)

For binomial sampling, the probability in (18) has log

q1(β) =
∑
i∈I∗∗

[
yi log(πi) + (ni − yi) log(1− πi)

]
(20c)

where, as usual, θ = a+Mβ and π = logit−1(θ), the inverse logit function
also operating componentwise, as in R, and I∗∗ is computed by Algorithm 2.
And the log likelihood in (19) is

q2(β) =
∑

i∈I\I∗∗

[
yi log(πi) + (ni − yi) log(1− πi)

]
(20d)

46

For product multinomial sampling with strata A, the probability in (18) has
log

q1(β) =
∑
A∈A

nA log

 ∑
i∈A\I∗∗

πi

 (20e)

where, as usual, θ = a+Mβ and

πi =
eθi∑
i∈A e

θi
, i ∈ A ∈ A

and I∗∗ is defined in Theorem 13. And the log likelihood in (19) is

q2(β) =
∑
A∈A

∑
A\I∗∗

yi log(πi) (20f)

Proof. For (20a) the probability of the data being in the support of the LCM
is ∏

i∈I∗∗

µyii
yi!

e−µi

but yi = 0 for all i ∈ I∗∗ so this simplifies to∏
i∈I∗∗

e−µi

and taking logs gives (20a). For (20b) we have the usual Poisson log likeli-
hood except we only sum over components of the response vector that are
free (not conditioned) in the LCM.

For (20c) the probability of the data being in the support of the LCM is∏
i∈I∗∗

(
ni
yi

)
πyii (1− πi)ni−yi

but yi = 0 or yi = ni for all i ∈ I∗∗ so this simplifies to∏
i∈I∗∗

πyii (1− πi)ni−yi

and taking logs gives (20c). For (20d) we have the usual binomial log like-
lihood except we only sum over components of the response vector that are
free (not conditioned) in the LCM.

47

For (20e) the PDF of the product multinomial is∏
A∈A

(nA!)
∏
i∈A

πyii
yi!

For the event Y ∈ H we have yi = 0 for all i ∈ I∗∗. So the PDF simplifies
to ∏

A∈A
(nA!)

∏
i∈A\I∗∗

πyii
yi!

Now all of the remaining variables are free in the LCM and can take any
nonnegative integer values subject to sums over strata being equal to the
sample sizes. So to calculate the probability of the event Y ∈ H we sum
over all of those possible values and obtain

∑
A∈A

 ∑
i∈A\I∗∗

πi

nA

from the multinomial theorem (the reason we don’t get one is because the
probabilities in the inner sums do not sum to one because we are not sum-
ming over the whole stratum. Taking logs gives (20e). For (20f) we have
the usual product multinomial log likelihood except we only sum over com-
ponents of the response vector that are free (not conditioned to be equal to
zero) in the LCM.

We notice that (20c) and (20d) have the same formula summed over
disjoint index sets. There is a difference that is hidden in the notation. In
(20c) we know that every yi is either 0 or ni, and in (20d) we don’t know
that.

With this in mind, we notice that (20a) and (20b) also have the same
formula summed over disjoint index sets, even though it does not look like
that. But if we rewrite (20a) as

q1(β) =
∑
i∈I∗∗

(yiθi − µi)

we know that yi = 0 for i ∈ I∗∗ so this simplifies to (20a).
Thus for both Poisson and binomial sampling q1 and q2 are likelihoods

of certain exponential families, hence concave. But we have no such anal-
gous property for product multinomial sampling. Exponential families with
dependence among components of the response are just different. The func-
tion (20e) is not the log likelihood of any full exponential family. It is the

48

log likelihood of the missing data exponential family where we are missing
the values of the response vector for i /∈ I∗∗, but that is not helpful, because
exponential families with missing data don’t have any nice properties over
and above the usual asymptotics of maximum likelihood. In particular, they
don’t have concave log likelihoods.

For all of the formulas in the theorem that are log likelihoods, the first
derivatives are trivial: observed minus expected, like for all regular full
exponential families. But that leaves us with one formula we don’t know
what the derivative is.

Theorem 17. The derivative of (20e) is

∂q1(β)

∂θj
=
∑
A∈A
j∈A

1∑
i∈A\I∗∗ πi

∑
k∈A\I∗∗

∂µk
∂θj

(21)

This equation needs some interpretation. The leftmost sum always has
exactly one term. BecauseA is a partition, there is always exactly one A ∈ A
such that j ∈ A. The sum in the denominator is never empty because
A \ I∗∗ is never empty (we cannot have all components of a multinomial
random vector equal to zero, they must sum to the sample size). The partial
derivatives ∂µk/∂θj are components of the Fisher information matrix for θ.
They are discussed in Section 9 above.

Proof. By the chain rule

∂q1(β)

∂θj
=
∑
k∈I

∂q1(β)

∂πk

∂πk
∂θj

so

∂q1(β)

∂θj
=
∑
A∈A

∑
k∈A

∂q1(β)

∂πk

∂πk
∂θj

=
∑
A∈A

∑
k∈A\I∗∗

nA∑
i∈A\I∗∗ πi

· ∂πk
∂θj

=
∑
A∈A

nA∑
i∈A\I∗∗ πi

∑
k∈A\I∗∗

∂πk
∂θj

=
∑
A∈A
j∈A

nA∑
i∈A\I∗∗ πi

∑
k∈A\I∗∗

∂πk
∂θj

and the last equality is the fact that ∂πk/∂θj = 0 unless k and j are in the
same stratum. Finally we use nAπk = µk when k ∈ A.

49

13.9 Random Sampling?

In doing confidence intervals for the first example in the appendix (Sec-
tion A.6 below) we hit upon the idea (more out of frustration than anything
else) of sampling a bunch of points in the confidence region for β to serve
as starting points for the optimization algorithms. Since we have many
non-convex optimization problems to do, many random starting points can
help find the correct local optima (the ones that are global optima), espe-
cially if they are fairly densly distributed throughout the feasible region, the
intersection of the two constraint sets (18) and (19).

There is no need for the points to have any particular probability distri-
bution. We just need a fair amount of the spread throughout the region.

Since the region may be infinite, this gives problems. Also distances in
β space have little to do with distances between probability distributions.
So we hit on the idea of having τ uniformly distributed rather than β.
This would seem to have a more physical meaning and have the probability
distributions themselves closer to uniformly distributed.

When we transform τ → β, the Jacobian in the change-of-variable theo-
rem is the determinant of the derivative of the inverse transformation β → τ ,
which is the Fisher information matrix.

For binomial and product multinomial sampling the mean value param-
eter space is a bounded region, hence this probability distribution exists.

For Poisson sampling, the mean value parameter space is an unbounded
region, hence we need a theorem about that.

Theorem 18. For Poisson sampling, the intersection of (18) and (19) is
bounded when mapped β → τ .

Proof. If µi → ∞ for some i ∈ I∗∗, then (20a) goes to zero. Rewrite (20b)
as

q2(β) =
∑

i∈I\I∗∗
[yi log(µi)− µi]

Then it is clear that, If µi → ∞ for some i ∈ I \ I∗∗, then (20b) goes to
zero. Thus all means must stay bounded in order to stay in both of these
confidence regions.

We naturally turn to MCMC to sample this distribution, but since we
really don’t care about the distribution, only about getting a bunch of well
spread out points, we can be very sloppy about the MCMC.

We probably don’t need MCMC at all.

50

13.10 Dimension of the LCM Canonical Parameter

When making the “conventional” confidence region for the submodel
canonical parameter β, we need to be careful about dimension. We need to
use only identifiable parameters of the OM. Perhaps the best way to figure
this out is just to punt it to R function glm. Fit the original model, ignoring
any warnings R function glm emits (because we don’t care what it thinks
about solutions at infinity). But do pay attention to which components of
the coefficients vector it makes NA. If gout is the object returned by R
function glm, then ! is.na(gout$coefficients) indicates the parameters
involved in the confidence regions (18) and (19).

Except that won’t work for multinomial because R function glm doesn’t
do multinomial, except when we are being clever, as described by Theo-
rem 14. So fit the Poisson model for the OM corresponding to the product
multinomial as described in the theorem. Then eliminate the parameters
for strata. then look at which of the remaining coefficients are reported NA.

13.11 More on Our Theory of Confidence Regions

A theory about a confidence region proposal must discuss all possible
data values. The confidence region is valid if it has the desired coverage
probability. For discrete data there cannot be exact non-randomized hy-
pothesis tests or confidence regions (Geyer and Meeden, 2005). Thus our
procedure can have (at best) only approximately correct coverage probabil-
ity (averaged over all possible data values).

13.11.1 One-Parameter Models

To fix some ideas, we first do one-parameter models. For a concrete
example, we do the binomial distribution, for which Geyer (2021b) shows
our proposal works. The coverage probability is, of course

n∑
y=0

prπ(y)I(interval for y covers π)

where in this section I(·) is the function that maps logical values false and
true to numerical values zero and one (respectively).

We are assuming the conventional confidence intervals work when π is
far from the boundary of its parameter space. Hence this is approximately
1− α for such π.

51

So what is the probability the interval for 0 covers π? By definition it
fails to cover when prπ(Y = 0) is less than α. So the probability it covers is
greater than or equal to 1− α when π is in the region.

This argument confuses even your humble author, so let be even more
specific in our calculations. prπ(Y = 0) = (1 − π)n where n is the sample
size, so the interval is the set of π satisfying

(1− π)n ≥ α

or
1− π ≥ α1/n

or
π ≤ 1− α1/n

So let us consider a few cases
Thus we have the argument

� When π is such that prπ(Y = 0) ≥ α, the interval covers π with
probability at least 1− α because the the interval for y = 0 does that
all by itself (never mind other values of y).

� When π is such that prπ(Y = n) ≥ α, the interval covers π with
probability at least 1− α because the the interval for y = n does that
all by itself (never mind other values of y).

� Otherwise, we are assuming conventional confidence intervals work
(approximately), so we have coverage 1− α (approximately).

Thus we see that our proposal is (in this case) a conservative correction to
conventional confidence intervals. They guarantee correct coverage when
the observed data is on the boundary and otherwise do no worse than con-
ventional confidence intervals.

13.11.2 Multi-Parameter Models

So how does this case splitting work for multi-parameter models? For
this we need to introduce the notion of the convex support of an exponential
family. This is the smallest closed convex set that contains the canonical
statistic vector with probability one. This is the set called Csub in Geyer
(2009).

Any convex set is partitioned partioned by the family of relative interiors
of its nonempty faces (Rockafellar, 1970, Theorem 18.2). The support of the

52

LCM is the unique face of the convex support that contains the observed
value of the canonical statistic vector in its relative interior (Geyer, 2009,
Section 3.8; this was also known by Barndorff-Nielsen and Brown).

The conditioning event MTY ∈ Hsub where

Hsub = { z ∈ RK : 〈z −MT y, δ〉 = 0 } (22)

(Geyer, 2009, Section 3.14.2), can be rewritten as MTY ∈ F where F =
Csub∩Hsub is the smallest face of Csub containing MT y in its relative interior
(when δ is the GDOR for observed data y or when δ = 0 when MT y is in
the relative interior of Csub) (Geyer, 2009, Section 3.8).

Let F denote the family of nonempty faces of Csub (this includes Csub,
which is always a face of itself, by definition). Let E be the subset of F
consisting of zero-dimensional faces (extreme points). These are the faces
for which (when the override argument of R function confint.llmdr is
TRUE, Section 13.5 above) for which we only use the proposal in Section 13.1
above and not the one in Section 13.2 above).

The coverage probability is, of course∑
y∈S

prβ(y)I(region for y covers β)

where S is the sample space of the model. And we divide this up∑
F∈F

∑
y∈S

MT y∈rintF

prβ(y)I(region for y covers β)

=
∑
F∈F

∑
y∈S

MT y∈rintF

prβ(y)I(q1,F (β) > c1,F)I(q2,y(β) > c2,F)

where we have changed notation from Theorem 16 writing q1,F instead of
q1 to emphasize that this function depends on the data but only through
the event MT y ∈ rintF , that is, on which F is the convex support of
the LCM, whereas q2 depends on y, not all components of the response
vector, but rather those that are free (not constrained by the conditioning
on MT y ∈ F) in the LCM, and where we have introduced critical values
c1,F and c2,F which also depend on F (because they depend on whether the
LCM is completly degenerate, partially degenerate, or equal to the OM).

So now we examine cases.

� In case F ∈ E and MT y ∈ rintF , this is the case whre the LCM is
completely degenerate, rintF = F is the set containing only the single

53

point MT y, where y is the observed value of the response vector, we
have I(q2,y(β) > c2,F) = 1 regardless of the value of β. And we have
coverage at least 1− α for all β satisfying q1,F (β) > c1,F by the same
argument as in the one-dimensional case.

� In case F ∈ F and MT y ∈ rintF and F /∈ E and F 6= Csub this is the
case where the LCM is partially degenerate, and the argument becomes
more complicated. Still we have for all β satisfying q1,F (β) > c1,F and
q2,y(β) > c2,F

prβ(MTY ∈ F) ≥ α1 (23a)

lLCM,F (β) ≥ lLCM,F (β̂)− c2 (23b)

(where α1 and c2 do not depend on F for F in this case).

