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One-Dimensional Optimization

• Look at a graph.

• Grid search.
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One-Dimensional Zero Finding

Zero finding means solving g(x) = 0 for x.

If f(x) is objective function for optimization and g(x) = f ′(x),
zero of g is stationary point of f — not necessarily optimum.

• Bisection method.

• Secant method.

• Newton’s method.

• R function uniroot (on-line help).
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http://rweb.stat.umn.edu/R/library/stats/html/uniroot.html


Multi-Dimensional Optimization

Minimize f : S → R.

Global Minimum

Point x such that

f(y) ≥ f(x), for all x ∈ S

Local Minimum

Point x such that

f(y) ≥ f(x), for all x ∈W

where W is neighborhood of x in S.
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Convex Optimization

A function f : Rd → (−∞,+∞] is convex if

f
(
tx+ (1− t)y

)
≤ tf(x) + (1− t)f(y), x, y ∈ Rd and 0 < t < 1.

Theorem: Every local minimum of a convex function is a global

minimum.

A convex function is strictly convex if

f(x) <∞ and f(y) <∞ and 0 < t < 1

implies f
(
tx+ (1− t)y

)
< tf(x) + (1− t)f(y).

Theorem: A strictly convex function has at most one local

minimum.
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Convex Optimization (cont.)

Minimum need not be achieved. Consider

f(x) = ex, x ∈ R

f(x) ↓ 0 as x→ −∞ but f(x) > 0 for all x.
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One-Dimensional Derivative Tests

Necessary and sufficient for convexity

(a) f ′(x) ≥ f ′(y) whenever x > y

(b) f(y) ≥ f(x) + f ′(x)(y − x) whenever x 6= y

(c) f ′′(x) ≥ 0 for all x

With ≥ replaced by > (a) and (b) are necessary and sufficient

for strict convexity and (c) is sufficient but not necessary.

7



Multi-Dimensional Derivative Tests

Necessary and sufficient for convexity

(a) 〈y − x,∇f(y)−∇f(x)〉 ≥ 0 whenever x 6= y

(b) f(y) ≥ f(x) + 〈∇f(x), y − x〉 whenever x 6= y

(c) ∇2f(x) positive semidefinite for all x

With ≥ replaced by > (a) and (b) are necessary and sufficient for

strict convexity. With positive semidefinite replaced by positive

definite (c) is sufficient but not necessary.
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Concave and Convex, Maximization and Minimization

f is convex if and only if −f is concave.

In order to avoid lots of duplication, optimization theory only

discusses minimization. Minimizing f maximizes −f .

Switch from minimization to maximization by standing on your

head.
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Global Optimization

Except for easy case of convexity. Global optimization is hard.

Deterministic algorithms only available for very special problems,

e. g., difference of convex functions, and computer code not

widely available.

Many adaptive random search algorithms advertised to do global

optimization, but this is only a hope. They don’t stop at the

first local minimum they find, but . . . .
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Adaptive Random Search

IMHO an area rife with charlatanry.

Widely used methods are justified by metaphors, not math

• simulated annealing

• genetic algorithms

Scientists are people too. They like stories.

Metaphors do not make optimization algorithms effective.
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http://catb.org/jargon/html/I/IMHO.html


Charlie’s Rules for Adaptive Random Search

When looking in a sequence of random places x1, x2, . . ., xn.

1. Keep track of the xk that minimizes, f(xk) ≤ f(xi), 1 ≤ i ≤ n.

2. Search intensively near the lowest point found so far.

3. Then search elsewhere. Don’t stop.
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Charlie’s Rules (cont.)

You can do things you can call simulated annealing or genetic

algorithms and follow these rules.

You can do things you can call simulated annealing or genetic

algorithms that don’t follow these rules.

For any particular problem, if you bother to really think about

it, you can probably invent an adaptive random search algorithm

particularly for it that beats the metaphors.
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Newton’s Method

Method for solving simultaneous non-linear equations g(x) = 0,

where g : Rd → Rd.

g(y) ≈ g(x) +∇g(x)(y − x)

where ∇g(x) is linear operator represented by matrix of partial

derivatives ∂gi(x)/∂xj.

Set equal to zero and solve

y = x−
(
∇g(x)

)−1
g(x)

Iterate and hope for convergence.
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Newton’s Method (cont.)

In optimization, Newton minimizes quadratic approximation to

function

m(y) = f(x) + 〈∇f(x), y − x〉+ 1
2〈∇

2f(x)(y − x), y − x〉

if ∇2f(x) is positive definite.

