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Numerical Linear Algebra is about

• solving linear equations

• matrix factorizations

• eigenvalues and eigenvectors
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Before We Begin

One thing you never want to do is matrix inversion.

Think of it as solving linear equations instead. Not

β̂ = (XTX)−1XTy

Rather, β̂ is the solution of

XTXβ = XTy
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Gaussian Elimination

Gaussian elimination is how you were taught to solve systems of
linear equations in high school.

• Solve one equation for one variable in terms of the rest.

• Plug that solution into the rest of the equations.

• The rest of the equations are now a system of equations with
one less variable.

• Repeat.
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Gaussian Elimination (cont.)

Eventual result

x1 = a12x2 + · · ·+ a1nxn + b1

x2 = a23x3 + · · ·+ a2nxn + b2
...

xn = bn

Now go from bottom up, plugging each solution into the one

above.
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LU Decomposition

The mathematical abstraction corresponding to Gaussian elimi-

nation is LU decomposition

M = LU

where L is lower triangular and U is upper triangular.

Triangular matrices are easy to invert or to solve, essentially

the plug-in on the preceding page, more formally called back

substitution.

6



Pivoting

LU decomposition can be very unstable (have large errors due

to inexactness of computer arithmetic) if done without pivoting

(carefully choosing the order in which variables are eliminated).

A permutation matrix P is an identity matrix whose rows have

been permuted. It contains exactly one 1 in each row and each

column.

Pivoting means we factor PM , which is M with rows permuted

(row pivoting), or MP , which is M with columns permuted (col-

umn pivoting).

7



Pivoting (cont.)

Permutation matrices are trivial to invert.

LU decomposition with pivoting gives factorizations

M = P−1LU

M = LUP−1
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Gram-Schmidt

Given a set of vectors v1, . . ., vn compute an orthonormal basis

by repeating the following.

• Orthogonalize

wk = vk −
k−1∑
i=1

uiu
T
i vk

• Normalize

uk =
wk√
wTk wk
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QR Decomposition

The mathematical abstraction corresponding to Gram-Schmidt

is QR decomposition

M = QR

where Q is orthogonal and R is right (upper) triangular.

Triangular matrices are easy to invert or to solve (back substi-

tution). Orthogonal matrices too (QT = Q−1).

QR also done with pivoting.
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QR Decomposition (cont.)

M = QR makes sense when the row dimension of M is at least

as large as the column dimension.

In the full QR factorization Q is square and R the same shape

as M .

In the reduced QR factorization R is square and Q the same

shape as M .
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QR Decomposition: Application

Least Squares

Normal equations for least squares are

MTy = MTMβ

or

RTQTy = RTQTQRβ = RTRβ

If we use the reduced QR factorization and R is full rank (which

happens when M is full rank), then

Rβ = QTy

and solving to get least squares estimates is back substitution.
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Eigenvalues and Eigenvectors

The words annoy language purists, being German-English hybrids

(eigen is German for proper or innate, terms that don’t mix

languages are eigenwert and eigenvektor). Eigenvalues are also

called characteristic values and proper values (and similarly for

vectors), but the “eigen” terms are most widely used.

If M is a matrix, v a vector, λ a scalar, and

Mv = λv,

then λ is an eigenvalue of M corresponding to the eigenvector v.
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Spectral Decomposition

The mathematical abstraction corresponding to eigenvalues and

eigenvectors of a symmetric matrix is the spectral decomposition

M = ODOT

where O is orthogonal and D is diagonal.

Diagonal matrices are trivial to invert or to solve. Orthogonal

matrices too (OT = O−1).
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Spectral Decomposition (cont.)

Rewrite M = ODOT as

MO = OD

Make summations explicit∑
j

mijojk =
∑
l

oildlk = oikdkk

(since D is diagonal).

Write vk for k-th column of O and λk for the k-th diagonal

element of D and this becomes

Mvk = λkvk
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Spectral Decomposition (cont.)

Conclusion: the spectral decomposition theorem asserts that

every symmetric n × n matrix has n eigenvectors that make up

an orthonormal basis.
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Spectral Decomposition: Applications

Positive Definiteness

M = ODOT is positive semidefinite if and only if all the eigen-
values (diagonal elements of D) are nonnegative.

M is positive definite if and only if all its eigenvalues are positive.

Symmetric Square Roots

If M = ODOT is positive semidefinite, then

M1/2 = OD1/2OT

is a square root of M , where D1/2 is the elementwise square root
of D.
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Spectral Decomposition: Applications (cont.)

Multivariate Normal Random Vectors

If

var(X) = M = ODOT

then

OD1/2Z

has the same distribution as X, where Z is multivariate standard

normal.

var(OD1/2Z) = OD1/2E(ZZT )D1/2OT = ODOT = M
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QR Algorithm

Unlike LU and QR decompositions, the ODOT decomposition
cannot be computed in a finite number of steps. An iterative
algorithm must be used.