It looks like we have to do this by mathematical induction. Fix G ∈ F
such that G 6= Csub, and suppose (this is the induction hypothesis)
that for all F ∈ F such that F ⊂ G and F 6= G we have coverage at
least 1− α for all β satisfying (23a) and (23b).

REVISED DOWN TO HERE

Then the probability that our confidence region proposal covers a par-
ticular true unknown parameter value β is∑

F∈F
prβ(Y ∈ rintF)I(q1,F (β) > c1)

× Eβ
{

prβ(q2,Y (β) ≥ c2 | Y ∈ F)
∣∣Y ∈ rintF

}
(24)

for some constants c1 and c2, and where I(·) maps false and true to 0 and 1,
and where we have changed notation from Theorem 16 writing q1,F instead
of q1 to emphasize that this function depends on the data only throught the
event Y ∈ rintF , that is, on which F is the convex support of the LCM,
whereas q2 depends on Y , not all components of the response vector, but
rather those that are free (not constrained by the conditioning on Y ∈ F)
in the LCM.

Now we choose c2 so the conditional expectation in the formula above
is greater than 1 − α2, approximately, assuming the data for the LCM has
large enough “sample size” so the usual asymptotics of maximum likelihood

54

work for the LCM. This reduces our coverage probability calculation to
(approximately)

(1− α2)
∑
F∈F

prβ(Y ∈ rintF)I(q1,F (β) > c1)

Now
q1,F (β) = log prβ(Y ∈ F)

There is a mismatch in our theory here. It would make for a cleaner anal-
ysis if we substituted rintF for F here. But calculation of rintF involves
calculating all of the faces of F , which is a very complicated problem in
computational geometry. The whole point of the line of research of Geyer
(2009), Eck and Geyer (2021), and this design document is to avoid having
to do that, because it can take hours, days, weeks or worse of computing
time for even moderately large problems. None of the examples in Geyer
(2009) much less the big data example in Eck and Geyer (2021) could have
been done if we insisted on calculating rintF .

So now our coverage probability becomes (approximately)

(1− α2) prβ

(⋃
{ rintF : F ∈ F and q1,F (β) ≥ c1 }

)
(25)

assuming we are using override = FALSE in the arguments to R function
confint (described in Section 13.5 above). If we are using override =

TRUE, then this becomes more complicated. Let E be the subset of F con-
sisting of zero-dimensional faces (extreme points). Then our coverage prob-
ability becomes (approximately)

(1− α)

(
prβ(rintC) +

∑
F∈E

prβ(Y ∈ rintF)

)
+ (1− α2)

∑
F∈(F\E)\{C}

prβ(Y ∈ rintF)I(q1,F (β) > c1) (26)

So somehow we have to argue here that this probability is approximately
1 − α. And we want to do this without having to calculate F for any face
of C except for the convex support of the LCM.

55

14 Information Criteria

14.1 Kullback-Leibler Information

14.2 Takeuchi Information Criterion

The Takeuchi information criterion (TIC) is

TIC = −2l(θ̂) + 2 tr
[
I(θ0)J(θ0)

−1]
where l is the log likelihood function and

I(θ) = var {∇l(θ)}
J(θ) = E

{
−∇2l(θ)

}
where expectations are taken with respect to the true unknown distribution
of the data (which may not be any model under consideration) and where
θ0 is the θ that maximizes

E {l(θ)} (27)

assuming this maximizer exists and is unique (this depends on the true
unknown distribution and the statistical model, so existence and uniqueness
cannot be proved) and also satisfies

E {∇l(θ0)} = 0

which will hold assuming differentiation under the integral sigh is valid in
(27).

This is a general bias-corrected estimator of twice Kullback-Leibler infor-
mation assuming the usual regularity conditions for misspecified maximum
likelihood (Konishi and Kitagawa, 2008, Sections 3.3.5 and 3.4.3; Burnham
and Anderson, 2002, Sections 2.3 and 7.3).

14.3 Akaike Information Criterion

The Akaike information criterion (AIC) is derived from TIC by assuming
the model for which we are calculating AIC is correct (contains the true
unknown distribution), in which case θ0 is the true unknown parameter value
and I(θ0) = J(θ0) is the Fisher information matrix. Then the penalty term
is twice the trace of the identity matrix, which is the number of identifiable
parameters of the model.

Now we should ask what this has to do with solutions at infinity. If a
model under consideration is correct in the sense that the true unknown

56

distribution lies not in that model but rather in its Barndorff-Nielsen com-
pletion, then the argument above in not correct.

The “usual asymptotics of maximum likelihood” do not apply to the OM
but rather to the LCM containing the true unknown distribution. So AIC
should use the number of identifiable parameters of that LCM, perhaps zero
in the case of a completely degenerate LCM.

This much is clear. The question is whether anyone will like this conclu-
sion. After all, AIC is not used under the assumption that all models are
correct. If they were, one would just choose the most parsimonious with-
out looking at AIC. So assume each model is correct is used only to get
the penalty 2p and then forgotten (un-assumed). When we compare models
using AIC, we are not assuming all of them are correct (even though that
assumption is used in the derivation).

One way to think of what AIC does is that it says this is an unbiased
estimate of twice Kullback-Leibler information if that model is correct, and
if it is not correct the bias will be worse, so this is a criterion that makes
this model as good as it possibly can (without cheating and doing no bias
correction at all). If that is the argument, it is still clear that p should be
the number of identifiable parameters of the LCM (perhaps zero).

14.4 Bayesian Information Criterion

15 Empty Models and Other Anomalies

15.1 Empty Models

We need to decide what to do with empty models, things like

y <- rbinom(10, 1, 0.5)

modmat <- sparse.model.matrix(y ~ 0)

dim(modmat)

[1] 10 0

As the book Effective Java says (a book with more about how to write R
or any other computer language than most books on R) in item 54 “Return
Empty Collections or Arrays, Not Nulls” so in R this means never return
NULL unless you always return NULL.

If the user is expecting a numeric vector, return numeric(0) rather than
NULL. And similarly for other return types.

Let’s see what R function glm does.

57

gout <- glm(y ~ 0, family = "binomial")

class(gout)

[1] "glm" "lm"

names(gout)

[1] "coefficients" "residuals"

[3] "fitted.values" "effects"

[5] "R" "rank"

[7] "qr" "family"

[9] "linear.predictors" "deviance"

[11] "aic" "null.deviance"

[13] "iter" "weights"

[15] "prior.weights" "df.residual"

[17] "df.null" "y"

[19] "converged" "boundary"

[21] "model" "call"

[23] "formula" "terms"

[25] "data" "offset"

[27] "control" "method"

[29] "contrasts" "xlevels"

Just what is expected. We should do the same. But

coef(gout)

numeric(0)

So we can see that Bloch’s recommendation is the R way (at least here).

15.2 Empty Strata

By definition the set of strata should partition the index set of the re-
sponse vector. We need to check for both conditions.

� No stratum is empty.

� The union of the strata is the index set of the respose vector.

58

A Complete Separation Example of Agresti

A.1 Data

Agresti (2013, Section 6.5.1) discusses the following toy problem, which
is a simple (one predictor) logistic regression.

x <- seq(10, 90, 10)

x <- x[x != 50]

y <- as.numeric(x > 50)

A.2 First Linear Program

So we use Algorithm 2.

modmat <- sparse.model.matrix(y ~ x)

tangent.direction <- as.numeric(y == 0) - as.numeric(y == 1)

objgrd <- rbind(tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

lp <- initProbGLPK()

addRowsGLPK(lp, nrow(modmat))

[1] 1

addColsGLPK(lp, ncol(modmat))

[1] 1

setSimplexParmGLPK(MSG_LEV, GLP_MSG_OFF) # STFU

row bounds

lower.bounds <- pmin(- tangent.direction, 0)

upper.bounds <- pmax(- tangent.direction, 0)

idx <- which(lower.bounds == upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_FX, length(idx)))

idx <- which(lower.bounds != upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

59

upper.bounds[idx], rep(GLP_DB, length(idx)))

col bounds: free

idx <- 1:ncol(modmat)

setColsBndsGLPK(lp, idx, rep(-Inf, length(idx)),

rep(Inf, length(idx)), rep(GLP_FR, length(idx)))

objective function

setObjDirGLPK(lp, GLP_MIN)

idx <- which(objgrd != 0)

setObjCoefsGLPK(lp, idx, objgrd[idx])

constraint matrix (modmat)

foompter <- mat2triplet(modmat)

loadMatrixGLPK(lp, nnzero(modmat), foompter$i, foompter$j, foompter$x)

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] -5

Because the optimal value is negative, the MLE does not exist in the
OM, and the solution is a DOR.

delta <- getColsPrimGLPK(lp)

eta <- getRowsPrimGLPK(lp)

names(delta) <- colnames(modmat)

names(eta) <- x

delta

(Intercept) x

-1.250 0.025

eta

60

10 20 30 40 60 70 80 90

-1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00

all(eta * tangent.direction <= 0)

[1] TRUE

all(tangent.direction != 0 | eta == 0)

[1] TRUE

Since all components of eta are nonzero, this says that delta is a GDOR
and the LCM is completely degenerate, concentrated at the observed data.
There is no need to do another linear program because we have discovered
I∗∗ = I. We are exiting the loop in Algorithm 2 at the I∗∗∗ = ∅ test.

A.3 Limiting Conditional Model

There is nothing to do to fit the LCM, since it is completely degenerate,
what Agresti calls complete separation.

But we do have something to report: the GDOR.

coefs <- cbind(NA, delta, NA, NA, NA)

rownames(coefs) <- colnames(modmat)

colnames(coefs) <- c("Estimate", "GDOR", "Std. Error",

"z value", "Pr(>|z|)")

printCoefmat(coefs)

Estimate GDOR Std. Error z value

(Intercept) NA -1.250 NA NA

x NA 0.025 NA NA

Pr(>|z|)

(Intercept) NA

x NA

This may not be very helpful to users. More useful is the information
that the LCM is completely degenerate. It conditions all components of the
response vector to be equal to their observed values.

61

A.4 Clean Up

delProbGLPK(lp)

A.5 Proof

We follow the suggestion of Section 8.6.3 and give a rigorous proof that
we have found a GDOR.

modmat <- as(modmat, "matrix")

modmat <- gmp::as.bigq(modmat)

eta <- gmp::`%*%`(modmat, cbind(delta))

eta

Big Rational ('bigq') 8 x 1 matrix:

[,1]

[1,] -72057594037927935/72057594037927936

[2,] -27021597764222975/36028797018963968

[3,] -36028797018963965/72057594037927936

[4,] -4503599627370495/18014398509481984

[5,] 9007199254740995/36028797018963968

[6,] 36028797018963975/72057594037927936

[7,] 6755399441055745/9007199254740992

[8,] 72057594037927945/72057594037927936

all(eta * tangent.direction <= 0)

[1] TRUE

all(tangent.direction != 0 | eta == 0)

[1] TRUE

Because η has the correct signs and no zero components, this proves η
is a GDOR.

62

A.6 Confidence Intervals

A.6.1 Constraint Set

Since the LCM is completely degenerate, we only have intervals based
on (18).

For that we need to encode the probability in that formula, and to avoid
underflow and catastrophic cancellation in inexact computer arithmetic, we
use log probability. Letting θ = a+Mβ, as always, this log probability is∑

i∈I
yi=0

log

(
1

1 + eθi

)
+
∑
i∈I
yi=1

log

(
1

1 + e−θi

)

or
−
∑
i∈I
yi=0

log1p
(
eθi
)
−
∑
i∈I
yi=1

log1p
(
e−θi

)
(28)

where log1p(x) = log(1+x) is a function provided by R and C/C++ in order
to avoid catastrophic cancellation when x is small and the answer should be
log1p(x) ≈ x rather than -Inf when 1 + x == x because x is smaller than
the machine epsilon.

We can help the optimizer by giving it derivatives of objective and con-
straint functions. Call (28) h(β), then

∂h(β)

∂θk
= −I(yk = 0)

eθk

1 + eθk
− I(yk = 1)

−e−θk
1 + e−θk

= −I(yk = 0)
eθk

1 + eθk
+ I(yk = 1)

1

1 + eθk

= −I(yk = 0)πk + I(yk = 1)(1− πk)

where, just for this equation and the next two I(·) is the function that maps
FALSE to zero and TRUE to one. Then by the chain rule we have

∂h(β)

∂βl
=
∑
k∈K

[
−I(yk = 0)πk + I(yk = 1)(1− πk)

]
mkl

where mkl are the components of the model matrix M .

A.6.2 For Theta

We are going to produce confidence intervals for components of the sat-
urated model canonical parameter vector. We know that these confidence

63

intervals are all one-sided in this problem. If yi = 0, then we know the lower
endpoint of the confidence interval is −∞. If yi = 1, then we know the
upper endpoint of the confidence interval is +∞.