Newton update is

xn+1 = xn −
(
∇2f(xn)

)−1
∇f(xn)
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Big Oh and Little Oh

an = O(bn) means an/bn is bounded.

an = o(bn) means an/bn converges to zero.

Also used for continuous, e. g., definition of derivative

f(y) = f(x) + 〈∇f(x), y − x〉+ ‖y − x‖ · o(y − x)
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Rates of Convergence

Let x1, x2, . . . be iterates of optimization algorithm. Suppose

xn → x, and let εn = ‖xn − x‖.

Linear convergence if εn+1 = O(εn).

Superlinear convergence if εn+1 = o(εn).

Quadratic convergence if εn+1 = O(ε2n).
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Newton’s Method Theorem

Suppose ∇f(y) and ∇2f(y) are continuous in neighborhood of

solution x and ∇2f(x) is positive definite, then Newton’s method

converges superlinearly (if it converges).

In addition suppose

∇f(y) = ∇f(x) +∇2f(x)(y − x) +O(‖y − x‖2)

∇2f(y) = ∇2f(x) +O(‖y − x‖)

then Newton’s method converges quadratically (if it converges).

These conditions hold when f has continuous third partial deriva-

tives in a neighborhood of x.
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Dennis-Moré Theorem

Let x1, x2, . . . be iterates of optimization algorithm, and let

∆n = −
(
∇2f(xn)

)−1
∇f(xn)

be the Newton step at xn.

If the algorithm converges superlinearly, then

xn+1 − xn = ∆n + o(‖∆n‖)

19



Dennis-Moré Theorem (cont.)

Every superlinearly convergent optimization algorithm is asymp-

totically equivalent to Newton’s method. (Its steps are equal to

Newton steps plus negligible amount.)

Every superlinearly convergent optimization algorithm is asymp-

totically equivalent to any other superlinearly convergent opti-

mization algorithm.

To get quadratic convergence must have

xn+1 − xn = ∆n +O(‖∆n‖2)
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Quasi-Newton

Update is

xn+1 = xn −Bn∇f(xn) (1)

where

Bn ≈
(
∇2f(xn)

)−1

If the approximation (1) is good enough, then the algorithm will

converge superlinearly (see Wikipedia page).
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http://en.wikipedia.org/wiki/Quasi-Newton_method


Why Newton Sucks

Although Newton is asymptotically most wonderful, it is not

guaranteed to converge when started an appreciable distance

from the solution.

The least a minimization routine can do is take downhill steps.

Newton isn’t even guaranteed to do that (Rweb demo).

Newton or quasi-Newton needs modification to be practically

useful. Such modification is called safeguarding.
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http://www.stat.umn.edu/geyer/8054/old_notes/newton.html


Line Search

When at xn with a search direction pn that points downhill

〈∇f(xn), pn〉 ≤ 0,

Find a local minimum sn of the function

g(s) = f(xn + spn)

and take step

xn+1 = xn + snpn

Sloppy solution sn to line search subproblem is o. k. (see Wolfe

conditions).
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http://en.wikipedia.org/wiki/Wolfe_conditions
http://en.wikipedia.org/wiki/Wolfe_conditions


Line Search (cont.)

If search direction pn converges to Newton direction, then steps

will be nearly Newton for large n, and algorithm will have super-

linear convergence.

However, this algorithm is safeguarded, guaranteed to take only

downhill steps.
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Line Search (cont.)

Convergence to a local minimum cannot be guaranteed.

In order for convergence to a stationary point to be guaranteed,

search directions pn must satisfy angle criterion: if

gn = ∇f(xn)

then

〈pn, gn〉
‖pn‖ · ‖gn‖

(cosine of angle between pn and gn) must be bounded away from

zero.

25



Trust Region Methods

Trust region methods work by repeatedly solving the trust region
subproblem

minimize mn(p) = fn + 〈gn, p〉+ 1
2〈Bkp, p〉

subject to ‖p‖ ≤∆n

where

fn = f(xn)

gn = ∇f(xn)

Bn = ∇2f(xn)

Like Newton, we minimize the quadratic approximation (Taylor
series up to quadratic terms), but we only trust the approxima-
tion in a ball of radius ∆n.
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Trust Region Methods (cont.)

Let pn be the solution of the trust region subproblem (see design
document for trust package for details).

