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Markov Chains

X1, X2, . . . is Markov chain if conditional distribution of Xn+1
given X1, . . ., Xn depends on Xn only.

Chain has stationary transition probabilities if conditional distri-
bution of Xn+1 given Xn does not depend on n. Only kind of
interest in MCMC. Always tacitly assumed.

Joint distribution of chain determined by

• marginal distribution of X1, the initial distribution and

• conditional distribution of Xn+1 given Xn, the transition
probability.
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Why MCMC?

Suppose you have a computer program

Initialize state x

repeat {
Generate pseudorandom change to state x

Output state x

}

If the state x is the entire state of the computer program ex-

clusive of random number generator seeds (which we ignore,

pretending pseudorandom is random), this is MCMC.

x must be entire state. Otherwise need not be Markov.
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Stationarity

An initial distribution is stationary or invariant for a transi-

tion probability if the Markov chain they specify has the same

marginal distribution at all times.

We also indicate this by saying the transition probability preserves

the initial distribution.

Note: different from stationary transition probabilities. Every

chain we consider has that, but not all are stationary.

Consider initial distributions concentrated at one point.
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Reversibility

A transition probability is reversible with respect to an initial

distribution if the Markov chain X1, X2, . . ., they specify has the

distribution of pairs (Xn, Xn+1) exchangeable.

Reversibility implies stationarity.

5



Theory of GOFMC

Recall ”swindles” slides. You want to calculate

µ = E{g(X)}

but you can’t exactly.

Use

µ̂n =
1

n

n∑
i=1

g(Xi)

as your Monte Carlo approximation, where X1, X2, . . . are IID

simulations having the same distribution as X.
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Theory of GOFMC (cont.)

The central limit theorem says

µ̂n ≈ Normal(µ, σ2/n)

where

σ2 = var g(X)

can be estimated by

σ̂2
n =

1

n

n∑
i=1

(
g(Xi)− µ

)2
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Theory of MCMC

You want to calculate

µ = E{g(X)}

but you can’t exactly.

Use

µ̂n =
1

n

n∑
i=1

g(Xi)

as your Monte Carlo approximation, where X1, X2, . . . is a

Markov chain whose stationary distribution is the same as the

distribution of X.

8



Theory of MCMC (cont.)

The Markov chain central limit theorem says

µ̂n ≈ Normal(µ, σ2/n)

where

σ2 = var g(Xi) + 2
∞∑
k=1

cov
(
g(Xi), g(Xi+k)

)
, (1)

X1, X2, . . . in (1) being stationary, can be estimated by various

methods.
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AR(1) Example

Xn+1 = ρXn + Yn

where Yn are IID Normal(0, τ2) (Rweb example).

cov(Xn+k, Xn) = ρ cov(Xn+k−1, Xn) = ρkγ0

For stationary chain

var(Xn+1) = ρ2 var(Xn) + var(Yn)

or

γ0 = ρ2γ0 + τ2

so

γ0 =
τ2

1− ρ2
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AR(1) Example (cont.)

γ0 = τ2/(1− ρ2)

γk = ρkγ0

so

σ2 = γ0 + 2
∞∑
k=1

ρkγ0

= γ0

(
1 + 2

ρ

1− ρ

)

= γ0
1 + ρ

1− ρ
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Method of Batch Means

Divide chain into m batches of length b. Average the batches

µ̂b,k =
1

b

bk+b∑
i=bk+1

g(Xi)

Then

1

m

m−1∑
k=0

(µ̂b,k − µ̂n)2

estimates σ2/b (Rweb example).
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http://www.stat.umn.edu/geyer/8054/notes/ar1.html#batch


Method of Overlapping Batch Means

Divide chain into n− b+ 1 overlapping batches of length b. Av-

erage the batches

µ̂b,k =
1

b

k+b∑
i=k+1

g(Xi)

Then

1

n− b+ 1

n−b∑
k=0

(µ̂b,k − µ̂n)2

estimates σ2/b (Rweb example).
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Time Series Methods

Define

γk = cov
(
g(Xi), g(Xi+k)

)
where X1, X2, . . . are stationary, so

σ2 = γ0 + 2
∞∑
k=1

γk

Estimate γk

γ̂k =
1

n

n−k∑
i=1

(
g(Xi)− µ̂n

)(
g(Xi+k)− µ̂n

)
Plug in ????
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Naive Plug-In Doesn’t Work

For large k

var γ̂k ≈
1

n

γ2
0 + 2

∞∑
j=1

γ2
j


does not go to zero as k →∞ (Rweb example).

Infinite sum of random noise is a bad idea.
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Time Series Methods (cont.)

Theorem: For reversible chain

Γk = γ2k + γ2k+1

is strictly positive, strictly decreasing, strictly convex function of

k.

Can use to estimate

σ2 = −γ0 + 2
∞∑
k=0

Γk

(Rweb examples).
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Which Variance Estimate?

Any of them!

Most users of MCMC cannot be bothered to figure out the ac-

curacy of their MCMC estimates.

If they don’t care about their numbers, why should you?

Don’t follow their example.
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Creating Markov Chains

You have a distribution that you want to study by MCMC.

How do you set up a Markov chain having that as its stationary

distribution?

Basically, only one idea, Metropolis-Hastings-Green algorithm.
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Metropolis Update

Desired stationary distribution has unnormalized density h.

At x propose move to y with density q(x, · ) which is symmetric

q(x, y) = q(y, x).

Accept proposed move with probability

a(x, y) = min
(
1, r(x, y)

)
where

r(x, y) =
h(y)

h(x)
(2)

Otherwise reject proposed move, and chain stays at the same

position (Xn+1 = Xn). Not like rejection sampling !!!!!
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Metropolis-Hastings Update

Same as Metropolis except proposal density does not need to be

symmetric and

r(x, y) =
h(y)q(y, x)

h(x)q(x, y)
(3)

(clearly Metropolis is special case).
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Metropolis-Hastings Theorem

Want to prove reversibility with respect to h.

