
Stat 8701, Spring 2003, Homework 5

The following data are taken from Bishop, Fienberg and Holland (Discrete

Multivariate Analysis, MIT Press, 1975, Section 5.2.8, Exercise 4).

Active Passive Participant
Participant R S T U V W

R — 1 5 8 9 0
S 29 — 14 46 4 0
T 0 0 — 0 0 0
U 2 3 1 — 38 2
V 0 0 0 0 — 1
W 9 25 4 6 13 —

The data are in the file

http://www.stat.umn.edu/~charlie/monkey.dat

and the R statements

foo <- scan(url("http://www.stat.umn.edu/~charlie/monkey.dat"))

bar <- matrix(foo, 6, 6, byrow = TRUE)

reads it and stuffs it into a matrix.
The data involve displays between squirrel monkeys (there are six monkeys

labeled R through W). Each display has an active and a passive participant
giving the two-way classification of the table. Since a monkey cannot display
toward itself, the diagonal cells of the table are impossible (structural zeros in
the jargon of categorical data analysis).
We wish to fit the following Bayesian model to these data (the same model for

which Bishop, Fienberg, and Holland discuss frequentist analysis in their Section
5.2), called the quasi-independence model. We assume Poisson sampling, so the
likelihood is
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where xij is the data (given in the table above) and the parameters µij have
the log-linear additive form

log(µij) = α+ βi + γj

where in order to obtain identifiability we must have the constraints
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Because the third row of the data is all zero, an improper prior would give
an improper posterior. So we can’t use a flat prior. The conjugate prior we use
looks like a gamma with density proportional to
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but it isn’t gamma because we do not consider the µij the fundamental random
variables but the α, βi, and γj .
Thus the unnormalized posterior density is the product of (1) and (3) con-

sidered as a function of the α, βi, and γj . The specific values of the hyperpa-
rameters we use are ε = 0.2 and δ = 0.3.

(a) Write a MCMC sampler for this 13-dimensional posterior distribution. Also
write a description of your algorithm with sufficient detail that it could be
reimplemented by an MCMC expert.

(b) Estimate the posterior mean of each of the 13 parameters, α, βi, and γj .

(c) Estimate Monte Carlo standard error (MCSE) for each estimated quantity
(the posterior mean of each of the 13 parameters). Try to get at least two
significant figures (Monte Carlo standard error a hundredth the size of the
estimated quantity). Estimate MCSE two different ways.

(i) Use the method of batch means. Report your batch size and whether
you use overlapping or nonoverlapping batch means.

(ii) Use the method of Geyer (1992) for reversible Markov chains (this
requires that you make your MCMC sampler reversible). Calculate the
“big gamma” function Γk = γ2k + γ2k+1. where the “little gamma”
function is the autocovariance function of the time series averaged to
get some estimate. Let K be the largest integer such that Γ0, . . ., ΓK
are all positive. Then estimate MCSE as
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