So let’s do it.

conf.level <- 0.95

alpha <- 1 - conf.level

class(modmat)

[1] "bigq"

modmat <- gmp::asNumeric(modmat)

class(modmat)

[1] "matrix" "array"

confun <- function(beta) {
stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

theta <- drop(modmat %*% cbind(beta))

return(- sum(log1p(exp(theta[y == 0])))

- sum(log1p(exp(- theta[y == 1]))) - log(alpha))

}

confun.jac <- function(beta) {
stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

theta <- drop(modmat %*% cbind(beta))

mu <- 1 / (1 + exp(- theta))

return(rbind(- as.numeric(y == 0) * mu +

as.numeric(y == 1) * (1 - mu)) %*% modmat)

}

lower <- rep(-Inf, length(y))

upper <- rep(Inf, length(y))

beta.start <- c(0, 0)

64

for (i in seq(along = y)) {

objfun <- function(beta) {
stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

theta <- drop(modmat %*% cbind(beta))

return(theta[i])

}

objfun.gradient <- function(beta)

modmat[i,] # want drop = TRUE

if (tangent.direction[i] > 0) {
need to find upper endpoint

aout <- auglag(beta.start, objfun,

objfun.gradient, confun, confun.jac,

control.outer = list(trace = FALSE),

control.optim = list(fnscale = -1))

stopifnot(aout$convergence == 0)

upper[i] <- aout$value

} else if (tangent.direction[i] < 0) {
need to find lower endpoint

aout <- auglag(beta.start, objfun,

objfun.gradient, confun, confun.jac,

control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

lower[i] <- aout$value

}
}

cbind(lower, upper)

lower upper

[1,] -Inf -0.9185667

[2,] -Inf -0.4303787

[3,] -Inf 0.2852351

[4,] -Inf 2.9441695

[5,] -2.9438807 Inf

65

[6,] -0.2852351 Inf

[7,] 0.4303787 Inf

[8,] 0.9185668 Inf

Seems to have worked!

A.6.3 For Pi

Let’s look at a plot, transforming these to probabilities.

errbar(x, y, 1 / (1 + exp(- upper)), 1 / (1 + exp(- lower)),

xlab = "x", ylab = "probability")

A.6.4 For Beta

We also want to try confidence intervals for β and τ to see how goofy
they are. First β. From the fact that the GDOR is

delta

(Intercept) x

-1.250 0.025

we see that β1 goes all the way to −∞ and β2 goes all the way to +∞. So
we are looking for an upper bound on β1 and a lower bound on β2.

aout <- auglag(beta.start, function(beta) beta[1],

function(beta) c(1, 0), confun, confun.jac,

control.outer = list(trace = FALSE),

control.optim = list(fnscale = -1))

stopifnot(aout$convergence == 0)

upper <- c(aout$value, Inf)

aout <- auglag(beta.start, function(beta) beta[2],

function(beta) c(0, 1), confun, confun.jac,

control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

lower <- c(-Inf, aout$value)

foo <- rbind(lower, upper)

colnames(foo) <- names(delta)

t(foo)

66

20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pr
ob

ab
ili

ty

Figure 1: Confidence intervals for probabilities, hollow circles are MLE.

67

lower upper

(Intercept) -Inf -1.34039

x 0.03348093 Inf

A.6.5 For Tau

Now for τ . The parameters τ and β are the same length but not in
the same vector space. They are in dual vector spaces: τ lives in the same
vector space as y, the sample space of the canonical statistic, and β lives in
the dual space of that, the vector space containing the canonical parameter
space. So the GDOR does not tell us which way τ goes to the boundary, it
says when it is on the boundary: recall that 〈Y − y, δ〉 ≤ 0 almost surely, so
Y is close to the boundary when 〈Y − y, δ〉 is small.

That says the confidence region for τ lies in a half space, but it doesn’t
say that confidence intervals are one-sided.

Now the MLE and canonical sufficient statistic are

tau.hat <- drop(crossprod(modmat, y))

names(tau.hat) <- names(delta)

tau.hat

(Intercept) x

4 300

We know from theory that the derivative of τ with respect to β is the
Fisher information matrix for β, which is the variance of Y .

So let’s try that

tau <- function(beta) {
stopifnot(is.numeric(beta))

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

theta <- drop(modmat %*% beta)

mu <- 1 / (1 + exp(- theta))

drop(crossprod(modmat, mu))

}

tau.jac <- function(beta) {
stopifnot(is.numeric(beta))

68

stopifnot(is.finite(beta))

stopifnot(length(beta) == ncol(modmat))

theta <- drop(modmat %*% beta)

mu <- 1 / (1 + exp(- theta))

fisher <- diag(mu * (1 - mu))

t(modmat) %*% fisher %*% modmat

}

tau(beta.start)

[1] 4 200

tau.jac(beta.start)

[,1] [,2]

[1,] 2 100

[2,] 100 6500

jacobian(tau, beta.start)

[,1] [,2]

[1,] 2 100

[2,] 100 6500

Looks good. So let’s try intervals.

tau[1] lower

aout <- auglag(beta.start, function(beta) tau(beta)[1],

function(beta) tau.jac(beta)[1,], confun, confun.jac,

control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

lower <- aout$value

tau[1] upper

aout <- auglag(beta.start, function(beta) tau(beta)[1],

function(beta) tau.jac(beta)[1,], confun, confun.jac,

control.outer = list(trace = FALSE),

control.optim = list(fnscale = -1))

stopifnot(aout$convergence == 0)

upper <- aout$value

tau[2] lower

69

aout <- auglag(beta.start, function(beta) tau(beta)[2],

function(beta) tau.jac(beta)[2,], confun, confun.jac,

control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

lower <- c(lower, aout$value)

tau[2] upper

aout <- auglag(beta.start, function(beta) tau(beta)[2],

function(beta) tau.jac(beta)[2,], confun, confun.jac,

control.outer = list(trace = FALSE),

control.optim = list(fnscale = -1))

stopifnot(aout$convergence == 0)

upper <- c(upper, aout$value)

foo <- cbind(lower, upper)

rownames(foo) <- names(delta)

foo

lower upper

(Intercept) 2.21829 5.78171

x 171.64508 300.00000

tau.hat

(Intercept) x

4 300

From previous experience (Stat 5421 Notes) we know this is wrong. Both
intervals must be two-sided. So either there is a bug in the code above or
the optimizer got confused by some local optimum or something of the sort.

Let’s try something else. Let us sample a random distribution of points
uniformly distributed on the confidence region for τ (Section 13.9 above).

Find a feasible starting point

beta.start <- c(0, 0)

for (i in 1:100) if (confun(beta.start + i * delta) > 0) break

i

[1] 2

beta.start <- beta.start + i * delta

70

https://www.stat.umn.edu/geyer/5421/slides/infinity.pdf#page=8

beta.start

(Intercept) x

-2.50 0.05

confun(beta.start)

[1] 0.7643724

jeff <- function(beta) {
if (confun(beta) <= 0) return(-Inf)

fisher <- tau.jac(beta)

as.vector(determinant(fisher)$modulus)

}

jeff(beta.start)

[1] 7.011383

mout <- metrop(jeff, beta.start, nbatch = 1000,

scale = 1 / delta)

mout$accept; mout$time

[1] 0

user system elapsed

0.019 0.000 0.019

mout <- metrop(mout, scale = 1e-2 / delta, nspac = 10)

mout$accept; mout$time

[1] 0.0356

user system elapsed

0.188 0.000 0.187

mout <- metrop(mout, scale = 1e-3 / delta)

mout$accept; mout$time

[1] 0.3512

user system elapsed

0.347 0.000 0.347

71

efficiency <- function(x) {
foo <- initseq(x)

foo$var.con / foo$gamma0

}
apply(mout$batch, 2, efficiency)

[1] 229.612602 1.092284

mout <- metrop(mout, scale = 2e-3 / delta, nspac = 100)

mout$accept; mout$time

[1] 0.1907

user system elapsed

2.547 0.004 2.552

apply(mout$batch, 2, efficiency)

[1] 234.353085 1.251074

Good enough. This gives crude confidence intervals for τ .

taus <- apply(mout$batch, 1, tau)

dim(taus)

[1] 2 1000

foo <- apply(taus, 1, range)

rownames(foo) <- c("lower", "upper")

colnames(foo) <- names(delta)

t(foo)

lower upper

(Intercept) 2.84174 5.774812

x 192.19740 353.394234

Already we can see that the upper bound of the interval for τ2 is higher
than the MLE, which we did not have before.

Return to optimization, hoping we do better with better starting points.

72

beta.start.save <- beta.start

i <- which(taus[,1] == min(taus[,1]))

beta.start <- mout$batch[i,]

tau[1] lower

aout <- auglag(beta.start, function(beta) tau(beta)[1],

function(beta) tau.jac(beta)[1,], confun, confun.jac,

control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

lower <- aout$value

tau[1] upper

i <- which(taus[,1] == max(taus[,1]))

beta.start <- mout$batch[i,]

aout <- auglag(beta.start, function(beta) tau(beta)[1],

function(beta) tau.jac(beta)[1,], confun, confun.jac,

control.outer = list(trace = FALSE),

control.optim = list(fnscale = -1))

stopifnot(aout$convergence == 0)

upper <- aout$value

tau[2] lower

i <- which(taus[,2] == min(taus[,2]))

beta.start <- mout$batch[i,]

aout <- auglag(beta.start, function(beta) tau(beta)[2],

function(beta) tau.jac(beta)[2,], confun, confun.jac,

control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

lower <- c(lower, aout$value)

tau[2] upper

i <- which(taus[,2] == max(taus[,2]))

beta.start <- mout$batch[i,]

aout <- auglag(beta.start, function(beta) tau(beta)[2],

function(beta) tau.jac(beta)[2,], confun, confun.jac,

control.outer = list(trace = FALSE),

control.optim = list(fnscale = -1))

stopifnot(aout$convergence == 0)

upper <- c(upper, aout$value)

foo <- cbind(lower, upper)

rownames(foo) <- names(delta)

foo

73

lower upper

(Intercept) 2.21829 5.78171

x 171.64508 354.76900

tau.hat

(Intercept) x

4 300

A.6.6 For Linear Function of Tau

One last confidence interval, which shows that we really do need to allow
arbitrary linear functions of parameters, at least.

sum(tau.hat * delta)

[1] 2.5

This is the maximum possible value of 〈τ, δ〉. What is the confidence
interval for it?

aout <- auglag(beta.start.save,

function(beta) sum(tau(beta) * delta),

function(beta) drop(tau.jac(beta) %*% delta),

confun, confun.jac,

control.outer = list(trace = FALSE))

stopifnot(aout$convergence == 0)

aout$value

[1] 1.135503

just check that this is OK

confun(aout$par)

[1] -4.864609e-08

sum(tau(aout$par) * delta)

[1] 1.135503

74

Of course, since the length of a direction of recession is irrelevant (only
the direction matters), this is hard to interpret. For that matter, any invert-
ible affine function of the canonical sufficient statistic is another canonical
sufficient statistic, so that makes this bound even harder to interpret. So
let us get some other values to compare it with.

sum(tau.hat * delta)

[1] 2.5

sum(crossprod(modmat, - y) * delta)

[1] -2.5

sum(crossprod(modmat, rep(0.5, length(y))) * delta)

[1] 0

So our lower bound is about halfway between the maximum value (the
upper endpoint of the confidence interval) and zero, which is the value of
this parameter for the model that does not use x and predicts 0.5 for all
success probabilities.

B Quasi-Complete Separation Example of Agresti

B.1 Data

Agresti (2013, Section 6.5.1) also discusses another toy problem, also a
simple logistic regression.

x <- c(x, 50, 50)

y <- c(y, 0, 1)

B.2 First Linear Program

modmat <- sparse.model.matrix(y ~ x)

tangent.direction <- as.numeric(y == 0) - as.numeric(y == 1)

75

objgrd <- rbind(tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

lp <- initProbGLPK()

addRowsGLPK(lp, nrow(modmat))

[1] 1

addColsGLPK(lp, ncol(modmat))

[1] 1

setSimplexParmGLPK(MSG_LEV, GLP_MSG_OFF) # STFU

row bounds

lower.bounds <- pmin(- tangent.direction, 0)

upper.bounds <- pmax(- tangent.direction, 0)

idx <- which(lower.bounds == upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_FX, length(idx)))

idx <- which(lower.bounds != upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_DB, length(idx)))

col bounds: free

idx <- 1:ncol(modmat)

setColsBndsGLPK(lp, idx, rep(-Inf, length(idx)),

rep(Inf, length(idx)), rep(GLP_FR, length(idx)))

objective function

setObjDirGLPK(lp, GLP_MIN)

idx <- which(objgrd != 0)

setObjCoefsGLPK(lp, idx, objgrd[idx])

constraint matrix (modmat)

foompter <- mat2triplet(modmat)

loadMatrixGLPK(lp, nnzero(modmat), foompter$i, foompter$j, foompter$x)

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

76

[1] TRUE

getObjValGLPK(lp)

[1] -5

Because the optimal value is negative, the MLE does not exist in the
OM, and the solution is a DOR.

delta <- getColsPrimGLPK(lp)

eta <- getRowsPrimGLPK(lp)

names(delta) <- colnames(modmat)

names(eta) <- x

delta

(Intercept) x

-1.250 0.025

eta

10 20 30 40 60 70 80 90 50

-1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00 0.00

50

0.00

all(eta * tangent.direction <= 0)

[1] TRUE

all(tangent.direction != 0 | eta == 0)

[1] TRUE

B.3 Second Linear Program

Now we have two components of η that we cannot tell whether they are
zero or not.