Let

ρn =
f(xn)− f(xn + pn)

m(0)−m(pn)

• Numerator is actual decrease in objective function if we take
step pn (positive if step is downhill).

• Denominator is decrease in objective function of trust region
subproblem for step pn (always positive).
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http://www.stat.umn.edu/geyer/trust/library/trust/doc/trust.pdf
http://www.stat.umn.edu/geyer/trust/library/trust/doc/trust.pdf


Trust Region Methods (cont.)

Accept proposed step only if appreciable decrease in objective

function.

If ρn ≥ 1/4, then xn+1 = xn + pn, otherwise xn+1 = xn.

Adjust trust region radius based on quality of proposed step.

If ρk ≤ 1/4, then ∆n+1 = ‖pn‖/4.

If ρk ≥ 3/4 and ‖pn‖ = ∆n, then ∆n+1 = min(2∆n,∆max).

Otherwise ∆n+1 = ∆n.
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Trust Region Properties

Any cluster point x of sequence of iterates satisfies first and

second order necessary conditions for optimality.

∇f(x) = 0

∇2f(x) is positive semidefinite

Converges quadratically if solution satisfies first and second order

sufficient conditions (same as above except positive definite).

Not bothered by restricted domain of objective function, so long

as solution is in interior.

Just works (trust package web page).
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http://www.stat.umn.edu/geyer/trust/


Constrained Optimization

minimize f(x)

subject to gi(x) = 0, i ∈ E
gi(x) ≤ 0, i ∈ I

(2)

where E and I are disjoint finite sets.

Say x is feasible if constraints hold.
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Lagrange Multipliers

Lagrangian function

L(x, λ) = f(x) +
∑

i∈E∪I
λigi(x)

Theorem: If there exist x∗ and λ such that

(a) x∗ minimizes x 7→ L(x, λ),

(b) gi(x
∗) = 0, i ∈ E and gi(x

∗) ≤ 0, i ∈ I,

(c) λi ≥ 0, i ∈ I, and

(d) λigi(x
∗) = 0, i ∈ I.

Then x∗ solves the constrained problem (2).
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Lagrange Multipliers (cont.)

Proof: By (a)

L(x, λ) ≥ L(x∗, λ) (3)

so for feasible x

f(x) ≥ f(x∗) +
∑

i∈E∪I
λigi(x

∗)−
∑

i∈E∪I
λigi(x)

= f(x∗)−
∑

i∈E∪I
λigi(x)

≥ f(x∗)

top inequality is (3), equality is (d), bottom inequality is (c) and

feasibility of x.
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Kuhn-Tucker Conditions

(a) ∇f(x∗) +
∑

i∈E∪I
λi∇gi(x∗),

(b) gi(x
∗) = 0, i ∈ E and gi(x

∗) ≤ 0, i ∈ I,

(c) λi ≥ 0, i ∈ I, and

(d) λigi(x
∗) = 0, i ∈ I.

Only (a) changed. Rest stay same.

Now no theorem. (a) too weak.
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Existence of Lagrange Multipliers

Lagrange multipliers always exist such that theorem applies if

• all constraints affine,

• objective function convex, inequality constraint functions con-
vex, and equality constraint functions affine, or

• the set

{∇gi(x∗) : i ∈ E ∪ I and gi(x
∗) = 0 }

is linearly independent.

(May exist in other cases, but not guaranteed.)
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R packages

Problem (2) called linear programming if all functions affine. R

packages linprog (on-line help), lpSolve (on-line help), and rcdd

(on-line help), do that.

Problem (2) called quadratic programming if objective function

is quadratic and constraint functions affine. R package quadprog

(on-line help), does that.

Problem (2) called nonlinear programming if general functions

are allowed. R package npsol (not installed, not free software,

obtain from me) does that.
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http://rweb.stat.umn.edu/R/library/linprog/html/00Index.html
http://rweb.stat.umn.edu/R/library/lpSolve/html/00Index.html
http://rweb.stat.umn.edu/R/library/rcdd/html/00Index.html
http://rweb.stat.umn.edu/R/library/quadprog/html/00Index.html


Isotonic Regression

Suppose we observe pairs (yi, xi), i = 1, . . ., n and we wish

to estimate the regression function E(Y | X) subject to the

condition that it is monotone. How?

Treat xi as fixed (condition on them). Assume

Yi ∼ Normal(µi, σ
2)

and

xi ≤ xj implies µi ≤ µj
What is the MLE of the vector µ = (µ1, . . . , µn)?
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Isotonic Regression (cont.)

