Stat 8112 (Geyer) Spring 2013
 Homework Assignment 3
 Due Friday February 22, 2013

3-1. Ferguson, Problem 6-1.
3-2. Ferguson, Problem 6-3.
3-3. Ferguson, Problem 7-1.
3-4. Ferguson, Problem 7-2.
3-5. Ferguson, Problem 7-3
3-6. Ferguson, Problem 7-4
3-7. Ferguson, Problem 7-6
3-8. Suppose X_{1}, X_{2}, \ldots are IID $\operatorname{Unif}(0, \theta)$. Define

$$
X_{(n)} \max _{1 \leq i \leq n} X_{i} .
$$

(a) Show that

$$
X_{(n)} \xrightarrow{\text { a. s. }} \theta, \quad \text { as } n \rightarrow \infty .
$$

(b) Show that

$$
n\left(\theta-X_{(n)}\right) \xrightarrow{\mathcal{L}} \operatorname{Exp}(1 / \theta), \quad \text { as } n \rightarrow \infty .
$$

3-9. Suppose X_{1}, X_{2}, \ldots are IID. Define

$$
\begin{aligned}
\alpha_{k} & =E\left(X_{i}^{k}\right) \\
\hat{\alpha}_{k, n} & =\frac{1}{n} \sum_{i=1}^{n} X_{i}^{k}
\end{aligned}
$$

(a) Show that

$$
\hat{\alpha}_{k, n} \xrightarrow{\text { a.s. }} \alpha_{k}, \quad \text { as } n \rightarrow \infty
$$

provided k-th moments exist.
(b) Assume ($2 k$)-th moments exist, and find the multivariate asymptotic normal distribution of the sequence of random vectors $\left(\hat{\alpha}_{1, n}, \ldots, \hat{\alpha}_{k, n}\right)$.

3-10. Suppose X_{1}, X_{2}, \ldots are IID. Define

$$
\begin{aligned}
\mu & =E\left(X_{i}\right) \\
\mu_{k} & =E\left\{\left(X_{i}-\mu\right)^{k}\right\} \\
\bar{X}_{n} & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
\hat{\mu}_{k, n} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{k}
\end{aligned}
$$

(a) Show that

$$
\hat{\mu}_{k, n} \xrightarrow{\text { a. s. }} \mu_{k}, \quad \text { as } n \rightarrow \infty
$$

provided k-th moments exist.
(b) Assume ($2 k$)-th moments exist, and find the asymptotic normal distribution of the sequence of random vectors ($\bar{X}_{n}, \hat{\mu}_{2, n}, \ldots, \hat{\mu}_{k, n}$).

Hint: first find the asymptotic normal distribution of $\left(\bar{X}_{n}, \mu_{2, n}^{*}, \ldots, \mu_{k, n}^{*}\right)$, where

$$
\mu_{k, n}^{*}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\mu\right)^{k} .
$$

Then use the binomial theorem to write the $\hat{\mu}_{k, n}$ in terms of \bar{X}_{n} and the $\mu_{k, n}^{*}$.

3-11. Suppose X_{1}, X_{2}, \ldots are IID $\operatorname{Gam}(\alpha, \lambda)$, where λ is the rate parameter. Define

$$
\begin{aligned}
& \hat{\alpha}_{n}=\frac{\bar{X}_{n}^{2}}{V_{n}} \\
& \hat{\lambda}_{n}=\frac{\bar{X}_{n}}{V_{n}}
\end{aligned}
$$

where

$$
\begin{aligned}
\bar{X}_{n} & =\frac{1}{n} \sum_{i=1}^{n} X_{i} \\
V_{n} & =\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
\end{aligned}
$$

Find the bivariate asymptotic normal distribution of the sequence of random vectors $\left(\hat{\alpha}_{n}, \hat{\lambda}_{n}\right)$.