77

eta[abs(eta) < 0.001]

50 50

0 0

Our linear programming software says exactly zero, but maybe that is
inaccuracy of computer arithmetic. Thus we are not even sure what a DOR
for this problem is, at least not yet.

Hence we do need to do another linear program.

is.unknown <- abs(eta) < 0.001

objgrd <- rbind(is.unknown * tangent.direction) %*% modmat

objgrd

1 x 2 Matrix of class "dgeMatrix"

(Intercept) x

[1,] 0 0

We follow the hint in Section 8.6.2 above that if the objective function
is the zero function, then the optimal value can only be zero, so we are
done. The LCM only conditions the components of the response vector
corresponding to x 6= 50 to equal their observed values. The components of
the response vector corresponding to x = 50 stay random in the LCM.

B.4 Limiting Conditional Model

Fit the LCM.

gout <- glm(y ~ x, family = binomial, subset = is.unknown)

cout <- summary(gout)$coef

coefs <- matrix(NA_real_, ncol(modmat), ncol(cout))

coefs[colnames(modmat) %in% rownames(cout),] <- cout

coefs <- cbind(coefs[, 1], delta, coefs[, -1])

rownames(coefs) <- colnames(modmat)

colnames(coefs) <- c("Estimate", "GDOR", "Std. Error", "z value", "Pr(>|z|)")

printCoefmat(coefs)

Estimate GDOR Std. Error z value Pr(>|z|)

(Intercept) 4.7103e-16 -1.2500e+00 1.4142e+00 0 1

x NA 2.5000e-02 NA NA NA

78

Again, this may not be very helpful to users. More useful is the infor-
mation that the LCM conditions the following components of the response
vector to be equal to their observed values

! is.unknown

10 20 30 40 60 70 80 90 50

TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE FALSE

50

FALSE

B.5 Clean Up

delProbGLPK(lp)

B.6 Proof Level 1

eta

10 20 30 40 60 70 80 90 50

-1.00 -0.75 -0.50 -0.25 0.25 0.50 0.75 1.00 0.00

50

0.00

Because we are unsure about which components of eta are zero, we do
eta exactly using the method of Section 8.6.1 above. We suspect that the
zero components of eta are

is.zero <- zapsmall(eta) == 0

is.zero

10 20 30 40 60 70 80 90 50

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE

50

TRUE

Thus the matrix Z in the linear equations (16) is

79

z <- modmat[is.zero, , drop = FALSE]

z <- as(z, "matrix")

z <- gmp::as.bigq(z)

z

Big Rational ('bigq') 2 x 2 matrix:

[,1] [,2]

[1,] 1 50

[2,] 1 50

So because we have integer-valued covariates, we have an exact Z matrix
and this method will work. The γ in (16) which was computed using inexact
arithmetic is

gamma <- gmp::as.bigq(delta)

gamma

Big Rational ('bigq') object of length 2:

[1] -5/4

[2] 3602879701896397/144115188075855872

That this is not ”simple” is the whole problem we are working on.
The variables in the linear equations (16) are x and λ. We put x first

and then λ in the state vector. Let us rewrite (16) as one equation with
partitioned matrices (

I ZT

Z 0

)(
x
λ

)
=

(
γ
0

)
where I is the identity matrix and 0 is the zero matrix of appropriate di-
mensions.

Do it.

a <- cbind2(diag(length(gamma)), t(z))

a <- rbind2(a, cbind2(z, 0 * diag(nrow(z))))

a

Big Rational ('bigq') 4 x 4 matrix:

[,1] [,2] [,3] [,4]

[1,] 1 0 1 1

[2,] 0 1 50 50

[3,] 1 50 0 0

80

[4,] 1 50 0 0

work around bug (reported) in R package gmp

b <- c(delta, rep(0, nrow(z)))

b <- gmp::as.bigq(b)

b

Big Rational ('bigq') object of length 4:

[1] -5/4

[2] 3602879701896397/144115188075855872

[3] 0

[4] 0

x <- solve(a, b)

Error in solve.bigq(a, b): System is singular

Yes, of course. We have the same linear constraint on x twice. So our Z
should have only one row, and there should be only one Lagrange multiplier.

z <- z[1, , drop = FALSE]

z

Big Rational ('bigq') 1 x 2 matrix:

[,1] [,2]

[1,] 1 50

a <- cbind2(diag(length(gamma)), t(z))

a <- rbind2(a, cbind2(z, 0 * diag(nrow(z))))

a

Big Rational ('bigq') 3 x 3 matrix:

[,1] [,2] [,3]

[1,] 1 0 1

[2,] 0 1 50

[3,] 1 50 0

b <- c(delta, rep(0, nrow(z)))

b <- gmp::as.bigq(b)

b

81

Big Rational ('bigq') object of length 3:

[1] -5/4

[2] 3602879701896397/144115188075855872

[3] 0

delta <- solve(a, b)

delta <- delta[seq(along = gamma)]

delta

Big Rational ('bigq') object of length 2:

[1] -225270053361072209925/180216042688857767936

[2] 9010802134442888397/360432085377715535872

modmat <- as(modmat, "matrix")

modmat <- gmp::as.bigq(modmat)

modmat

Big Rational ('bigq') 10 x 2 matrix:

[,1] [,2]

[1,] 1 10

[2,] 1 20

[3,] 1 30

[4,] 1 40

[5,] 1 60

[6,] 1 70

[7,] 1 80

[8,] 1 90

[9,] 1 50

[10,] 1 50

eta <- gmp::`%*%`(modmat, delta)

eta

Big Rational ('bigq') 10 x 1 matrix:

[,1]

[1,] -45054010672214441985/45054010672214441984

[2,] -135162032016643325955/180216042688857767936

[3,] -45054010672214441985/90108021344428883968

[4,] -45054010672214441985/180216042688857767936

[5,] 45054010672214441985/180216042688857767936

82

[6,] 45054010672214441985/90108021344428883968

[7,] 135162032016643325955/180216042688857767936

[8,] 45054010672214441985/45054010672214441984

[9,] 0

[10,] 0

all(eta * tangent.direction <= 0)

[1] TRUE

all(tangent.direction != 0 | eta == 0)

[1] TRUE

Since this eta has the correct signs, we have proved the delta it came
from is a DOR. Hence the MLE for the OM does not exist.

We could also get a nicer DOR by just guessing.

delta <- gmp::asNumeric(delta)

delta

[1] -1.250 0.025

delta <- delta / min(abs(delta))

delta

[1] -50 1

delta <- round(delta)

modmat <- gmp::asNumeric(modmat)

drop(modmat %*% delta)

[1] -40 -30 -20 -10 10 20 30 40 0 0

But just guessing is not a method guaranteed to work.

B.7 Proof Level 2

Now we want to redo the last linear program in exact rational arithmetic
using R function lpcdd in R package rcdd as suggested in Section 8.6.2
above. From (6) we see the objective function for this program is

83

objgrd <- rbind(is.unknown * tangent.direction) %*% modmat

objgrd

[,1] [,2]

[1,] 0 0

We don’t have to go any farther. Obviously any linear program that has
a solution and has objective function that is the zero function has optimal
value zero (if the feasible region is nonempty, and we know it is nonempty
for all the linear programs in this document, then any feasible point is a
solution).

C Clinical Trial Example of Agresti

C.1 Data

Agresti (2013, Section 6.5.2, Table 6.11) gives the following data.

center <- rep(1:5, each = 2)

center <- as.factor(center)

treatment <- rep(c("active_drug", "placebo"), times = 5)

success <- c(0, 0, 1, 0, 0, 0, 6, 2, 5, 2)

failure <- c(5, 9, 12, 10, 7, 5, 3, 6, 9, 12)

y <- success

n <- success + failure

C.2 First Linear Program

modmat <- sparse.model.matrix(~ center + treatment)

tangent.direction <- as.numeric(y == 0) - as.numeric(y == n)

objgrd <- rbind(tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

lp <- initProbGLPK()

addRowsGLPK(lp, nrow(modmat))

84

[1] 1

addColsGLPK(lp, ncol(modmat))

[1] 1

setSimplexParmGLPK(MSG_LEV, GLP_MSG_OFF) # STFU

row bounds

lower.bounds <- pmin(- tangent.direction, 0)

upper.bounds <- pmax(- tangent.direction, 0)

idx <- which(lower.bounds == upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_FX, length(idx)))

idx <- which(lower.bounds != upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_DB, length(idx)))

col bounds: free

idx <- 1:ncol(modmat)

setColsBndsGLPK(lp, idx, rep(-Inf, length(idx)),

rep(Inf, length(idx)), rep(GLP_FR, length(idx)))

objective function

setObjDirGLPK(lp, GLP_MIN)

idx <- which(objgrd != 0)

setObjCoefsGLPK(lp, idx, objgrd[idx])

constraint matrix (modmat)

foompter <- mat2triplet(modmat)

loadMatrixGLPK(lp, nnzero(modmat), foompter$i, foompter$j, foompter$x)

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] -4

85

Because the optimal value is negative, the MLE does not exist in the
OM, and the solution is a DOR.

delta <- getColsPrimGLPK(lp)

eta <- getRowsPrimGLPK(lp)

names(delta) <- colnames(modmat)

delta

(Intercept) center2 center3

-1 1 0

center4 center5 treatmentplacebo

1 1 0

eta

[1] -1 -1 0 0 -1 -1 0 0 0 0

all(eta * tangent.direction <= 0)

[1] TRUE

all(tangent.direction != 0 | eta == 0)

[1] TRUE

C.3 Second Linear Program

We are not done because not all components of η that can be nonzero
are.

eta

[1] -1 -1 0 0 -1 -1 0 0 0 0

tangent.direction

[1] 1 1 0 1 1 1 0 0 0 0

So we do another linear program.

86

is.unknown <- abs(eta) < 0.001

objgrd <- rbind(is.unknown * tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

idx <- 1:length(objgrd)

setObjCoefsGLPK(lp, idx, objgrd)

lower.bounds[(! is.unknown) & (y == 0)] <- -Inf

upper.bounds[(! is.unknown) & (y == n)] <- Inf

idx <- which(is.infinite(lower.bounds))

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_UP, length(idx)))

idx <- which(is.infinite(upper.bounds))

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_LO, length(idx)))

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] 0

So, because the optimal value is zero, we are done. The solution we
found in the first linear program is a GDOR.

C.4 Limiting Conditional Model

Fit the LCM

gout <- glm(cbind(success, failure) ~ center + treatment,

family = binomial, subset = abs(eta) < 0.001)

cout <- summary(gout)$coef

coefs <- matrix(NA_real_, ncol(modmat), ncol(cout))

coefs[colnames(modmat) %in% rownames(cout),] <- cout

87

coefs <- cbind(coefs[, 1], zapsmall(delta), coefs[, -1])

rownames(coefs) <- colnames(modmat)

colnames(coefs) <- c("Estimate", "GDOR", "Std. Error", "z value", "Pr(>|z|)")

printCoefmat(coefs)

Estimate GDOR Std. Error z value Pr(>|z|)

(Intercept) -2.65654 -1.00000 1.03604 -2.5641 0.01034 *

center2 NA 1.00000 NA NA NA

center3 NA 0.00000 NA NA NA

center4 3.24335 1.00000 1.17197 2.7674 0.00565 **

center5 2.18022 1.00000 1.13273 1.9247 0.05426 .

treatmentplacebo -1.54600 0.00000 0.70165 -2.2034 0.02757 *

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

So this says we don’t really have a problem from the MLE not existing
in the OM. Despite some centers not contributing information to the conclu-
sion, we still seem to have a (somewhat) statistically significant treatment
effect.

If we look at the saturated model statistics and parameters we get

beta <- coefs[, "Estimate"]

beta[is.na(beta)] <- 0

theta <- modmat %*% beta

theta <- as(theta, "numeric")

theta

[1] -2.6565436 -4.2025399 -2.6565436 -4.2025399

[5] -2.6565436 -4.2025399 0.5868032 -0.9591931

[9] -0.4763235 -2.0223197

eta

[1] -1 -1 0 0 -1 -1 0 0 0 0

pi <- 1 / (1 + exp(- theta))

pi[eta < 0] <- 0

pi[eta > 0] <- 1

pi

88

[1] 0.00000000 0.00000000 0.06558684 0.01473711

[5] 0.00000000 0.00000000 0.64263131 0.27703978

[9] 0.38312066 0.11687934

print(data.frame(success, failure, treatment, center, theta, eta, pi),

digits = 2)

success failure treatment center theta eta pi

1 0 5 active_drug 1 -2.66 -1 0.000

2 0 9 placebo 1 -4.20 -1 0.000

3 1 12 active_drug 2 -2.66 0 0.066

4 0 10 placebo 2 -4.20 0 0.015

5 0 7 active_drug 3 -2.66 -1 0.000

6 0 5 placebo 3 -4.20 -1 0.000

7 6 3 active_drug 4 0.59 0 0.643

8 2 6 placebo 4 -0.96 0 0.277

9 5 9 active_drug 5 -0.48 0 0.383

10 2 12 placebo 5 -2.02 0 0.117

Right! The LCM just ignores the data for centers 1 and 3 where there
were no successes in either treatment group. If we wanted a confidence
interval for the treatment effect that uses the data for all centers, Geyer
(2009) has methods for that. Eventually we need to implement them for
this package. But the inference made above, which ignores centers 1 and
3 is actually valid (not derived by data snooping, but rather by the notion
that there should be center effects).