If Xn is current state and Yn is proposal, have Xn = Xn+1 when-

ever proposal is rejected. Clearly, the distribution of (Xn, Xn+1)

given rejection is exchangeable.

So only need to work on part given acceptance. Need to show

E{f(Xn, Yn)a(Xn, Yn)} = E{f(Yn, Xn)a(Xn, Yn)}

for any function f that has expectation (assuming Xn has desired

stationary distribution).
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Metropolis-Hastings Theorem (cont.)

That is, must show can interchange arguments of f in∫∫
f(x, y)h(x)a(x, y)q(x, y) dx dy

and that follows if can interchange x and y in

h(x)a(x, y)q(x, y)

Say r(x, y) ≤ 1, hence r(x, y) = a(x, y) and a(y, x) = 1. Then

h(x)a(x, y)q(x, y) = h(x)r(x, y)q(x, y)

= h(y)q(y, x)

= h(y)q(y, x)a(y, x)

QED (quite easily derived).
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Gibbs Update

Proposal is from a conditional distribution of the desired station-

ary distribution.

Now proof is trivial: marginal times conditional equals joint.

Suppose Xn has the desired stationary distribution.

Suppose conditional distribution Xn+1 given f(Xn) is same as

the conditional distribution of Xn given f(Xn).

Then the pair (Xn, Xn+1) is conditionally exchangeable given

f(Xn). Hence unconditionally exchangeable.
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Mixing and Matching

Composition

Let P1, . . ., Pk be update mechanisms (computer code) and let
P1P2 · · ·Pk denote the composite update that consists of these
updates done in order.

If each Pi preserves a distribution, then so does P1P2 · · ·Pk.

Palindromic Composition

Note P1P2 · · ·Pk not reversible unless equal in distribution to
PkPk−1 · · ·P1.

Then we call it palindromic.
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Mixing and Matching (cont.)

State-Independent Mixing

Let Py be update mechanisms (computer code) and let E(PY )

denote the update that consists of doing a random one of these

updates: generate Y from some distribution and do PY .

Clearly, if Y is independent of the current state and each Py

preserves the same distribution, then so does E(PY ). (If Xn and

Xn+1 both have the distribution π conditional on Yn, then both

have the distribution π unconditionally.)

“Mixture” is used here in the sense of mixture models.
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Mixing and Matching (cont.)

Subsampling

P k is the update that consists of the update P repeated k times.

If

X1, X2, X3, . . .

is a Markov chain with update P , then

Xk, X2k, X3k, . . .

is a Markov chain with update P k.
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Mixing and Matching (cont.)

Random Subsampling

Define P0 is to be the identity update that does nothing.

Let K be a nonnegative integer random variable and consider
E(PK).

If K1, K2, . . . are IID random variables with the same distribution
as K and

X0, X1, X2, X3, . . .

is a Markov chain with update P , then

XK1
, XK1+K2

, XK1+K2+K3
, . . .

is a Markov chain with update E(PK).
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Mixing and Matching (cont.)

One Component at a Time

The traditional way to do Gibbs updates is to sample from the

conditional distribution of one component of the state given the

rest. This gives k distinct updates if there are k components.

Combine by composition, mixing, or both.

Despite popularity, one-component-at-a-time has no computa-

tional virtues.
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Gibbs Sampler

An MCMC scheme consisting entirely of Gibbs updates combined
by composition, mixing, or both is called a “Gibbs sampler.”

Despite popularity, Gibbs sampler has no computational virtues.

Peter Clifford discussing the afternoon of the 11 Bayesians said

Currently [1993], there are many statisticians trying to
reverse out of this historical cul-de-sac.

To use the Gibbs sampler, we have to be good at ma-
nipulating conditional distributions . . . this rather brings
back the mystique of the statisticians.
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Metropolis-Hastings Algorithm

An MCMC scheme consisting entirely of Metropolis-Hastings up-

dates combined by composition, mixing, or both is called an

instance of the “Metropolis-Hastings algorithm.”

Acceptance Rate

Generally, one can make the acceptance rate as high as one

pleases (propose little baby steps) or as low (propose big giant

steps). Neither is a good idea. It’s a Goldilocks problem.

Two different groups studying two different toy problems con-

cluded that 20% acceptance is about right. In non-toy problems

your mileage may vary.
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http://en.wikipedia.org/wiki/Goldilocks
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One Long Run

If one long run of the Markov chain doesn’t “work” — adequately

represent the stationary distribution — then many short runs

certainly won’t work; it’s merely IID sampling from the initial

distribution slightly fuzzed.

The subject of several rants.

Not to say you can’t make as many runs as you please. But all

actual inference should be from one long run.
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Burn In

Idea of throwing away an initial segment of the Markov chain —

part before it “reaches equilibrium.”

Just a different kind of initial distribution. No magic.

Neither necessary nor sufficient for good MCMC.

Also subject of a rant.
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MCMC package for R

The R contributed package mcmc (on-line help) has just two func-

tions

• metrop (on-line help) and

• olbm (on-line help).

It also has a (package vignette) that gives a complete discussion

of one problem, which was on a qualifying exam.
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Design of MCMC Package

The mcmc package also has a (design document) that gives the
rationale for the metrop being the way it is.

Design Criteria

User supplies R function that evaluates log unnormalized density
(LUD), simulate Markov chain having that LUD as equilibrium
distribution.

Nothing user can screw up except that function — wrong LUD
function, wrong equilibrium distribution.

Output averages arbitrary function of state f(Xn) where f is R
function supplied by user.
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Testing MCMC

Monte Carlo algorithms are almost impossible to test. MCMC

even worse.