Problem solved in 1955 independently by two different groups of

statisticians.

Let z1, . . ., zk be the unique x values in sorted order, and define

wj =
n∑
i=1
xi=zj

1

Vj =
1

wj

n∑
i=1
xi=zj

Yi
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Isotonic Regression (cont.)

Then equivalent weighted least squares problem is the following.

Assume

Vj ∼ Normal(µj, σ
2/wj)

and

µ1 ≤ µ2 ≤ · · · ≤ µk
What is the MLE of the vector µ = (µ1, . . . , µn)?
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Isotonic Regression (cont.)

Lagrangian function is

k∑
j=1

wj(vj − µj)2 +
k−1∑
i=1

λj(µj+1 − µj)

39



Isotonic Regression (cont.)

Kuhn-Tucker conditions are

(a) −2wj(vj − µj)− λj + λj−1 = 0, j = 1, . . ., k.

(b) µi ≤ µj, 1 ≤ i ≤ j ≤ k.

(c) λj ≥ 0, j = 1, . . ., k, and

(d) λj(µj+1 − µj) = 0, j = 1, . . ., k − 1.

where to make (a) simple we define λ0 = λk = 0.
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Isotonic Regression (cont.)

Solution must be step function. Have blocks of equal µ’s. Let
ji, i = 1, . . ., m be the starting indices of the blocks, so

µjl−1 < µjl = · · · = µjl+1−1 < µjl+1

where to make this simple we define µ0 = −∞ and µk+1 = +∞.

Complementary slackness implies λjl−1 = λjl+1−1 = 0. Hence

0 =
jl+1−1∑
j=jl

[
− 2wj(vj − µj)− λj + λj−1

]

= −2
jl+1−1∑
j=jl

wj(vj − µ)

where µ = µjl = · · · = µjl+1−1.
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Isotonic Regression (cont.)

Hence

µ =

jl+1−1∑
j=jl

wjvj

jl+1−1∑
j=jl

wj

is the value for this block that satisfies the first and fourth Kuhn-
Tucker conditions. The same goes for every block. The estimate
for the block is the average of the data values for the block.

So that gives us an algorithm: try all possible partitions into
blocks. There is exactly one such partition that satisfies pri-
mal feasibility (makes an increasing function). And that is the
solution.
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Isotonic Regression (cont.)

The pool adjacent violators algorithm (PAVA) is much more ef-
ficient.

1. Initialize. Set µ = v. Every point is a block by itself.

2. Test. If µ satisfies primal feasibility stop. Have solution.

3. Pool. Since test fails, there exist adjacent blocks that violate
primal feasibility. Pool them, setting the estimate for the new
block to be the average of all data for it.

4. go to 2.
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Exponential Families

One-parameter exponential family has log likelihood

l(θ) = xθ − c(θ)

and derivatives

l′(θ) = x− c′(θ)

l′′(θ) = −c′′(θ)

The differentiation under the integral sign identities

Eθ{l′(θ)} = 0

varθ{l′(θ)} = −Eθ{l′′(θ)}
prove

Eθ(X) = c′(θ)

varθ(X) = c′′(θ)
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Exponential Families (cont.)

From this it follows that the mean value parameter

µ = Eθ(X) = c′(θ)

is a strictly increasing function of the natural parameter θ, be-

cause the derivative of the map c′ : µ→ θ is c′′, which is positive,

being a variance.

Hence if θi are the natural parameters and µi the mean value

parameters, we have θi ≤ θj if and only if µi ≤ µj.
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Isotonic Regression and Exponential Families

Now we assume Yi all have distributions in the same one-parameter
exponential family, and θi are the natural parameters.

We do isotonic regression, maximum likelihood subject to

θ1 ≤ θ2 · · · ≤ θn
The Lagrangian is

n∑
i=1

[
yiθi − c(θi)] +

n−1∑
i=1

λi(θi+1 − θi)

The first Kuhn-Tucker condition is

0 = yj − c′(θj)− λj + λj−1

= yj − µj − λj + λj−1

46



Isotonic Regression and Exponential Families (cont.)

The rest of the Kuhn-Tucker conditions are the same as when

we assumed the response was normal.

When we write µj = θj as on the preceding slide, the Kuhn-

Tucker conditions only involve the mean value parameters and

are the same regardless of the exponential family involved.

Hence the same algorithm, PAVA, solves all exponential family

isotonic regression problems!
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