C.5 Clean Up

delProbGLPK(lp)

D A Product Multinomial Example

D.1 Data

Not having a handy multinomial example exhibiting directions of reces-
sion, we make one up. This is just like the example of Section A except we
make the response multinomial rather than binomial.

89

x <- seq(10, 90, 10)

y <- rep(c("red", "green", "blue"), each = 3)

y <- factor(y, levels = c("red", "green", "blue"))

data.frame(x, y)

x y

1 10 red

2 20 red

3 30 red

4 40 green

5 50 green

6 60 green

7 70 blue

8 80 blue

9 90 blue

D.2 Model Matrices and Response Vector

As in Section A we start with the model matrix that goes with the
formula ~ x

modmat <- model.matrix(~ x)

modmat

(Intercept) x

1 1 10

2 1 20

3 1 30

4 1 40

5 1 50

6 1 60

7 1 70

8 1 80

9 1 90

attr(,"assign")

[1] 0 1

But this is not the model matrix we use to make this equivalent to a
Poisson sampling model. For that we start with a list

90

foo <- list(modmat, modmat, modmat)

for (i in seq(along = foo)) {
n <- colnames(modmat)

n <- paste(n, levels(y)[i], sep = ":y")

n <- sub("(Intercept):", "", n, fixed = TRUE)

colnames(foo[[i]]) <- n

}
foo

[[1]]

yred x:yred

1 1 10

2 1 20

3 1 30

4 1 40

5 1 50

6 1 60

7 1 70

8 1 80

9 1 90

attr(,"assign")

[1] 0 1

##

[[2]]

ygreen x:ygreen

1 1 10

2 1 20

3 1 30

4 1 40

5 1 50

6 1 60

7 1 70

8 1 80

9 1 90

attr(,"assign")

[1] 0 1

##

[[3]]

yblue x:yblue

91

1 1 10

2 1 20

3 1 30

4 1 40

5 1 50

6 1 60

7 1 70

8 1 80

9 1 90

attr(,"assign")

[1] 0 1

modmat <- bdiag(foo)

colnames(modmat) <- sapply(foo, colnames)

modmat

27 x 6 sparse Matrix of class "dgCMatrix"

yred x:yred ygreen x:ygreen yblue x:yblue

[1,] 1 10

[2,] 1 20

[3,] 1 30

[4,] 1 40

[5,] 1 50

[6,] 1 60

[7,] 1 70

[8,] 1 80

[9,] 1 90

[10,] . . 1 10 . .

[11,] . . 1 20 . .

[12,] . . 1 30 . .

[13,] . . 1 40 . .

[14,] . . 1 50 . .

[15,] . . 1 60 . .

[16,] . . 1 70 . .

[17,] . . 1 80 . .

[18,] . . 1 90 . .

[19,] 1 10

[20,] 1 20

[21,] 1 30

92

[22,] 1 40

[23,] 1 50

[24,] 1 60

[25,] 1 70

[26,] 1 80

[27,] 1 90

Now we have to turn factor response into matrix response and then
vector response.

y <- model.matrix(~ 0 + y)

y

yred ygreen yblue

1 1 0 0

2 1 0 0

3 1 0 0

4 0 1 0

5 0 1 0

6 0 1 0

7 0 0 1

8 0 0 1

9 0 0 1

attr(,"assign")

[1] 1 1 1

attr(,"contrasts")

attr(,"contrasts")$y

[1] "contr.treatment"

This is the response matrix. The strata are the row names which we
have to make up.

strata <- paste0("row", row(y))

strata

[1] "row1" "row2" "row3" "row4" "row5" "row6" "row7"

[8] "row8" "row9" "row1" "row2" "row3" "row4" "row5"

[15] "row6" "row7" "row8" "row9" "row1" "row2" "row3"

[22] "row4" "row5" "row6" "row7" "row8" "row9"

93

Now we turn the response matrix into a vector and the strata into a
model matrix.

y.matrix <- as.matrix(y) # save for future reference

y <- as.vector(y)

modmat.strata <- sparse.model.matrix(~ 0 + strata)

colnames(modmat.strata) <- sub("strata", "", colnames(modmat.strata))

modmat.strata

27 x 9 sparse Matrix of class "dgCMatrix"

row1 row2 row3 row4 row5 row6 row7 row8 row9

1 1

2 . 1

3 . . 1

4 . . . 1

5 1

6 1 . . .

7 1 . .

8 1 .

9 1

10 1

11 . 1

12 . . 1

13 . . . 1

14 1

15 1 . . .

16 1 . .

17 1 .

18 1

19 1

20 . 1

21 . . 1

22 . . . 1

23 1

24 1 . . .

25 1 . .

26 1 .

27 1

Now we put this together with the other model matrix and run Algo-

94

rithm 1.

modmat.covariates <- modmat

modmat <- cbind2(modmat.strata, modmat.covariates)

modmat

27 x 15 sparse Matrix of class "dgCMatrix"

[[suppressing 15 column names ’row1’, ’row2’, ’row3’ ...]]

##

1 1 1 10

2 . 1 1 20

3 . . 1 1 30

4 . . . 1 1 40

5 1 1 50

6 1 . . . 1 60

7 1 . . 1 70

8 1 . 1 80

9 1 1 90

10 1 1 10 . .

11 . 1 1 20 . .

12 . . 1 1 30 . .

13 . . . 1 1 40 . .

14 1 1 50 . .

15 1 1 60 . .

16 1 1 70 . .

17 1 . . . 1 80 . .

18 1 . . 1 90 . .

19 1 1 10

20 . 1 1 20

21 . . 1 1 30

22 . . . 1 1 40

23 1 1 50

24 1 1 60

25 1 1 70

26 1 1 80

27 1 1 90

95

D.3 First Linear Program

Here we start being more careful to follow Algorithm 1 exactly. (Of
course, we were following Algorithm 2 before, but we were not using all of
the same terminology.)

tangent.direction <- as.numeric(y == 0)

i.double.star <- rep(FALSE, length(y))

i.triple.star <- y == 0

gamma <- rep(0, ncol(modmat))

objgrd <- rbind(i.triple.star * tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

lp <- initProbGLPK()

addRowsGLPK(lp, nrow(modmat))

[1] 1

addColsGLPK(lp, ncol(modmat))

[1] 1

setSimplexParmGLPK(MSG_LEV, GLP_MSG_OFF) # STFU

row bounds

lower.bounds <- pmin(- tangent.direction, 0)

upper.bounds <- pmax(- tangent.direction, 0)

idx <- which(lower.bounds == upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_FX, length(idx)))

idx <- which(lower.bounds != upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_DB, length(idx)))

col bounds: free

idx <- 1:ncol(modmat)

setColsBndsGLPK(lp, idx, rep(-Inf, length(idx)),

rep(Inf, length(idx)), rep(GLP_FR, length(idx)))

objective function

setObjDirGLPK(lp, GLP_MIN)

idx <- which(objgrd != 0)

96

setObjCoefsGLPK(lp, idx, objgrd[idx])

constraint matrix (modmat)

foompter <- mat2triplet(modmat)

loadMatrixGLPK(lp, nnzero(modmat), foompter$i, foompter$j, foompter$x)

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] -6.75

Because the optimal value is negative, the MLE does not exist in the
OM, and the solution is a DOR.

delta <- getColsPrimGLPK(lp)

eta <- getRowsPrimGLPK(lp)

names(delta) <- colnames(modmat)

gamma <- delta + gamma

delta

row1 row2 row3

-1.250000e-01 0.000000e+00 1.250000e-01

row4 row5 row6

1.250000e-01 1.250000e-01 1.250000e-01

row7 row8 row9

1.250000e-01 0.000000e+00 -1.250000e-01

yred x:yred ygreen

2.500000e-01 -1.250000e-02 -1.250000e-01

x:ygreen yblue x:yblue

4.163336e-18 -1.000000e+00 1.250000e-02

97

eta

[1] 0.000 0.000 0.000 -0.125 -0.250 -0.375 -0.500

[8] -0.750 -1.000 -0.250 -0.125 0.000 0.000 0.000

[15] 0.000 0.000 -0.125 -0.250 -1.000 -0.750 -0.500

[22] -0.375 -0.250 -0.125 0.000 0.000 0.000

max(eta)

[1] 0

i.double.star <- i.double.star | abs(eta) > 0.001

i.triple.star <- i.triple.star & (! i.double.star)

i.double.star

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

[9] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

[17] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[25] FALSE FALSE FALSE

i.triple.star

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[9] FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE

[17] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE

D.4 Second Linear Program

We are not done because the optimal value of the last linear program
done was not zero and I∗∗∗ is not the empty set. So we do another linear
program.

objgrd <- rbind(i.triple.star * tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

idx <- 1:length(objgrd)

setObjCoefsGLPK(lp, idx, objgrd)

lower.bounds[(! i.triple.star) & (y == 0)] <- -Inf

idx <- which(is.infinite(lower.bounds))

98

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_UP, length(idx)))

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] -2

Because the optimal value is negative we aren’t done yet.

delta <- getColsPrimGLPK(lp)

eta <- getRowsPrimGLPK(lp)

names(delta) <- colnames(modmat)

gamma <- delta + gamma

delta

row1 row2 row3

-1.000000e+00 0.000000e+00 1.000000e+00

row4 row5 row6

2.000000e+00 2.000000e+00 2.000000e+00

row7 row8 row9

1.000000e+00 0.000000e+00 -1.000000e+00

yred x:yred ygreen

2.000000e+00 -1.000000e-01 -2.000000e+00

x:ygreen yblue x:yblue

-1.850372e-17 -8.000000e+00 1.000000e-01

eta

[1] 0 0 0 0 -1 -2 -4 -6 -8 -3 -2 -1 0 0 0 -1 -2

99

[18] -3 -8 -6 -4 -2 -1 0 0 0 0

max(eta)

[1] 0

i.double.star <- i.double.star | abs(eta) > 0.001

i.triple.star <- i.triple.star & (! i.double.star)

i.double.star

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

[9] TRUE TRUE TRUE TRUE FALSE FALSE FALSE TRUE

[17] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE

[25] FALSE FALSE FALSE

i.triple.star

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[9] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[17] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[25] FALSE FALSE FALSE

all(! i.triple.star)

[1] TRUE

Now we quit because I∗∗∗ is empty, so γ is a GDOR and I∗∗ is the index
set of the components of the response vector that are conditioned to be equal
to their observed values in the LCM.

D.5 Limiting Conditional Model

Because of the multinomial response, it is a bit confusing what we have
found. Let us put I∗∗ in matrix form (to compare with the “response ma-
trix”).

matrix(i.double.star, nrow = nrow(y.matrix), dimnames = dimnames(y.matrix))

yred ygreen yblue

1 FALSE TRUE TRUE

100

2 FALSE TRUE TRUE

3 FALSE TRUE TRUE

4 TRUE FALSE TRUE

5 TRUE FALSE TRUE

6 TRUE FALSE TRUE

7 TRUE TRUE FALSE

8 TRUE TRUE FALSE

9 TRUE TRUE FALSE

So we see that, despite η not having all components nonzero, the LCM is
completely degenerate. As Theorem 15 says, if the matrix above has all but
one component in a row TRUE (meaning the corresponding component of the
response is conditioned in the LCM to be zero), then the other component
in the row must be conditioned to be equal to its value too (which is nA for
row A, also called stratum A).