Output is random. Often nothing is known about equilibrium dis-

tribution except what is learned from MCMC sampler. If sampler

is buggy, know nothing!
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Hats

You’ve got three hats: statistics, MCMC, computer.

When you are wearing your statistics hat, you think statistical

issues, you think about the statistical meaning of the state vari-

ables.

When you are wearing your MCMC hat, you ignore statistical

meaning. Given a meaningless problem, think how to construct

an effective MCMC sampler for it and about MCMC error.

When you are wearing your computer hat, you ignore the “ran-

dom” in “pseudorandom”. Does this code correctly implement

an instance of the Metropolis-Hastings-Green (MHG) algorithm?
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Extended State

Let Xn denote state at time n, Yn proposal at time n, and Un a
Uniform(0,1) random variable independent of Xn and Yn.

MHG algorithm sets

Xn+1 =

Yn Un < r(Xn, Yn)

Xn otherwise

where r(x, y) is the MHG ratio (2) or (3).

Let An denote the indicator (zero-or-one) of event Un < r(Xn, Yn).

Extended state is (Xn, Yn, Un, An). Extended chain still Markov.
Yn+1, Un+1, and An+1 are conditionally independent of past
history conditional on Xn+1, which is function of (Xn, Yn, Un).
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Using Extended State

Acceptance rate is

α̂n =
1

n

n∑
i=1

Ai

is just another MCMC estimate (of the true unknown acceptance

rate). Use batch means or other MCMC variance estimator to

get accuracy.

Can use extended state to investigate many properties of sampler

that cannot be studied from ordinary state.
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Testing MCMC (cont.)

Given particular pseudorandom number generators that sample

the Un and the conditional distribution of Yn given Xn, the algo-

rithm is entirely deterministic.

Testing need not deal with randomness.

39



Testing MCMC (cont.)

Suppose have (hopefully fast) MCMC scheme written in C that

uses the R random number generators (either C dynamically

loaded into R or uses R standalone library).

Also write (slow) implementation in R, ideally in very simple

transparently correct R that does bit-for-bit identical computa-

tions to the C version.

Then can believe that C is correct (to the extent that the R is

transparently correct)!
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Testing MCMC (cont.)

Alternative testing methodology. Two implementers, without

consultation (!) implement two implementations.

If answers agree to within Monte Carlo standard errors (MCSE)

when sample sizes are so large that MCSE are negligible, then

perhaps both are correct.

Doesn’t work for two implementations by same person (possible

common failure mode: wrong ideas).
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Debugging MCMC

Without extended state, debugging MCMC is hopeless.

With extended state, all details of the algorithm can be checked.

• Does proposal have correct conditional distribution?

• Is LUD calculated correctly?

• Is MHG ratio calculated correctly?

• Are decisions correctly made in Metropolis rejection?
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Tempering: Parallel, Serial, and Umbrella

MCMC problem is “hard” when obvious samplers don’t work.

Need better sampler.

One idea: embed problem in sequence of problems. Solve all

simultaneously, using easier problems to help with harder ones.

Write h1, . . . , hm for the unnormalized densities of the sequence.

May have hi(x) = h(x)βi like simulated annealing. Not necessary.
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Parallel Tempering

If S is state space of problem of interest, domain of each hi, then

Sm is state space of parallel tempering (PT) chain.

Unnormalized density of stationary distribution of PT chain is

product of hi, so components x1, . . ., xm of PT state are asymp-

totically independent and and xi has stationary distribution hi.

Note: subscripts here are for sequence of problems not time.

Holds until further notice.
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Parallel Tempering Updates

Single Component

Update xi preserving hi.

Swap

Choose a random pair (i, j) of indices from some symmetric
mechanism — equally likely to choose (i, j) and (j, i).

Propose swap xi ←→ xj.

MHG ratio

r(i, j) =
hi(xj)hj(xi)

hi(xi)hj(xj)
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Parallel Tempering (cont.)

Swaps connect state (x1, . . . , xm) of PT chain. One Markov chain

with state space Sm.

Mixing properties of PT chain intermediate between those of

chains for separate problems.

If distribution of interest is slowly mixing, then PT improves it.

Easy to do. Popular. Works well.
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Parallel Tempering (cont.)

Inference is easy. If we only consider the output for one distribu-

tion of the m distributions being sampled. Then we can consider

it a representative sample from that distribution.

We are looking at functions f(x1, . . . , xm) whose expectation we

want to calculate. If we are only interested in the j-th distribution

then we only look at functions g(xj) of that component only.

All of our theory about variance estimation applies.
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Problems with Parallel Tempering

Doesn’t estimate normalizing constants for separate distributions

hi. Doesn’t need to. Just like MHG for one distribution.

Remembers too much state, for m distributions rather than one.

Neither is fatal, but limit applicability.
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Serial Tempering

Not the established name. First parallel tempering was invented

but not called that. Then simulated tempering was invented.

Then parallel tempering was named by analogy with simulated

tempering.

But anybody that knows anything about electronic circuits knows

that the opposite of parallel is serial. Hence the name used here.

Nice that ST can stand for either serial or simulated.

49



Serial Tempering (cont.)

If S is state space of problem of interest, domain of each hi, then

S × {1, . . . ,m} is state space of ST chain.

Unnormalized density of stationary distribution of ST chain is

h(x, i) = hi(x)ci

where the ci are arbitrary constants chosen by user (more on this

later).

Asymptotic distribution of ST state (X, I) — both bits random

— is such that conditional distribution of X given I = i is distri-

bution with unnormalized density hi.
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Serial Tempering Updates

Single Component (Update X)

Update xi preserving hi.

Swap (Update I)

Choose a random index j for new value of I from some symmetric

mechanism — equally likely to choose j when I = i and choose

i when I = j.

MHG ratio

r(i, j) =
hj(x)cj
hi(x)ci
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Serial Tempering (cont.)

