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GOFMC

Good old-fashioned Monte Carlo (GOFMC), also called indepen-

dent, identically distributed Monte Carlo (IIDMC), also called or-

dinary Monte Carlo (OMC) is the practice of using independent

and identically distributed (IID) simulations to calculate (esti-

mate, approximate, whatever) integrals that one cannot do by

hand or using a computer algebra system.
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Theory of GOFMC

Theory of GOFMC is very simple — just elementary statistics!

You want to calculate

µ = E{g(X)}

but you can’t exactly.

Use

µ̂n =
1

n

n∑
i=1

g(Xi)

as your Monte Carlo approximation, where X1, X2, . . . are IID

simulations having the same distribution as X.
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Theory of GOFMC (cont.)

Think of µ as a parameter.

Think of µ̂n as a statistical estimator of µ.

Think of n as the sample size.

Apply elementary statistical theory!
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Terminology

Original Problem Statement

The original problem need not be statistical!

If the original problem is statistical, then µ need not be a param-

eter in it, and n is certainly not the sample size in it.

Monte Carlo Calculation

We need to be careful. Emphasize that n is the Monte Carlo

sample size.
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Theory of GOFMC (cont.)

The central limit theorem says

µ̂n ≈ Normal

(
µ,
σ2

n

)
where

σ2 = var g(X)

can be estimated by

σ̂2
n =

1

n

n∑
i=1

(
g(Xi)− µ̂n

)2

That’s all the statistical theory we need!
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Terminology (cont.)

Original Problem Statement

If the original problem is statistical, then σ/
√
n need not be any-

thing we would call sampling error in it, because n is certainly
not the sample size in it.

Monte Carlo Calculation

We need to be careful. Emphasize that σ̂n/
√
n is the Monte

Carlo standard error.

It gives the size (on average) of the difference between the quan-
tity we want to calculate (µ) and our Monte Carlo approximation
to it (µ̂n).
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Variance Reduction

There are often multiple ways to do Monte Carlo approximation

of the same quantity.

Markov chain Monte Carlo (MCMC) gives many ways. Here we

work with GOFMC, which also has multiple ways.

The boring name for this subject is “variance reduction” because

the idea is to use the way with the smallest Monte Carlo standard

error.

The cute name is “swindles”.
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Variance Reduction (cont.)

If you have taken a course like this you are assumed to know
that the five types of swindles are

• Control Variates

• Antithetic Variates

• Common Random Numbers

• Rao-Blackwellization

• Importance Sampling
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Control Variates

If

η = E{h(X)}

is an expectation we can calculate by hand, then

µ̃n = µ̂n −
1

n

n∑
i=1

β
(
h(Xi)− η

)
is another estimator of µ.

Any β works — second term estimates zero.
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Elementary Theory Reminder

var(X − Y ) = var(X)− 2cov(X,Y ) + var(Y )
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Control Variates (cont.)

Monte Carlo variance (MCV) is

var(µ̃n) = var(µ̂n)−
2β

n
cov{g(X), h(X)}+

β2

n
var{h(X)}

Minimize by choosing β as

βopt =
cov{g(X), h(X)}

var{h(X)}
the slope in the regression of g(X) on h(X).
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Control Variates (cont.)

Also works with multiple covariates. If know

ηj = E{hj(X)}, j = 1, . . . , k

then

µ̃n = µ̂n −
k∑

j=1

1

n

n∑
i=1

βj
(
hj(Xi)− ηj

)
is another estimator of µ.

Optimal βj are the partial regression coefficients in the multiple

regression of g(X) on h1(X), . . ., hk(X).
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Antithetic Variates

Simulate IID exchangeable pairs (Xi, X̃i), i = 1, 2, . . ., with Xi
and X̃i having the same distribution as X.

Then

µ̃n =
1

n

n∑
i=1

g(Xi) + g(X̃i)

2

is another estimator of µ.

Xi and X̃i may be correlated — negatively correlated best.

Like matched pairs experiment.
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Antithetic Variates (cont.)

How to simulate antithetic variates when using inversion method:

U1, U2, . . . are IID Uniform(0,1).

Xi = G(Ui)

X̃i = G(1− Ui)

where G is the quantile function of the distribtion we want to

simulate.

How to simulate antithetic variates when not using inversion

method: No known methods. Good luck!
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Common Random Numbers

Again like a matched pairs experiment.