We do report the summary

coefs <- cbind(NA, gamma, NA, NA, NA)

rownames(coefs) <- colnames(modmat)

colnames(coefs) <- c("Estimate", "GDOR", "Std. Error", "z value", "Pr(>|z|)")

printCoefmat(coefs)

Estimate GDOR Std. Error z value

row1 NA -1.125e+00 NA NA

row2 NA 0.000e+00 NA NA

row3 NA 1.125e+00 NA NA

row4 NA 2.125e+00 NA NA

row5 NA 2.125e+00 NA NA

row6 NA 2.125e+00 NA NA

row7 NA 1.125e+00 NA NA

row8 NA 0.000e+00 NA NA

row9 NA -1.125e+00 NA NA

yred NA 2.250e+00 NA NA

x:yred NA -1.125e-01 NA NA

ygreen NA -2.125e+00 NA NA

x:ygreen NA -1.434e-17 NA NA

yblue NA -9.000e+00 NA NA

x:yblue NA 1.125e-01 NA NA

Pr(>|z|)

row1 NA

101

row2 NA

row3 NA

row4 NA

row5 NA

row6 NA

row7 NA

row8 NA

row9 NA

yred NA

x:yred NA

ygreen NA

x:ygreen NA

yblue NA

x:yblue NA

Except this is wrong. Columns of modmat.strata are DOC of the OM
and we should not report either their coefficients (if the LCM weren’t com-
pletely degenerate) or the corresponding components of the GDOR.

coefs <- coefs[- seq(1, ncol(modmat.strata)),]

printCoefmat(zapsmall(coefs))

Estimate GDOR Std. Error z value Pr(>|z|)

yred NA 2.2500 NA NA NA

x:yred NA -0.1125 NA NA NA

ygreen NA -2.1250 NA NA NA

x:ygreen NA 0.0000 NA NA NA

yblue NA -9.0000 NA NA NA

x:yblue NA 0.1125 NA NA NA

D.6 Clean Up

delProbGLPK(lp)

102

E Another Product Multinomial Example

E.1 Data

Having done one product multinomial example with a completely de-
generate LCM, we do another with an only partially degenerate LCM. We
use the same x and the same formula as in the preceding example. We just
change y.

y <- rep(c("red", "green", "blue"), each = 3)

y[6] <- "blue"

y[7] <- "green"

y <- factor(y, levels = c("red", "green", "blue"))

data.frame(x, y)

x y

1 10 red

2 20 red

3 30 red

4 40 green

5 50 green

6 60 blue

7 70 green

8 80 blue

9 90 blue

E.2 Model Matrices and Response Vector

As we said above, we do not need to redo the model matrices. But we
have to turn factor response into matrix response and then vector response.

y <- model.matrix(~ 0 + y)

y.matrix <- as.matrix(y) # save for future reference

y <- as.vector(y)

This is the response matrix. The strata are unchanged from the preced-
ing section.

103

E.3 First Linear Program

Very similar to the preceding example.

tangent.direction <- as.numeric(y == 0)

i.double.star <- rep(FALSE, length(y))

i.triple.star <- y == 0

gamma <- rep(0, ncol(modmat))

objgrd <- rbind(i.triple.star * tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

lp <- initProbGLPK()

addRowsGLPK(lp, nrow(modmat))

[1] 1

addColsGLPK(lp, ncol(modmat))

[1] 1

setSimplexParmGLPK(MSG_LEV, GLP_MSG_OFF) # STFU

row bounds

lower.bounds <- pmin(- tangent.direction, 0)

upper.bounds <- pmax(- tangent.direction, 0)

idx <- which(lower.bounds == upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_FX, length(idx)))

idx <- which(lower.bounds != upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_DB, length(idx)))

col bounds: free

idx <- 1:ncol(modmat)

setColsBndsGLPK(lp, idx, rep(-Inf, length(idx)),

rep(Inf, length(idx)), rep(GLP_FR, length(idx)))

objective function

setObjDirGLPK(lp, GLP_MIN)

idx <- which(objgrd != 0)

setObjCoefsGLPK(lp, idx, objgrd[idx])

constraint matrix (modmat)

104

foompter <- mat2triplet(modmat)

loadMatrixGLPK(lp, nnzero(modmat), foompter$i, foompter$j, foompter$x)

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] -5.4

Because the optimal value is negative, the MLE does not exist in the
OM, and the solution is a DOR.

delta <- getColsPrimGLPK(lp)

eta <- getRowsPrimGLPK(lp)

names(delta) <- colnames(modmat)

gamma <- delta + gamma

delta

row1 row2 row3 row4

-0.133333333 0.000000000 0.133333333 0.266666667

row5 row6 row7 row8

0.200000000 0.133333333 0.066666667 0.000000000

row9 yred x:yred ygreen

-0.066666667 0.266666667 -0.013333333 -0.533333333

x:ygreen yblue x:yblue

0.006666667 -0.533333333 0.006666667

eta

[1] 0.000000e+00 0.000000e+00 0.000000e+00

105

[4] 0.000000e+00 -2.000000e-01 -4.000000e-01

[7] -6.000000e-01 -8.000000e-01 -1.000000e+00

[10] -6.000000e-01 -4.000000e-01 -2.000000e-01

[13] 0.000000e+00 0.000000e+00 0.000000e+00

[16] 0.000000e+00 0.000000e+00 5.859510e-17

[19] -6.000000e-01 -4.000000e-01 -2.000000e-01

[22] 0.000000e+00 -5.551115e-17 0.000000e+00

[25] 0.000000e+00 0.000000e+00 0.000000e+00

max(eta)

[1] 5.85951e-17

i.double.star <- i.double.star | abs(eta) > 0.001

i.triple.star <- i.triple.star & (! i.double.star)

i.double.star

[1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

[9] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

[17] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE

[25] FALSE FALSE FALSE

i.triple.star

[1] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE

[9] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

[17] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE

[25] TRUE FALSE FALSE

E.4 Second Linear Program

We are not done because the optimal value of the last linear program
done was not zero and I∗∗∗ is not the empty set. So we do another linear
program.

objgrd <- rbind(i.triple.star * tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

idx <- 1:length(objgrd)

106

setObjCoefsGLPK(lp, idx, objgrd)

lower.bounds[(! i.triple.star) & (y == 0)] <- -Inf

idx <- which(is.infinite(lower.bounds))

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_UP, length(idx)))

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] -1

Because the optimal value is negative we aren’t done yet.

delta <- getColsPrimGLPK(lp)

eta <- getRowsPrimGLPK(lp)

names(delta) <- colnames(modmat)

gamma <- delta + gamma

delta

row1 row2 row3 row4

-0.83333333 0.00000000 0.83333333 0.66666667

row5 row6 row7 row8

0.50000000 0.33333333 0.16666667 0.00000000

row9 yred x:yred ygreen

-0.16666667 1.66666667 -0.08333333 -1.33333333

x:ygreen yblue x:yblue

0.01666667 -1.33333333 0.01666667

eta

107

[1] 0.000000e+00 0.000000e+00 0.000000e+00

[4] -1.000000e+00 -2.000000e+00 -3.000000e+00

[7] -4.000000e+00 -5.000000e+00 -6.000000e+00

[10] -2.000000e+00 -1.000000e+00 2.664535e-16

[13] 0.000000e+00 0.000000e+00 0.000000e+00

[16] 0.000000e+00 0.000000e+00 0.000000e+00

[19] -2.000000e+00 -1.000000e+00 0.000000e+00

[22] -1.110223e-16 -1.110223e-16 0.000000e+00

[25] 0.000000e+00 0.000000e+00 0.000000e+00

max(eta)

[1] 2.664535e-16

i.double.star <- i.double.star | eta < -0.001

i.triple.star <- i.triple.star & (! i.double.star)

i.double.star

[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

[9] TRUE TRUE TRUE TRUE FALSE FALSE FALSE FALSE

[17] FALSE FALSE TRUE TRUE TRUE FALSE FALSE FALSE

[25] FALSE FALSE FALSE

i.triple.star

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[9] FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE

[17] TRUE TRUE FALSE FALSE FALSE TRUE TRUE FALSE

[25] TRUE FALSE FALSE

E.5 Third Linear Program

We are not done because the optimal value of the last linear program
done was not zero and I∗∗∗ is not the empty set. So we do another linear
program.

objgrd <- rbind(i.triple.star * tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

108

idx <- 1:length(objgrd)

setObjCoefsGLPK(lp, idx, objgrd)

lower.bounds[(! i.triple.star) & (y == 0)] <- -Inf

idx <- which(is.infinite(lower.bounds))

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_UP, length(idx)))

do it

solveSimplexGLPK(lp)

[1] 0

have solution?

getPrimStatGLPK(lp) == GLP_FEAS

[1] TRUE

getObjValGLPK(lp)

[1] 0

And that does it. Optimal value zero means done!

E.6 Clean Up

delProbGLPK(lp)

E.7 Proof Level 1

eta <- modmat %*% gamma

eta <- as(eta, "numeric")

eta

[1] 0.000000e+00 2.220446e-16 4.440892e-16

[4] -1.000000e+00 -2.200000e+00 -3.400000e+00

[7] -4.600000e+00 -5.800000e+00 -7.000000e+00

109

[10] -2.600000e+00 -1.400000e+00 -2.000000e-01

[13] 1.110223e-16 0.000000e+00 4.440892e-16

[16] 2.220446e-16 2.220446e-16 0.000000e+00

[19] -2.600000e+00 -1.400000e+00 -2.000000e-01

[22] 1.110223e-16 0.000000e+00 4.440892e-16

[25] 2.220446e-16 2.220446e-16 0.000000e+00

Because we are unsure about which components of eta are zero, we do
eta exactly using the methods of Section 8.5 above. We suspect that the
zero components of eta are

is.zero <- zapsmall(eta) == 0

is.zero

[1] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

[9] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

[17] TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE

[25] TRUE TRUE TRUE

range(eta[is.zero])

[1] 0.000000e+00 4.440892e-16

range(eta[! is.zero])

[1] -7.0 -0.2

Looks like we have pretty clear separation, and we might hope that is
convincing enough. But hope isn’t proof. So on with the proof.

Thus the matrix Z in the linear equations (16) is

z <- modmat[is.zero, , drop = FALSE]

z

15 x 15 sparse Matrix of class "dgCMatrix"

[[suppressing 15 column names ’row1’, ’row2’, ’row3’ ...]]

##

1 1 1 10

2 . 1 1 20

110

3 . . 1 1 30

13 . . . 1 1 40 . .

14 1 1 50 . .

15 1 1 60 . .

16 1 1 70 . .

17 1 . . . 1 80 . .

18 1 . . 1 90 . .

22 . . . 1 1 40

23 1 1 50

24 1 1 60

25 1 1 70

26 1 1 80

27 1 1 90

We found doing this kind of proof before (Section B.6 above), that Z
had redundant rows. There it was trivial to see. There were two rows and
they were the same.

To see whether we have the same issue here (and elsewhere, as we shall
see when we come to fitting the LCM) we use R function redundant in R
package rcdd.

vrep <- makeV(lines = as.matrix(z))

rout <- redundant(vrep)

rout$new.position

[1] 1 2 3 4 5 6 7 8 9 10 11 0 0 0 0

z <- z[rout$new.position > 0, , drop = FALSE]

z

11 x 15 sparse Matrix of class "dgCMatrix"

[[suppressing 15 column names ’row1’, ’row2’, ’row3’ ...]]

##

1 1 1 10

2 . 1 1 20

3 . . 1 1 30

13 . . . 1 1 40 . .

14 1 1 50 . .

15 1 1 60 . .

111

16 1 1 70 . .

17 1 . . . 1 80 . .

18 1 . . 1 90 . .

22 . . . 1 1 40

23 1 1 50

So the last four rows of Z are redundant, and we got rid of them.

z <- as.matrix(z)

z <- gmp::as.bigq(z)

a <- cbind2(diag(ncol(z)), t(z))

a <- rbind2(a, cbind2(z, 0 * diag(nrow(z))))

dim(a)

[1] 26 26

b <- c(gamma, rep(0, nrow(z)))

b <- gmp::as.bigq(b)

length(b)

[1] 26

sout <- solve(a, b)

gamma <- sout[seq(along = gamma)]

gamma

Big Rational ('bigq') object of length 15:

[1] -34897492792568492453/36100854613001895936

[2] 797/36100854613001895936

[3] 11632497597522831349/12033618204333965312

[4] 1088098493010326751371/1165819813939636076544

[5] 816073869757745055571/1165819813939636076544

[6] 181349748835054453257/388606604646545358848

[7] 272024623252581663971/1165819813939636076544

[8] -31829/1165819813939636076544

[9] -90674874417527242543/388606604646545358848

[10] 23264995195045661901/12033618204333965312

[11] -3489749279256849325/36100854613001895936

[12] -725398995340217844857/388606604646545358848

[13] 6800615581314542395/291454953484909019136

[14] -725398995340217844857/388606604646545358848

[15] 6800615581314542395/291454953484909019136

112

modmat.gmp <- as(modmat, "matrix")

modmat.gmp <- gmp::as.bigq(modmat.gmp)

eta <- gmp::`%*%`(modmat.gmp, gamma)

all(eta * tangent.direction <= 0)

[1] TRUE

all(tangent.direction != 0 | eta == 0)

[1] TRUE

Since this eta has the correct signs, we have proved the gamma it came
from is a DOR. Hence the MLE for the OM does not exist.

E.8 Proof Level 2

Now we want to redo the last linear program in exact rational arithmetic
using R function lpcdd in R package rcdd as suggested in Section 8.5 above.
From (6) we see the objective function for this program is

objgrd <- colSums(modmat[y == 0 & is.zero, , drop = FALSE])

objgrd

row1 row2 row3 row4 row5 row6

0 0 0 1 1 1

row7 row8 row9 yred x:yred ygreen

1 1 1 0 0 3

x:ygreen yblue x:yblue

230 3 160

Unlike what happened in Section B.7 above, we cannot skip solving the
linear program because objgrd is the zero vector.