Inference is a bit more complicated than for PT.

The ST chain can be written (Xt, It), t = 1, 2, . . . .

If we are only interested in a particular distribution hk, then we

want to only look at Xt values when It = k.

Hence we look at

ν̂n =
1

n

n∑
t=1

f(Xt)1(It = k)
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Serial Tempering (cont.)

Each hi has its own normalizing constant

di =
∫
hi(x) dx

and the unnormalized density

h(x, i) = hi(x)ci

has normalizing constant

d =
∑
i

∫
hi(x)ci dx =

∑
i

dici

So h/d and hi/di are normalized densities.
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Serial Tempering (cont.)

By the law of large numbers, ν̂n converges to its expectation

under the stationary distribution.

ν =
∑
i

∫
f(x)1(i = k)

hi(x)ci
d

dx

=
ck
d

∫
f(x)hk(x) dx

=
ckdk
d
Ek{f(X)}
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Serial Tempering (cont.)

Summary:

ν̂n =
1

n

n∑
t=1

f(Xt)1(It = k)→
ckdk
d
Ek{f(X)}

and similarly

δ̂n =
1

n

n∑
t=1

1(It = k)→
ckdk
d

and

ν̂n/δ̂n → Ek{f(X)}
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Serial Tempering (cont.)

End of “inference is a bit more complicated than for PT.”

To estimate expectations with respect to one of the distributions

having density hk, we use a ratio estimator ν̂n/δ̂n.

Hence we have to use the delta method.
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Tuning Serial Tempering

From

1

n

n∑
t=1

1(It = k)→
ckdk
d

it is clear that ST doesn’t work unless cidi is about the same size

for all i. This must be accomplished by trial and error.

Increase ci for i that don’t appear very often.

Repeat adjustment until all i appear roughly equally often.
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Tuning Serial Tempering (cont.)

ci don’t have to be perfectly adjusted.

So long as all i appear in sample It, t = 1, 2, . . . with reasonable

frequency, ST works.

(Works for any ci eventually, but only in reasonable time when

ci adjusted well.)
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Estimating Normalizing Constants

From

1

n

n∑
t=1

1(It = k)→
ckdk
d

also see that ST estimates relative normalizing constants dk/d.

This is usually all that is needed.

No need for delta method here.
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Importance Sampling

Recall ”swindles” slides. You want to calculate

Eθ{f(X)} = Eh

{
f(X)

hθ(X)

h(X)

}
valid so long as no division by zero and hθ and h are normalized
densities.

GOFMC and MCMC are no different here

1

n

n∑
t=1

f(Xt)
hθ(Xt)

h(Xt)
→ Eθ{f(X)}

simultaneously for all θ where X1, X2, . . . is a Markov chain with
stationary distribution having density h.

Fairly useless in MCMC because requires hθ and h normalized.
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Importance Sampling (cont.)

Same trick used in ST allows use of unnormalized densities. If

hθ and h are unnormalized, then

1

n

n∑
t=1

f(Xt)
hθ(Xt)

h(Xt)
→ d(θ)Eθ{f(X)}

where d(θ) is ratio of normalizing constants of hθ and h, and

1

n

n∑
t=1

f(Xt)
hθ(Xt)

h(Xt)

1

n

n∑
t=1

hθ(Xt)

h(Xt)

→ Eθ{f(X)}
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Importance Sampling (cont.)

Unnormalized importance weights hθ(x)/h(x).

Make sum to one

wθ(x) =
hθ(x)/h(x)∑n

t=1 hθ(Xt)/h(Xt)

get normalized importance weights.

Then
n∑
t=1

f(Xt)wθ(Xt)→ Eθ{f(X)}

is the same formula as before in different notation.
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Importance Sampling (cont.)

Method of normalized importance nice to use even in GOFMC

with normalized densities, because then empirical estimates obey

all laws of probability. Other estimate

1

n

n∑
t=1

f(Xt)
hθ(Xt)

h(Xt)

does not obey the complement rule and expectation of a con-

stant is that constant, because importance weights fail to sum

to one.
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Umbrella Sampling

Sometimes want to sample from mixture of distributions or to

interpolate between distributions of ST or PT. Very hard to

do with PT. Easy with ST. There are two methods to apply

importance sampling to ST.
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Umbrella Sampling (Method I)

Use

h(x) =
∑
i

h(x, i) =
∑
i

hi(x)ci

as unnormalized importance sampling density. Importance sam-

pling formula now

1

n

n∑
t=1

f(Xt)
hθ(Xt)∑
i hi(Xt)ci

1

n

n∑
t=1

hθ(Xt)∑
i hi(Xt)ci

→ Eθ{f(X)}
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Umbrella Sampling (Method II)

1

n

n∑
t=1

f(Xt)
hθ(Xt)

hIt(Xt)cIt
1

n

n∑
t=1

hθ(Xt)

hIt(Xt)cIt

→ Eθ{f(X)}

also works. Numerator converges to

E

{
f(X)

hθ(X)

h(X, I)

}
=
∑
i

∫
f(x)

hθ(x)

h(x, i)
·
h(x, i)

d
dx

=
md(θ)

d
Eθ{f(X)}

where m is number of hi (must be finite) and d(θ) is the normal-

izing constant for θ.
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Umbrella Sampling (cont.)

No one knows which of Method I or Method II is better.
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Choice of Distributions

How does one chose the distributions h1, . . ., hm?

Acceptance rates can help here too. Geyer and Thompson
(1995) recommend that they be chosen so that acceptance rates
for “update I” proposals be about 20%. They also caution that
this rule of thumb may be wrong and exhibit a toy problem in
which any attempt to get acceptance rates below 60% makes
the sampler fail to work.

The same Goldilocks idea we saw in choosing scale for Metropolis
proposals. We don’t want the steps to be too small or too large.