When comparing two things by Monte Carlo, use the same ran-
dom numbers in both experiments.

If you want to estimate E{g1(X)} − E{g2(X)} use

1

n

n∑
i=1

g1(Xi)−
1

n

n∑
i=1

g2(Xi)

(same random numbers in both terms).

If g1(X) and g2(X) are nearly perfectly positively correlated and
have nearly equal variance, then the variance above is nearly
zero.
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Elementary Theory Reminder

E(X) = E{E(X | Y )}
var(X) = var{E(X | Y )}+ E{var(X | Y )}

Hence X and E(X | Y ) have same expectation, and conditioning

reduces variance

var(X) ≥ var{E(X | Y )}
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Rao-Blackwellization

For any function h(X)

µ̃n =
1

n

n∑
i=1

E{g(Xi) | h(Xi)}

is another estimator of µ — better than naive one.

µ̃n converges to µ by the iterated expectation theorem, µ̃n has

smaller Monte Carlo error than µ̂n by the iterated variance the-

orem.
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Importance Sampling

Suppose we want to generate samples from a distribution having

density f(x) but don’t know how. Suppose we can generate

samples X1, X2, . . . having density h(x).

Then

µ = Ef{g(X)} = Eh

{
g(x)

f(x)

h(x)

}
so long as there is no divide by zero. Then

µ̃n =
1

n

n∑
i=1

g(Xi)
f(Xi)

h(Xi)

is another estimator of µ.
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Importance Sampling (cont.)

Monte Carlo variance will be empirical variance of

Zi = g(Xi)f(Xi)/h(Xi)

divided by Monte Carlo sample size.

Minimized when

varh

{
g(X)

f(X)

h(X)

}
is minimized.

Optimal choice of h(x) is density proportional to |g(x)|f(x) by

theorem in Casella and Robert, Monte Carlo Statistical Methods.
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Conclusions

Many ways to do GOFMC.

Naive way not necessarily the best.

“There’s more than one way to do it” (TMTOWTDI, pro-

nounced ”Tim Toady”) is the Perl slogan.

Could also be the GOFMC slogan.
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Anti-Importance Sampling

any sample can come from any distribution
Trotter and Tukey (1956)

Importance sampling is most important when it is not used for
variance reduction.

Replace f(x) by fθ(x). Then

µ̃n(θ) =
1

n

n∑
i=1

g(Xi)
fθ(Xi)

h(Xi)

is sensible estimator of

µ(θ) = Eθ{g(X)}.
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Anti-Importance Sampling (cont.)

With one sample from one distribution h(x) we learn about µ(θ)

for all θ.

Using both

• Common Random Numbers

• Importance Sampling
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Anti-Importance Sampling (cont.)

∇µ̃n(θ) =
1

n

n∑
i=1

g(Xi)
∇fθ(Xi)
h(Xi)

is sensible estimator of

∇µ(θ) = Eθ{∇g(X)}.

Principle of common random numbers is crucial. Naive estimator

1

ε

1

n

n∑
i=1

g(Xi)−
1

n

n∑
i=1

g(X∗
i )


where Xi are samples from fθ and X∗

i are independent samples

from fθ+ε would be terrible — useless.
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Unknown Normalizing Constant Models

Let hθ(x) be a parametric family of functions that are

• nonnegative and

• integrable.

When divided by what the integrate to, they become probability
densities

fθ(x) =
1

c(θ)
fθ(x)

where

c(θ) =
∫
hθ(x)µ(dx)
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Unknown Normalizing Constant Models (cont.)

When the integral defining the “normalizing constant” c(θ) can-

not be done analytically, it can be done by Monte Carlo.

Suppose X1, X2, . . . are samples from fψ, then

c(θ)

c(ψ)
=
∫
hθ(x)

hψ(x)
fψ(x)µ(dx) = Eψ

{
hθ(x)

hψ(x)

}
so

cn(θ) =
1

n

n∑
i=1

hθ(Xi)

hψ(Xi)

is a sensible estimator of c(θ)/c(ψ).
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Unknown Normalizing Constant Models (cont.)

Hence

ln(θ) = loghθ(x)− log

1

n

n∑
i=1

hθ(Xi)

hψ(Xi)


is a sensible estimator of the log likelihood.
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