R function lpcdd in R package rcdd only wants constraints of the form
A1x ≤ b1 or A2x = b2. So we have to put the constraints of linear program-

113

ming problem (5) in that form.∑
j∈J

mijδj = 0, yi > 0

∑
j∈J

mijδj ≤ 0, yi = 0

−
∑
j∈J

mijδj ≤ 1, yi = 0 and η = 0

(the η = 0 in the last line refers to the exact η computed in the level one
proof).

modmat.rcdd <- as(modmat, "matrix")

modmat.rcdd <- d2q(modmat.rcdd)

foompter <- modmat.rcdd[y == 0, , drop = FALSE]

hrep <- makeH(foompter, rep(0, nrow(foompter)))

foompter <- modmat.rcdd[y == 0 & eta == 0, , drop = FALSE]

hrep <- addHin(qneg(foompter), rep(1, nrow(foompter)), hrep)

foompter <- modmat.rcdd[y != 0, , drop = FALSE]

hrep <- addHeq(foompter, rep(0, nrow(foompter)), hrep)

lout <- lpcdd(hrep, d2q(objgrd))

lout$solution.type

[1] "Optimal"

lout$optimal.value

[1] "0"

So that proves (a valid mathematical proof) that the DOR found in the
preceding section is a GDOR. Thus we use it henceforth.

gamma <- as(gamma, "numeric")

eta <- as(eta, "numeric")

gamma

[1] -9.666667e-01 2.207704e-17 9.666667e-01

[4] 9.333333e-01 7.000000e-01 4.666667e-01

114

[7] 2.333333e-01 -2.730182e-17 -2.333333e-01

[10] 1.933333e+00 -9.666667e-02 -1.866667e+00

[13] 2.333333e-02 -1.866667e+00 2.333333e-02

eta

[1] 0.0 0.0 0.0 -1.0 -2.2 -3.4 -4.6 -5.8 -7.0 -2.6

[11] -1.4 -0.2 0.0 0.0 0.0 0.0 0.0 0.0 -2.6 -1.4

[21] -0.2 0.0 0.0 0.0 0.0 0.0 0.0

E.9 Limiting Conditional Model

Because of the multinomial response, it is a bit confusing what we have
found. Let us put I∗∗ in matrix form (to compare with the “response ma-
trix”).

i.double.star <- eta < 0

matrix(i.double.star, nrow = nrow(y.matrix), dimnames = dimnames(y.matrix))

yred ygreen yblue

1 FALSE TRUE TRUE

2 FALSE TRUE TRUE

3 FALSE TRUE TRUE

4 TRUE FALSE FALSE

5 TRUE FALSE FALSE

6 TRUE FALSE FALSE

7 TRUE FALSE FALSE

8 TRUE FALSE FALSE

9 TRUE FALSE FALSE

As Theorem 15 says, if the matrix above has all but one component
in a row TRUE (meaning the corresponding component of the response is
conditioned in the LCM to be zero), then the other component in the row
must be conditioned to be equal to its value too (which is nA for row A, also
called stratum A).

Thus the first three rows say the multinomial distribution for that row
is completely degenerate: blue and green cannot occur and red must occur.

115

But the rest of the rows say the multinomial distribution for that row
is only partially degenerate: red cannot occur but either blue or green is
possible.

Thus we see that the LCM is not completely degenerate, only partially
degenerate.

It may seem like a lot of work to have gotten here when this result is
intuitively obvious (at least in hindsight). But in non-toy problems the
answer is far from intuitive, hence all the linear programming.

First we need to patch up the result above as described in Theorem 15.

is.free <- matrix(! i.double.star, nrow = nrow(y.matrix),

dimnames = dimnames(y.matrix))

is.free <- apply(is.free, 1, function(x) if (sum(x) == 1) FALSE & x else x)

is.free <- t(is.free)

is.free

yred ygreen yblue

1 FALSE FALSE FALSE

2 FALSE FALSE FALSE

3 FALSE FALSE FALSE

4 FALSE TRUE TRUE

5 FALSE TRUE TRUE

6 FALSE TRUE TRUE

7 FALSE TRUE TRUE

8 FALSE TRUE TRUE

9 FALSE TRUE TRUE

is.free <- as.vector(is.free)

Now is.free says which components of the response vector are “free”
(not conditioned to be equal to their observed values) in the LCM.

So we fit the LCM

modmat <- as.matrix(modmat)

modmat.lcm <- modmat[is.free, , drop = FALSE]

y.lcm <- y[is.free]

gout <- glm.fit(modmat.lcm, y.lcm, family = poisson())

coef(gout)

row1 row2 row3 row4

116

NA NA NA -3.08202063

row5 row6 row7 row8

-1.97106106 -1.04202207 -0.43500828 -0.15001968

row9 yred x:yred ygreen

-0.04695166 NA NA 7.89117931

x:ygreen yblue x:yblue

-0.12140276 NA NA

But we are not close to done because we finally have to deal with the
fact that our model is not Poisson but rather product multinomial. This
means two things.

� The regression coefficients with ‘row‘ in their names are not identifiable
for the product multinomial model. So we henceforth just ignore them.

� The standard errors we compute cannot come from R function glm.fit

because we lied to it and told it the model was poisson(). Thus we
have to compute standard errors by hand.

beta.lcm <- coef(gout)[- seq(1, ncol(modmat.strata))]

beta.lcm

yred x:yred ygreen x:ygreen yblue

NA NA 7.8911793 -0.1214028 NA

x:yblue

NA

gdor.lcm <- gamma[- seq(1, ncol(modmat.strata))]

gdor.lcm

[1] 1.93333333 -0.09666667 -1.86666667 0.02333333

[5] -1.86666667 0.02333333

mu <- y

mu[is.free] <- fitted(gout)

matrix(mu, nrow = nrow(y.matrix), dimnames = dimnames(y.matrix))

yred ygreen yblue

1 1 0.00000000 0.00000000

2 1 0.00000000 0.00000000

117

3 1 0.00000000 0.00000000

4 0 0.95413352 0.04586648

5 0 0.86069104 0.13930896

6 0 0.64725931 0.35274069

7 0 0.35274069 0.64725931

8 0 0.13930896 0.86069104

9 0 0.04586648 0.95413352

The last are the estimated success probabilities π̂ = µ̂ because the sample
size is one for each row.

Section 9 gives a formula for Fisher information for the saturated model.

fisher <- (Diagonal(x = mu) -

mu %*% t(mu)) * modmat.strata %*% t(modmat.strata)

Then Fisher information for the canonical affine submodel is

modmat.foo <- modmat.covariates[, ! is.na(beta.lcm), drop = FALSE]

fisher.lcm <- t(modmat.foo) %*% fisher %*% modmat.foo

fisher.lcm <- as.matrix(fisher.lcm)

And the standard errors are

fisher.lcm.inv <- solve(fisher.lcm)

se.lcm <- beta.lcm

se.lcm[! is.na(se.lcm)] <- sqrt(diag(fisher.lcm.inv))

coefs <- cbind(beta.lcm, gdor.lcm, se.lcm, beta.lcm / se.lcm, NA)

coefs[, 5] <- 2 * pnorm(- abs(coefs[, 4]))

colnames(coefs) <- c("Estimate", "GDOR", "Std. Error", "z value", "Pr(>|z|)")

printCoefmat(coefs)

Estimate GDOR Std. Error z value

yred NA 1.933333 NA NA

x:yred NA -0.096667 NA NA

ygreen 7.891179 -1.866667 6.038369 1.3068

x:ygreen -0.121403 0.023333 0.091259 -1.3303

yblue NA -1.866667 NA NA

x:yblue NA 0.023333 NA NA

118

Pr(>|z|)

yred NA

x:yred NA

ygreen 0.1913

x:ygreen 0.1834

yblue NA

x:yblue NA

No real surprises. As always, the GDOR for the submodel canonical
parameter is nearly impossible to interpret. We have to look at the corre-
sponding η to understand (which we already did).

The P -values say the coefficients in the LCM are not statistically signif-
icantly different from zero, that is, the null hypothesis that blue and green
do not depend on x and are 50-50 for all rows cannot be rejected with this
small amount of data.

But these P -values do not say anything about the original model, that is,
they do not say anything about red! If we wanted to test the null hypothesis
that x does not effect any of the colors, then we have to fit that model.

gout.null <- glm.fit(modmat.strata, y, family = poisson())

coef(gout.null)

row1 row2 row3 row4 row5

-1.098612 -1.098612 -1.098612 -1.098612 -1.098612

row6 row7 row8 row9

-1.098612 -1.098612 -1.098612 -1.098612

gout.null$deviance

[1] 19.77502

And, in order to have comparable log likelihoods, we have to refit the
alternative hypothesis using the same R function and same data.

gout.alternative <- glm.fit(modmat, y, family = poisson())

Warning: glm.fit: fitted rates numerically 0 occurred

gout.alternative$deviance

[1] 4.955974

119

gout$deviance

[1] 4.955974

(Actually, we see we didn’t need this step.)

tstat <- gout.null$deviance - gout$deviance

pchisq(tstat, df = ncol(modmat) - ncol(modmat.strata),

lower.tail = FALSE)

[1] 0.02171179

So the effect of x is statistically significant. We cannot use the null
model, and do need solutions at infinity.

F Big Data Example of Eck and Geyer

F.1 Data

rm(list = ls())

u <- "https://conservancy.umn.edu/bitstream/handle/11299/197369/bigcategorical.txt"

if (! file.exists("bigcategorical.txt"))

download.file(u, "bigcategorical.txt")

foo <- read.table("bigcategorical.txt", header = TRUE)

F.2 Model Matrix and Response Vector

modmat <- sparse.model.matrix(y ~ (.)^4, data = foo)

dim(modmat)

[1] 1024 781

y <- foo$y

120

F.3 Linear Programs

For once we follow Algorithm 1 exactly, including the loop. Except, we
keep all of the optimal values found and all of the δ found, just to see what
the algorithm does. In production code, we would not bother with that.

save.opt.val <- NULL

save.delta <- NULL

save.proc.time <- proc.time()

tangent.direction <- as.numeric(y == 0)

i.double.star <- rep(FALSE, length(y))

i.triple.star <- y == 0

objgrd <- rbind(tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

lp <- initProbGLPK()

addRowsGLPK(lp, nrow(modmat))

[1] 1

addColsGLPK(lp, ncol(modmat))

[1] 1

setSimplexParmGLPK(MSG_LEV, GLP_MSG_OFF) # STFU

row bounds

lower.bounds <- pmin(- tangent.direction, 0)

upper.bounds <- pmax(- tangent.direction, 0)

idx <- which(lower.bounds == upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_FX, length(idx)))

idx <- which(lower.bounds != upper.bounds)

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_DB, length(idx)))

col bounds: free

idx <- 1:ncol(modmat)

setColsBndsGLPK(lp, idx, rep(-Inf, length(idx)),

rep(Inf, length(idx)), rep(GLP_FR, length(idx)))

objective function

121

setObjDirGLPK(lp, GLP_MIN)

idx <- which(objgrd != 0)

setObjCoefsGLPK(lp, idx, objgrd[idx])

constraint matrix (modmat)

foompter <- mat2triplet(modmat)

loadMatrixGLPK(lp, nnzero(modmat), foompter$i, foompter$j, foompter$x)

repeat {
solveSimplexGLPK(lp)

stopifnot(getPrimStatGLPK(lp) == GLP_FEAS)

opt.val <- getObjValGLPK(lp)

save.opt.val <- c(save.opt.val, opt.val)

if (opt.val >= -0.001) break

delta <- getColsPrimGLPK(lp)

names(delta) <- colnames(modmat)

save.delta <- rbind(save.delta, delta)

eta <- getRowsPrimGLPK(lp)

i.double.star <- i.double.star | abs(eta) > 0.001

i.triple.star <- i.triple.star & (! i.double.star)

if (! any(i.triple.star)) break

objgrd <- rbind(i.triple.star * tangent.direction) %*% modmat

objgrd <- as(objgrd, "numeric")

idx <- 1:length(objgrd)

setObjCoefsGLPK(lp, idx, objgrd)

lower.bounds[(! i.triple.star) & (y == 0)] <- -Inf

idx <- which(is.infinite(lower.bounds))

setRowsBndsGLPK(lp, idx, lower.bounds[idx],

upper.bounds[idx], rep(GLP_UP, length(idx)))

}

delProbGLPK(lp)

total.time <- proc.time() - save.proc.time

What happened?

save.opt.val

[1] -68 -14 0

122

So we only had to do 3 linear programs, and it only took 0.175 of a
second. This problem took several days to do according to the methods of
Geyer (2009).

gamma <- colSums(save.delta)

eta <- modmat %*% gamma

eta <- as(eta, "numeric")

range(eta[abs(eta) <= 0.001])

[1] -8.184212e-15 7.043408e-15

range(eta[abs(eta) >= 0.001])

[1] -3 -1

We see that for this (big) problem the computer arithmetic is fairly
accurate, much better than the results we got with R package clpAPI (now
archived) But it is still good that we are using a sloppy tolerance to allow
for any inaccuracy in computer arithmetic.

But, of course, slop is not rigor. So on to proofs.