Small and large here refer to distance between distributions,
which is very hard to visualize. Acceptance rates seem to be
the only natural guide.
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Does Tempering Always Work?

No. There is no magic in MCMC. Not PT or ST, not anything

else.

Geyer and Thompson (1995) give a real application where ST

apparently works and PT does not.

ST always works or diagnoses its own failure to work if the tuning

constants c1, . . ., cm are chosen correctly (by trial and error).

But ST can appear to work when the tuning constants are erro-

neous and it is in fact not working.
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Perfect Sampling

An idea for producing IID samples from the stationary distribu-

tion of a Markov chain (Propp and Wilson, 1996).

First we consider toy version, useless in practice.

Consider finite state space Markov chain that we start at a large

negative time X−T , X−T+1, X−T+2, . . . .

Also consider the IID sequence U−T , U−T+1, U−T+2, . . . . where

Ui contains all of the pseudorandom variates needed to move

from Xi to Xi+1.
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Perfect Sampling (cont.)

Each Xi+1 is a deterministic function of Xi and Ui, hence given

ω = (U−T , U−T+1, . . .) and X−T = x, the entire future history

X−T+1(ω, x), X−T+2(ω, x) is determined.

Now consider future histories for one fixed ω and all possible

initial states x.

Suppose it happens that X0(ω, x) does not depend on x. No

matter where you start at time −T , for this particular sequence

of pseudorandom variates, you are always at the same place at

time zero.

Say chain has coupled by time zero if this happens.
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Perfect Sampling (cont.)

If chain has coupled by time zero, then X0(ω) is a realization of

the stationary distribution of the chain!

Why? The chain can be made stationary by choosing the initial

distribution at time −T to be the stationary distribution. Then

the state at time zero also has the stationary distribution. But

the state at time zero is X0(ω) regardless of the initial distribu-

tion.

Toy problem because to verify coupling have to see what happens

for chain started at every possible state x at time −T .
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Perfect Sampling (cont.)

Now suppose state space is also a complete lattice where we
denote the partial order . and we denote the top and bottom
elements > and ⊥, respectively.

The only partial order actually used is the coordinatewise one if
the state is a vector x = (x1, . . . , xd) then

x . y if and only if xi ≤ yi for all i

(Caution: subscripts are coordinates not time).

This partial order gives rise to a complete lattice if and only if
each coordinate has an upper and lower bound that is a possible
value. Then the top element > is the state that has all coordi-
nates at the maximum and the bottom element ⊥ is the state
that has all coordinates at the minimum.
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Perfect Sampling (cont.)

And suppose update preserves the partial order

Xt(ω, x) . Xt(ω, y) implies Xt+1(ω, x) . Xt+1(ω, y)

This is easily accomplished if the partial order is the coordinate-

wise one, the Gibbs sampler is used, and the one-dimensional

conditionals are sampled using the inversion method.

Now to check coupling at time zero only need to check that

chains started at top and bottom elements have coupled. Chains

started at all other states are sandwiched in between, thus have

coupled too.
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Perfect Sampling (cont.)

Not easy to find perfect sampling scheme in complicated prob-

lem. Only examples in literature are either toy problems or have

high degree of symmetry. No general methodology for “perfec-

tizing” an arbitrary problem.
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Perfect Sampling Algorithm

In order to choose −T sufficiently large for coupling at time

zero we may have to try many different −T . Thus we change

notation.

Fix backwards infinite sequence

ω = {. . . , U−2, U1, U0}

Let X0(ω, x, t) denote the state at time zero when the chain

is started in state x and time t and pseudorandom variates are

taken from ω.
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Perfect Sampling Algorithm (cont.)

Repeat the following.

• Fix backwards infinite sequence ω = {. . . , U−2, U1, U0}.

• Find −T such that X0(ω,>,−T ) = X0(ω,⊥,−T ).

• Output X0(ω,>,−T ).

Produces IID samples from stationary distribution.
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Perfect Sampling Algorithm (cont.)

Crucial point hidden in notation.

Try time −T1. Start at x−T1
= >. Save seed of random number

generator (RNG). Run chain from time −T1 to time zero. Start
at x−T1

= ⊥. Use same RNG seed. Run chain from time −T1 to
time zero.

If coupled by time zero, done. Otherwise, try time −T2 < −T1.

Start at x−T2
= >. Save RNG seed. Run chain from time −T2 to

time −T1. Switch RNG seed to one used in first try. Run chain
from time −T1 to time zero. Do same starting at x−T2

= ⊥.

If coupled by time zero, done. Otherwise, try time −T3 < −T2.
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Perfect Sampling Algorithm (cont.)

Every time an update is done from time t to time t + 1 the

same Ut must be used! Otherwise not doing perfect sampling or

anything else having a justification.

Eventually find some starting point sufficiently far back in the

past so that the chains started at > and ⊥ have coupled by time

zero.

Then done. Output the state at time zero.

If never find such a point sufficiently far back in the past before

giving up for lack of patience, then method fails.
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Perfect Sampling as MCMC Diagnostic

Perfect sampling is the only MCMC diagnostic actually guaran-

teed to diagnose non-convergence.

It diagnoses non-convergence by failing to produce the requested

number of IID samples in the time one has patience to wait!

Otherwise, of no use. Perfectizing an MCMC sampler only slows

it down.

If the sampler works, then ordinary MCMC is more efficient than

same sampler perfectized.

Perfect sampling only valuable when it doesn’t work.
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Measure Theory

Despite strenuous efforts to avoid measure theory, we have finally

come to the point where a little bit seems necessary. At least I

can’t figure out how to avoid it.

In measure theory, probability distributions are represented by

set functions (functions whose arguments are sets). Events are

subsets of the state space, and a probability measure P maps

events A to real numbers P (A) which are between zero and one.

