
Stat 8112 (Geyer) Spring 2013

Homework Assignment 8
Due Friday May, 10, 2013

9-1. If K is a kernel, µ is a measure, f is a function, and I is the identity
kernel, show

KI = K

IK = K

µI = µ

If = f

9-2. Is the Markov chain with identity transition probability kernel irre-
ducible? Either way show why. Does this depend on what the state space
is?

9-3. Consider a finite state space Markov chain whose transition probabil-
ity matrix has elements pij that are nonzero if and only if i = j or i+ 1 = j.
Is this Markov chain irreducible? Either way show why.

Warning: In this course irreducible means ϕ-irreducible for some positive
measure ϕ, which is the definition used in the theory of Markov chains on
general state spaces. If you use the definition from most stochastic processes
courses (which only cover discrete state space Markov chains and which
define “irreducible” to mean ϕ-irreducible where ϕ is counting measure on
the state space), then you won’t get the right answers.

9-4. Let f be a joint probability density function on R2, and define

W = { (x, y) ∈ R2 : f(x, y) > 0 }.

Let fX|Y and fY |X denote the two conditional probability density functions
derived from f . Consider a Markov chain (Xn, Yn), n = 1, 2, . . . having
state space is W that moves as follows

Xn+1 ∼ fX|Y ( · | Yn)

Yn+1 ∼ fY |X( · | Xn+1)

where∼means “is simulated from the distribution.” (For those familiar with
the Gibbs sampler, this is a special case.) Suppose that W is a connected
open set, and show that the Markov chain is irreducible.
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9-5. Let X1, X2, . . . be Markov chain having the integers as its state space
and that moves as follows

Pr(Xn+1 = Xn + 1) = Pr(Xn+1 = Xn − 1) = 1/2.

Show that this Markov chain is null recurrent.

9-6. Consider the Markov chain used as an example in Section 3.4 of the
handout on Markov chains (that simulates the distribution uniform on an
open set W in Rd). Suppose that W is a bounded set, and show that the
Markov chain is uniformly ergodic.

9-7. Consider the balanced one-way random effects model. The data Y is
an r × c matrix having components Yij , which are assumed to be normal
with means and variances

E(Yij | θi) = θi

var(Yij | θi) = λ−1

The random effects θi are assumed to be normal with means and variances

E(θi) = 0

var(θi) = ν−1

Let θ denote the vector having components θi. The components of Y are
conditionally independent given θ, and the components of θ are indepen-
dent. The parameters λ and ν, which are reciprocals of variances, are called
precisions.

Suppose we want to be fully Bayesian about this and hence want to
assume priors on the parameters. For reasons of mathematical convenience
we assume gamma priors

λ ∼ Gamma(a1, b1)

ν ∼ Gamma(a2, b2)

where a1, a2, b1, and b2 are known numbers (the hyperparameters). This
problem will be less messy if you assume an unnormalized Gamma(a, b)
density has the form h(x) = xa−1 exp(−bx).

Show that the components of θ are conditionally independent given λ, ν,
and Y and that λ and ν are conditionally independent given θ and Y . This
suggests a “block Gibbs” sampler for simulating the posterior distribution
of θ, λ, and ν given Y . Each step of the Markov chain does two substeps

• Simulate a new value of θ from the conditional distribution of θ given
λ, ν, and Y .
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• Simulate new values of λ and ν from their conditional distribution
given θ and Y .

The Gibbs sampler is easy to implement because these are “brand name”
distributions. Find the conditional distributions for these two substeps.

Show that the resulting Gibbs sampler is geometrically ergodic. It is
actually an open research question to show this for all values of the hyper-
parameters. You are allowed to pick any values of the hyperparameters.
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