F.4 Proof Level 1

is.zero <- abs(eta) <= 0.001

Thus the matrix Z in the linear equations (16) is

z <- modmat[is.zero, , drop = FALSE]

dim(z)

[1] 942 781

We found doing this kind of proof before (Sections B.6 and E.7 above),
that Z had redundant rows. So we use R function redundant in R package
rcdd to eliminate them.

save.proc.time <- proc.time()

vrep <- makeV(lines = as.matrix(z))

rout <- redundant(vrep)

123

z <- z[rout$new.position > 0, , drop = FALSE]

dim(z)

[1] 758 781

total.time <- proc.time() - save.proc.time

This the first code chunk in this document that takes so long, 2 minutes
and 43.5 seconds, that we turn on caching for it.

save.proc.time <- proc.time()

z <- as.matrix(z)

z <- gmp::as.bigq(z)

a <- cbind2(diag(ncol(z)), t(z))

a <- rbind2(a, cbind2(z, 0 * diag(nrow(z))))

dim(a)

[1] 1539 1539

b <- c(gamma, rep(0, nrow(z)))

b <- gmp::as.bigq(b)

length(b)

[1] 1539

sout <- solve(a, b)

gamma <- sout[seq(along = gamma)]

modmat.gmp <- as(modmat, "matrix")

modmat.gmp <- gmp::as.bigq(modmat.gmp)

eta <- gmp::`%*%`(modmat.gmp, gamma)

eta <- as(eta, "numeric")

all(eta * tangent.direction <= 0)

[1] TRUE

all(tangent.direction != 0 | eta == 0)

[1] TRUE

identical(is.zero, eta == 0)

[1] TRUE

total.time <- proc.time() - save.proc.time

124

Since this eta has the correct signs, we have proved the gamma it came
from is a DOR. Hence the MLE for the OM does not exist.

And this code chunk took even more time, 18 minutes and 35.4 seconds,
so we turn on caching for it too.

And the total time for this proof (both code chunks) was 21 minutes and
18.9 seconds, so we definitely want to make this optional. It’s not something
you want to do unless the problem is small (so it will be fast) or unless the
problem is really important.

F.5 Proof Level 2

Now we do the linear program to prove that the DOR found in the
preceding section is a GDOR. The objective function for this program is

objgrd <- colSums(modmat[y == 0 & is.zero, , drop = FALSE])

range(objgrd)

[1] 0 287

We checked whether the objective function gradient was the zero vector
in hopes of getting lucky, like in Section B.7 above, but no such luck here.
So we proceed, like in Section E.8 above.

modmat.rcdd <- as(modmat, "matrix")

modmat.rcdd <- d2q(modmat.rcdd)

foompter <- modmat.rcdd[y == 0, , drop = FALSE]

hrep <- makeH(foompter, rep(0, nrow(foompter)))

foompter <- modmat.rcdd[y == 0 & eta == 0, , drop = FALSE]

hrep <- addHin(qneg(foompter), rep(1, nrow(foompter)), hrep)

foompter <- modmat.rcdd[y != 0, , drop = FALSE]

hrep <- addHeq(foompter, rep(0, nrow(foompter)), hrep)

save.proc.time <- proc.time()

lout <- lpcdd(hrep, d2q(objgrd))

lout$solution.type

[1] "Optimal"

lout$optimal.value

125

[1] "0"

total.time <- proc.time() - save.proc.time

That was fast, 3 minutes and 11.7 seconds, much faster than the level
one proof (for this problem). But since there is no point to this proof, until
the level one proof is done (this proof doesn’t prove anything by itself, it
only proves that the DOR found by the level one proof, if it did so, is a
GDOR). So this method of proof has to be optional too. And even this
much time is too long to be the default.

The total time for all proofs (both levels) was 24 minutes and 30.6 sec-
onds. That’s a lot of time to twiddle your thumbs, but Eck and Geyer (2021,
Section 5.3) say doing this example using the methods of Geyer (2009) took
a little over 3 days and 4 hours of computing time on a computer with clock
speed of 3.4 GHz. So what counts as slow is relative.

For comparison, the computer on which this document was processed
reports itself as 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz.

References

Agresti, A. (2013). Categorical Data Analysis, third edition. John Wiley &
Sons, Hoboken.

Agresti, A. (2022). R package CatDataAnalysis: Datasets for Categorical
Data Analysis by Agresti, version 0.1-5. https://CRAN.R-project.org/
package=CatDataAnalysis.

Axler, S. (2024). Linear Algebra Done Right, fourth edition. Springer, Cham.

Barndorff-Nielsen, O. E. (1978). Information and Exponential Families. Wi-
ley, Chichester, UK.

Bates, D., and Maechler, M. (2024). R package Matrix: Sparse and Dense
Matrix Classes and Methods, version 1.6-5. https://CRAN.R-project.

org/package=Matrix.

Bloch, J. (2018). Effective Java, third edition. Addison-Wesley, Boston.

Brown, L. D. (1986). Fundamentals of Statistical Exponential Families: with
Applications in Statistical Decision Theory. Institute of Mathematical
Statistics, Hayward, CA.

126

https://CRAN.R-project.org/package=CatDataAnalysis
https://CRAN.R-project.org/package=CatDataAnalysis
https://CRAN.R-project.org/package=Matrix
https://CRAN.R-project.org/package=Matrix

Burnham, K. P., and Anderson, D. R. (2002). Model Selection and Mul-
timodel Inference: A Practical Information-Theoretic Approach, second
edition. Springer, New York.

Eck, D. J., and Geyer, C. J. (2021). Computationally efficient likeli-
hood inference in exponential families when the maximum likelihood es-
timator does not exist. Electronic Journal of Statistics, 15, 2105–2156.
doi:10.1214/21-EJS1815.

Gelius-Dietrich, G. (2022). R package glpkAPI: R Interface to C API of
GLPK, version 1.3.4. https://CRAN.R-project.org/package=glpkAPI.

Geyer, C. J. (1990). Likelihood and Exponential Families. PhD thesis, Uni-
versity of Washington. https://hdl.handle.net/11299/56330.

Geyer, C. J. (2009). Likelihood inference in exponential families and
directions of recession. Electronic Journal of Statistics, 3, 259–289.
doi:10.1214/08-EJS349.

Geyer, C. J. (2017). R package aster2: Aster Models, version 0.3. http:

//cran.r-project.org/package=aster2.

Geyer, C. J. (2023). R package aster: Aster Models, version 1.1-3. http:

//cran.r-project.org/package=aster.

Geyer, C. J. (2021b). Statistics 5102 (Geyer, Fall 2016) Examples: Cover-
age of Confidence Intervals. https://www.stat.umn.edu/geyer/5102/

examp/coverage.html.

Geyer, C. J., and Johnson, L. T. (2023). R package mcmc: Markov Chain
Monte Carlo, version 0.9-8. https://CRAN.R-project.org/package=

mcmc.

Geyer, C. J., and Meeden, G. D. (2005). Fuzzy and randomized confidence
intervals and P-values (with discussion). Statistical Science, 20, 358–387.
doi:10.1214/088342305000000340.

Geyer, C. J., Meeden, G. D., and Fukuda, K. (2023). R package rcdd:
C Double Description for R, version 1.6. http://CRAN.R-project.org/

package=rcdd

Geyer, C. J., Wagenius, S., and Shaw, R. G. (2007). Aster models for life
history analysis. Biometrika, 94, 415–426. doi:10.1093/biomet/asm030.

127

https://doi.org/10.1214/21-EJS1815
https://CRAN.R-project.org/package=glpkAPI
https://hdl.handle.net/11299/56330
https://doi.org/10.1214/08-EJS349
http://cran.r-project.org/package=aster2
http://cran.r-project.org/package=aster2
http://cran.r-project.org/package=aster
http://cran.r-project.org/package=aster
https://www.stat.umn.edu/geyer/5102/examp/coverage.html
https://www.stat.umn.edu/geyer/5102/examp/coverage.html
https://CRAN.R-project.org/package=mcmc
https://CRAN.R-project.org/package=mcmc
https://doi.org/10.1214/088342305000000340
http://CRAN.R-project.org/package=rcdd
http://CRAN.R-project.org/package=rcdd
https://doi.org/10.1093/biomet/asm030

Gilbert, P., and Varadhan, R. (2019). R package numDeriv: Accurate Nu-
merical Derivatives, version 2016.8-1.1. https://CRAN.R-project.org/

package=numDeriv.

Hornik, K. (2020). R FAQ. https://CRAN.R-project.org/doc/FAQ/

R-FAQ.html.

Konishi, S., and Kitagawa, G. (2008). Information Criteria and Statistical
Modeling. Springer, New York.

Lang, S. (1993). Real and Functional Analysis, third edition. Springer-
Verlag, New York.

Lucas, A., Scholz, I., Boehme, R., Jasson, S., and Maechler, M. (2024).
R package gmp: Multiple Precision Arithmetic, version 0.7-4. https:

//CRAN.R-project.org/package=gmp.

Maechler, M. (2024). R package sfsmisc: Utilities from ‘Seminar fuer
Statistik’ ETH Zurich, version 1.1-17. https://CRAN.R-project.org/

package=sfsmisc.

R Core Team (2021). R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna. https:

//www.R-project.org/.

Rockafellar, R. T. (1970). Convex Analysis. Princeton University Press.

Rockafellar, R. T., and Wets, R. J.-B. (1998). Variational Analysis.
Springer-Verlag, Berlin. (The corrected printings contain extensive
changes. We used the third corrected printing, 2010.)

Varadhan, R. (2023). R package alabama: Constrained Nonlinear Op-
timization, version 2023.1.0. https://CRAN.R-project.org/package=

alabama.

Wikipedia contributors (2021). Multiple comparisons problem. Wikipedia,
The Free Encyclopedia. https://en.wikipedia.org/w/index.php?

title=Multiple_comparisons_problem&oldid=1056327420. Accessed
26 November 2021 08:45 UTC.

128

https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/package=numDeriv
https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://CRAN.R-project.org/doc/FAQ/R-FAQ.html
https://CRAN.R-project.org/package=gmp
https://CRAN.R-project.org/package=gmp
https://CRAN.R-project.org/package=sfsmisc
https://CRAN.R-project.org/package=sfsmisc
https://www.R-project.org/
https://www.R-project.org/
https://CRAN.R-project.org/package=alabama
https://CRAN.R-project.org/package=alabama
https://en.wikipedia.org/w/index.php?title=Multiple_comparisons_problem&oldid=1056327420
https://en.wikipedia.org/w/index.php?title=Multiple_comparisons_problem&oldid=1056327420

	License
	R
	Introduction
	Exponential Family Theory
	Another Look at Models
	Existing Model Specification
	Parameterization of Multinomial Models
	Determining Whether an MLE Exists
	Directions of Recession
	Poisson Sampling
	Binomial Sampling
	Multinomial Sampling
	Numerical Stability
	Proofs
	Proof of the First Kind
	Proof of the Second Kind
	Summary of Proof Theory
	Proof Certificates
	Proofs Need Exact Data
	Guidance About Proofs

	Limiting Conditional Models

	Reporting Multinomial Model Fits
	Table-Valued Response?
	Vector, Matrix, or Factor Response
	Hypothesis Tests
	Likelihood Ratio Tests
	Rao Tests
	Reporting Multiple Tests
	Reporting Multiple Tests for One Single Model Fit
	R Functions Add1 and Drop1

	Confidence Regions and Intervals
	Our Proposal
	Conventional Confidence Regions for LCM
	Correction for Two Confidence Regions
	Simultaneous Coverage or Not
	Argument Override
	Summary
	R Generic Function Predict?
	More on Constraint Functions
	Random Sampling?
	Dimension of the LCM Canonical Parameter
	More on Our Theory of Confidence Regions
	One-Parameter Models
	Multi-Parameter Models

	Information Criteria
	Kullback-Leibler Information
	Takeuchi Information Criterion
	Akaike Information Criterion
	Bayesian Information Criterion

	Empty Models and Other Anomalies
	Empty Models
	Empty Strata

	Complete Separation Example of Agresti
	Data
	First Linear Program
	Limiting Conditional Model
	Clean Up
	Proof
	Confidence Intervals
	Constraint Set
	For Theta
	For Pi
	For Beta
	For Tau
	For Linear Function of Tau

	Quasi-Complete Separation Example of Agresti
	Data
	First Linear Program
	Second Linear Program
	Limiting Conditional Model
	Clean Up
	Proof Level 1
	Proof Level 2

	Clinical Trial Example of Agresti
	Data
	First Linear Program
	Second Linear Program
	Limiting Conditional Model
	Clean Up

	A Product Multinomial Example
	Data
	Model Matrices and Response Vector
	First Linear Program
	Second Linear Program
	Limiting Conditional Model
	Clean Up

	Another Product Multinomial Example
	Data
	Model Matrices and Response Vector
	First Linear Program
	Second Linear Program
	Third Linear Program
	Clean Up
	Proof Level 1
	Proof Level 2
	Limiting Conditional Model

	Big Data Example of Eck and Geyer
	Data
	Model Matrix and Response Vector
	Linear Programs
	Proof Level 1
	Proof Level 2