P (A) is the probability of the event A.
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Abstract Integration

If X is a random element of whose distribution is P , then we

write

E{g(X)} =
∫
g(x)P (dx) (4)

You are assumed to know what expectation means. The right-

hand side is just another notation for it.

If X is a continuous random variable with probability density

function f , then

E{g(X)} =
∫
g(x)f(x) dx

so the right-hand side of (4) is just ordinary integration in this

case.
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Abstract Integration (cont.)

If X = (X1, X2, X3) is a continuous random vector with proba-

bility density function f , then

E{g(X)} =
∫∫∫

g(x1, x2, x3)f(x1, x2, x3) dx1 dx2 dx3

so the right-hand side of (4) is a triple integral in this case.

If X is a discrete random element having state space S and

probability mass function f , then

E{g(X)} =
∑
x∈S

g(x)f(x)

so the right-hand side of (4) is a sum in this case.
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Abstract Integration (cont.)

So abstract integration provides one unifying notation for the

disparate special cases discussed in master’s level theory.

But it does more. If X = (X1, X2) is a random vector having

one continuous component X1 and one discrete component X2,

then

E{g(X)} =
∑
x2∈S

∫
g(x1, x2)f(x1, x2) dx1

when f is defined appropriately, although we don’t have a mas-

ter’s level name for it (probability mass-density function?)

If X is a random object such that E{g(X)} makes sense, then

we use the right-hand side of (4) as another notation for it.
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Signed Measures

If P and Q are probability measures and a and b are real numbers,

then

m(A) = aP (A) + bQ(A)

defines a set function that is not necessarily a probability mea-

sure.

If S is the state space, then P (S) = Q(S) = 1, but m(S) = a+ b.

m is called a signed measure, and∫
g(x)m(dx) = a

∫
g(x)P (dx) + b

∫
g(x)Q(dx)
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Positive Measures, Subprobability Measures

A signed measure m is a positive measure if

m(A) ≥ 0, for all events A.

A signed measure m is a subprobability measure if

0 ≤ m(A) ≤ 1, for all events A.
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Conditional Probability Measures, Kernels

A conditional probability measure is just a probability measure

that varies in accordance with some condition.

It is traditional in Markov chain theory to write P (x,A) to mean

for each fixed x, the function A 7→ P (x,A) is a probability mea-

sure.

The relation to conditional expectation is

E{g(Xn+1) | Xn = x} =
∫
g(y)P (x, dy)

The general notion is called a kernel. Write K(x,A) to mean for

each fixed x, the function A 7→ K(x,A) is a signed measure.
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Reversibility and Preservation Revisited

A kernel K is reversible with respect to a signed measure m if∫∫
g(x)h(y)m(dx)K(x, dy) =

∫∫
h(x)g(y)m(dx)K(x, dy)

for all bounded functions g and h.

A kernel K is Markov if A 7→ K(x,A) is a probability measure for
each fixed x.

A Markov kernel P preserves a probability measure π if∫∫
g(y)π(dx)P (x, dy) =

∫
g(x)π(dx)

for every bounded function g.

Reversibility with respect to π implies preservation of π.
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State-Dependent Mixing

Markov update mechanisms are represented by Markov kernels.

Have family of updates Pi, i ∈ I, choose one at random with

probability ci(x) that depends on the current state x.

Mixture kernel is

P (x,A) =
∑
i∈I

ci(x)Pi(x,A)

Not a theorem that each Pi preserves π implies P preserves π.
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State-Dependent Mixing (cont.)

A kernel K is sub-Markov if A 7→ K(x,A) is a subprobability

measure for each fixed x.

Recall: choose update kernel Pi at random with probability ci(x)

Define

Ki(x,A) = ci(x)Pi(x,A)

If each Ki is reversible with respect to π, then mixture kernel

P (x,A) =
∑
i∈I

ci(x)Pi(x,A) =
∑
i∈I

Ki(x,A)

is reversible with respect to π and hence preserves π.
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Identity Kernel

I(x,A) denotes identity kernel, which is Markov, corresponds to

update that does nothing, so Xn+1 = Xn almost surely

I(x,A) =

1, x ∈ A
0, x /∈ A

The “kernel” way to write indicator functions: I(x,A) = IA(x).

Identity kernel is reversible with respect to and preserves every

signed measure.
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State-Dependent Mixing (cont.)

Why? Consider Bayesian model selection with Hasse diagram

∅

{1} {2} {3}

{1,3}{1,2} {2,3}
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Sets indicate variables in model and number of parameters.
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State-Dependent Mixing (cont.)

Simplest idea is to have one elementary update for each arrow

in diagram.

Updates need to be reversible so can go both ways, for example

if in model ∅ propose point in model {2} and vice versa.

This particular update makes no sense when current state x is

not in either model ∅ or model {2}. Might as well choose with

probability zero in that case.

Hence state-dependent mixing. Only choose elementary updates

in states where they make sense.
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Abstract Densities

If m and n are signed measures, and

m(A) =
∫
A
f(x)n(dx), for all events A

we say f is the density of m with respect to n.

Sometimes write

f =
dm

dn

and call f the Radon-Nikodym derivative of m with respect to n.

Ordinary probability density function is abstract density with re-
spect to Lebesgue measure (length in R, volume in Rd).

Ordinary probability mass function is abstract density with re-
spect to counting measure (number of points in event).
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Abstract Densities (cont.)

If m has density f with respect to n, then

n(A) = 0 implies m(A) = 0, for all events A (5)

When (5) holds, we say m is dominated by n. The Radon-

Nikodym theorem says, that m dominated by n implies m has a

density with respect to n, hence the name.

For us, main point is that abstract densities don’t always exist.
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Generalized Abstract Densities

For any signed measures m and n, let λ be any measure that

dominates both (for example, m+ n), define

f =
dm

dλ
and g =

dn

dλ

which always exist by Radon-Nikodym theorem and

h(x) =

f(x)/g(x), g(x) > 0

∞, g(x) = 0
(6)

Then write
dm

dn
= h

regardless of whether ordinary Radon-Nikodym derivative exists.
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Generalized Abstract Densities (cont.)

