Stat 8112 (Geyer) Spring 2013
 Homework Assignment 4
 Due Monday March 11, 2013

4-1. Show the following
(a) $O_{p}\left(X_{n}\right) O_{p}\left(Y_{n}\right)=O_{p}\left(X_{n} Y_{n}\right)$.
(b) $O_{p}\left(X_{n}\right) o_{p}\left(Y_{n}\right)=o_{p}\left(X_{n} Y_{n}\right)$.
(c) $o_{p}\left(X_{n}\right) o_{p}\left(Y_{n}\right)=o_{p}\left(X_{n} Y_{n}\right)$.
(d) If $X_{n}=o_{p}(1)$, then $o\left(O_{p}\left(X_{n}\right)\right)=o_{p}\left(X_{n}\right)$.

You may assume that all random elements involved in this problem are realvalued (multiplication of vectors is undefined). These problems are to show that the left-hand side can be replaced by the right-hand side, that is, for (a), if $U_{n}=O_{p}\left(X_{n}\right)$ and $V_{n}=O_{p}\left(Y_{n}\right)$, then $U_{n} V_{n}=O_{p}\left(X_{n} Y_{n}\right)$.

4-2. A problem unrelated to anything (came up in research, just want to see what everyone does). Suppose X is a random element of \mathbb{R}^{d} having PDF f_{θ} and define $Y=I_{A}(X)$, where A is some measurable subset of \mathbb{R}^{d}. This problem is about the joint distribution of the pair (X, Y) and its marginals and conditionals. Since X is continuous and Y is discrete, this is a bit tricky. In measure-theoretic terms you can give a density with respect to the product of Lebesgue measure on \mathbb{R}^{d} and counting measure on $\{0,1\}$. If you haven't had measure theory, you can still do this just intuitively treating X as continuous and Y as discrete. If g_{θ} is the joint density of X and Y (that we are trying to find) then the expectation of any function h is given by

$$
\sum_{y=0}^{1} \int h(x, y) g_{\theta}(x, y) d x
$$

(integrate over the continuous variable and sum over the discrete variable).
(a) Give the joint density g_{θ} of the pair (X, Y).
(b) Give the marginal density of X and the conditional density of Y given X.
(c) Give the marginal density of Y and the conditional density of X given Y.

4-3. Ferguson, Problem 9-2.
4-4. Ferguson, Problem 10-1.

4-5. Ferguson, Problem 10-2.
4-6. Ferguson, Problem 13-1.
4-7. Ferguson, Problem 13-2.
4-8. Ferguson, Problem 13-4.