With these definitions

f =
dm

dλ
and g =

dn

dλ
and h =

dm

dn
=
f

g

define

C = {x : g(x) > 0 } = {x : h(x) <∞}

then

m(A ∩ C) =
∫
A∩C

f(x)λ(dx)

=
∫
A
h(x)g(x)λ(dx)

=
∫
A
h(x)n(dx)

So h is density of the part of m that is on C, which supports n.
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Metropolis-Hastings-Green Elementary Update

Have proposal kernel Qi(x,A) chosen with probability ci(x).

Current state is x. Generate proposal y from Qi(x, · ).

Unnormalized measure to preserve is η. Define measures

m(B) =
∫∫

IB(x, y)η(dx)ci(x)Qi(x, dy)

mrev(B) =
∫∫

IB(y, x)η(dx)ci(x)Qi(x, dy)

and define

r =
dmrev

dm

then accept proposal with probability min
(
1, r(x, y)

)
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Metropolis-Hastings-Green Elementary Update (cont.)

Can write

r(x, y) =
ci(y)η(dy)Qi(y, dx)

ci(x)η(dx)Qi(x, dy)

(sloppy shorthand for actual definition).

Note proposal can be anything, arbitrary kernel Qi(x,A).

Only way to generalize would be to allow state-dependent mixing

over continuum rather than countable set of Qi(x,A).
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Metropolis-Hastings-Green Elementary Update (cont.)

If η(N) = 0, then no proposal in N can be accepted because

mrev(A × N) = 0 for any set A, hence r(x, y) = 0 almost surely

for y ∈ N .

Conclusion: if initial state of chain in not in N , then chain forever

avoids N .
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Metropolis-Hastings-Green Elementary Update (cont.)

All MCMC ideas discussed above in applications are special cases

of Metropolis-Hastings-Green (MHG).

One-variable-at-a-time Metropolis-Hastings updates are special

cases: proposal only changes one coordinate.

Gibbs updates are special cases: when proposal is Gibbs, then

MHG ratio is always one, and proposal is always accepted.
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Metropolis-Hastings-Green Theorem

Define

a(x, y) = min
(
1, r(x, y)

)
b(x) = 1−

∫
a(x, y)Qi(x, dy)

Kernel describing MHG elementary update is

Pi(x,A) = b(x)I(x,A) +
∫
A
a(x, y)Qi(x, dy)

Kernel we must verify is reversible with respect to η is

Ki(x,A) = ci(x)Pi(x,A)

that is ∫∫
g(x)h(y)η(dx)ci(x)Pi(x, dy)

is unchanged when g and h are swapped.
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Metropolis-Hastings-Green Theorem (cont.)

∫∫
g(x)h(y)ci(x)η(dx)Pi(x, dy)

=
∫
g(x)h(x)b(x)ci(x)η(dx)

+
∫∫

g(x)h(y)a(x, y)ci(x)η(dx)Qi(x, dy)

Clearly enough to show last term is unchanged when g and h are

swapped.
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Metropolis-Hastings-Green Theorem (cont.)

∫∫
g(x)h(y)a(x, y)ci(x)η(dx)Qi(x, dy)

=
∫∫

g(y)h(x)a(y, x)ci(y)η(dy)Qi(y, dx)

=
∫∫

g(y)h(x)a(y, x)mrev(dx, dy)

=
∫∫
r(x,y)<∞

g(y)h(x)a(y, x)mrev(dx, dy)

=
∫∫
r(x,y)<∞

g(y)h(x)a(y, x)r(x, y)m(dx, dy)

=
∫∫

g(y)h(x)a(y, x)r(x, y)m(dx, dy)

=
∫∫

g(y)h(x)a(y, x)r(x, y)ci(x)η(dx)Qi(x, dy)
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Metropolis-Hastings-Green Theorem (cont.)

Enough to show

a(y, x)r(x, y) = a(x, y) whenever r(x, y) <∞ (7)

Case I: r(x, y) ≤ 1. Implies a(x, y) = r(x, y) and a(y, x) = 1, in

which case (7) holds.

Case II: 1 < r(x, y) <∞. Implies a(x, y) = 1 and

a(y, x) = r(y, x) =
1

r(x, y)

in which case (7) holds again.
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Spatial Point Processes

Geyer and Møller (1994) predates Green (1995).

Spatial point process is random number of points in region A

with finite measure (length, area, volume, . . .), each point having

random position.

A homogeneous Poisson process has a Poisson distributed num-

ber of points and the locations of the points are independent and

identically and uniformly distributed conditional on the number.
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Non-Poisson Spatial Point Processes

We consider processes having unnormalized densities hθ with re-

spect to the Poisson processes.

Normalizing constant is

c(θ) =
∞∑
n=0

µne−µ

n!

∫
hθ(x)λn(dx)

where λn is measure on An (area, length, volume, . . .).
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Strauss Process

Exponential family with two natural statistics t1(x) is number of

points in x and t2(x) is number of pairs of points whose distance

apart is less than d, which is treated as known constant, not

parameter to estimate.

Unnormalized densities

hθ(x) = et1(x)θ1+t2(x)θ2
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Strauss Process Normalizing Constant

If θ2 ≤ 0, then

c(θ) =
∞∑
n=0

µne−µ

n!

∫
hθ(x)λn(dx)

≤
∞∑
n=0

µne−µ

n!
· enθ1

∫
λn(dx)

=
∞∑
n=0

µne−µ

n!
· enθ1λ(A)n

≤ exp
[
µ+ eθ1 + λ(A)

]
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Strauss Process Normalizing Constant (cont.)

If θ2 > 0, consider region B ⊂ A so small that any pair of points

in B has distance apart less than d, then

c(θ) =
∞∑
n=0

µne−µ

n!

∫
hθ(x)λn(dx)

≥
∞∑
n=0

µne−µ

n!
· exp

[
nθ1 +

n(n− 1)

2
θ2

] ∫
B
λn(dx)

=
∞∑
n=0

µne−µ

n!
· exp

[
nθ1 +

n(n− 1)

2
θ2

]
λ(B)n

=∞
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Strauss Process (cont.)

So Strauss process only exists when θ2 ≤ 0.

Similar sorts of checks have to be made for all models specified

by unnormalized densities. Similar situation in Bayesian inference

with improper priors.

Must check using calculus. Cannot simulate what does not exist.

MCMC does not do calculus.
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Geyer-Møller Update

Let n(x) denote number of points in x.

i-th update only valid when n(x) = i, in which case propose to
add a point ξ uniformly distributed in A, or when n(x) = i + 1,
in which case propose to delete the last point ξ.

State dependent mixing

ci(x) =


1/2, n(x) = i

1/2, n(x) = i+ 1

0, otherwise

For fixed x have
∑
i ci(x) = 1 except when n(x) = 0 (empty point

pattern) unless we define c−1(x) = 1/2 in this case and let the
“−1” update be the identity update (which does nothing).
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Geyer-Møller Update (cont.)

Let x ∪ ξ denote pattern when point ξ added to pattern x.

For move from x to y = x ∪ ξ when n(x) = k the MHG ratio is

r(x, y) =
1
2hθ(y)µk+1e−µ/(k + 1)!

1
2hθ(x)µke−µ/k!λ(A)

=
hθ(y) · µ · λ(A)

hθ(x) · (k + 1)

For move other way have

r(y, x) =
1

r(x, y)
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Non-Poisson Spatial Point Processes (cont.)

Traditional to use µ = 1 to describe density.

Also traditional to use hθ(x) that is symmetric under exchange

of points in pattern. In this case, the update that re-orders the

points randomly also preserves the stationary distribution.

Equivalent to picking random point to delete rather than last

point.
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Geyer-Møller Update (cont.)

With probability 1
2 propose upstep and with probability 1

2 propose

downstep except when at empty state, in which case propose

identity step.

For upstep, simulate ξ uniformly distributed in A. MHG ratio is

r(x, x ∪ ξ) =
λ(A)

n(x) + 1
·
hθ(x ∪ ξ)
hθ(x)

For downstep, pick ξ uniformly from among points in x. Let x\ξ
denote pattern x with point ξ deleted. MHG ratio is

r(x, x \ ξ) =
n(x) + 1

λ(A)
·
hθ(x \ ξ)
hθ(x)
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MHG with Jacobians and Augmented State Space

Green (1995) also proposed what is in some respects a special
case of MHG and in other respects an extension.

So widely used that many users think MHGJ is the general ver-
sion. This form of elementary update moves between parts of
the state space that are Euclidean spaces of different dimension,
hence often called “dimension jumping”.

Suppose state space is disjoint union

S =
⋃

m∈M
Sm

where Sm is a Euclidean space of dimension dm.

In Bayesian model averaging m indexes models and Sm is the the
parameter space of model m.
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MHGJ (cont.)

Have unnormalized density h(x), a nonnegative function on S.

MHGJ elementary updates move from one Sm to another.

Say i-th elementary update moves from Sm(i) to Sn(i).

Only makes sense to have ci(x) > 0 when x ∈ Sm(i) ∪ Sn(i).
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MHGJ (cont.)

Let Um(i) and Un(i) be Euclidean spaces such that

Sm(i) × Um(i) is same dimension as Sn(i) × Un(i)

Have proposal density qi(x, u), which describes conditional distri-

bution of u given x such that

u ∈ Um(i) when x ∈ Sm(i)

u ∈ Un(i) when x ∈ Sn(i)

Let gi be a function that maps points in Sm(i) × Um(i) to points

in Sn(i) × Un(i) and vice versa and that is its own inverse.

118



MHGJ (cont.)

MHGJ elementary update proposes u using qi(x, · ) and then

move to gi(x, u) = (y, v).

MHG ratio is

r(x, u, y, v) =
ci(y)h(y)qi(y, v)

ci(x)h(x)qi(x, u)
· det

(
∇gi(x, u)

)
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MHGJ Theorem

We verify ∫∫
s(x, u)t(y, v)ci(x)h(x)qi(x, u) dx du (8)

is unchanged when s and t are interchanged, where it is under-

stood that (y, v) = g(x, u).

This is more than we need to verify the reversibility required for

state-dependent mixing. That only requires (8) is unchanged

when s and t are interchanged in the special case where s and t

are functions of their first arguments only (unaugmented rather

than augmented state).
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MHGJ Theorem (cont.)

Could give direct proof that (8) is unchanged when s and t are
interchanged, but it would follow earlier proof exactly, merely
substituting augmented state for unaugmented state.

Hence we merely show that r(x, u, y, v) is appropriate general-
ized abstract derivative. Tricky because (y, v) is deterministic
function of (x, u).

Need to consider two distributions, with densities

fY,V (y, v) = ci(y)h(y)qi(y, v) (9a)

fX,U(x, u) = ci(x)h(x)qi(x, u) (9b)

each considers first variable as current state having stationary
distribution and second variable as proposed augmentation.
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MHGJ Theorem (cont.)

MHG ratio should be ratio of (9a) and (9b), but have to express

in terms of same variables first.

Do multivariate change of variable in (9a) changing variable from

(y, v) to (x, u) obtaining

fY,V (x, u) = ci(y)h(y)qi(y, v) · det
(
∇gi(x, u)

)
where, as before, (y, v) = g(x, u).

Now ratio is asserted MHG ratio.
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