The best algorithm (for symmetric matrices) first factors

M = Q0A1Q
T
0

where Q0 is orthogonal and A1 tridiagonal (which can be done
in finite number of steps). Then repeats

Ak = QkRk
Ak+1 = RkQk

= QTkQkRkQk
= QTkAk−1Qk
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QR Algorithm (cont.)

If Ak converges to a diagonal matrix (which it does under some

conditions), then that is the D in the spectral decomposition.

The O in the spectral decomposition is the product of the Qk.

Actually, best algorithm is a modification: QR with shifts, which

we don’t explain.
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Cholesky Decomposition

The Cholesky decomposition of a positive semidefinite symmet-

ric matrix is

A = LLT

where L is lower triangular.

Like LU and QR this is a finite algorithm.
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Cholesky Decomposition (cont.)

aik =
min(i,k)∑
j=1

lijlkj

Compute columns of L in order.

a11 = l211

a1k = l11lk1

Solve for first column of L. Now

a22 = l221 + l222

a2k = l21lk1 + l22lk2

Solve for second column of L (using the values of l1k we solved
for in the first step and l12 = 0). And so forth.
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Cholesky Decomposition (cont.)

For the i-th column of L we have

aii =
i∑

j=1

l2ij

which we can solve to get lii in terms of A and columns of L

before the i-th, and then for k < i we have

aik =
k∑

j=1

lmjlkj

which we can solve to get lik in terms of A and columns of L

before the i-th and lii. And lik = 0 for k > i by definition of

lower triangular.
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Singular Value Decomposition (SVD)

For any matrix A, not necessarily square

A = UDV T

where U and V are orthogonal (hence square) and D is diagonal
(but not square).

Singular values of A are diagonal elements of D.

AAT = UDDTUT

ATA = V DTDV T

are spectral decompositions of AAT and ATA because DDT and
DTD are diagonal.

Eigenvalues of AAT and ATA are squares of singular values of A.
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Singular Value Decomposition (cont.)

Useful for “solving” ill-conditioned systems of equations.

Ax = b

UDV Tx = b

DV Tx = UT b

Small elements of D are essentially divide-by-zero. At least you

know what you’re up against!
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Singular Value Decomposition: Application

Solution Path for Ridge Regression

Minimize

(y −Mβ)T (y −Mβ) + λβTβ

Strictly convex quadratic function so solution satisfies

2MT (y −Mβ) + 2λβ = 0

or

MTy = (MTM + λI)β

If M = UDV T , then

MT = (V DTDV T + λI)β = V (DTD + λI)V Tβ

β = V (DTD + λI)−1V TMTy
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Summary of Old Stuff

Methods for non-square complex matrices: SVD and QR.

Methods for square complex matrices: LU , eigenvalue-eigenvector

(latter does not work for some matrices).

Methods for square positive semidefinite real matrices: LLT .
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A Really Good Reference

Trefethen and Bau

Numerical Linear Algebra

SIAM, 1997
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http://www.amazon.com/Numerical-Linear-Algebra-Lloyd-Trefethen/dp/0898713617/ref=sr_1_1?ie=UTF8&amp;s=books&amp;qid=1236617654&amp;sr=1-1


Operation Counts

Taken from Trefethen and Bau in flops (floating point opera-

tions)

• LU is 2
3m

3 flops.

• LLT is 1
3m

3 flops.

• QR is 2mn2 flops.
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Operation Counts (cont.)

Eigendecomposition and SVD require an infinite number of op-

erations.

Eigendecomposition proceeds in two stages. The finite stage,

reduction to Hessenberg form takes 10
3 m

3 flops. The infinite

stage takes O(m) per iteration for symmetric matrices and O(m2)

per iteration for non-symmetric matrices. How many iterations

are done depends on the particular matrix.

SVD is not completely analyzed in Trefethen and Bau but is

similar.

30



Break

Preceding stuff is the basics.

Now for some fancier stuff.
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Normal Operators

• A matrix is Hermetian if M = M∗.

• A matrix is unitary if U∗U = UU∗ = I (the identity matrix).

• A matrix is normal if MM∗ = M∗M .

Any normal matrix has a spectral decomposition

M = UDU∗

where D is diagonal and U is unitary.

If M is Hermetian, the eigenvalues are real, otherwise complex.
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Non-Normal Operators

A non-normal matrix may (or may not) have eigenvalues and

eigenvectors.

If its eigenvectors form a vector basis, then there is something

sort of like the spectral decomposition but much less useful.

M = V DV −1

where D is diagonal and the columns of V are the eigenvectors

(MV = V D is again the eigenvector equation in matrix notation).

But V is not orthogonal or unitary.
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Matrix Norms

A norm for a vector space is a function ‖ · ‖ satisfying the fol-
lowing axioms

‖x‖ ≥ 0, for all vectors x

‖x‖ = 0 if and only if x = 0

‖cx‖ = |c| · ‖x‖, for all vectors x and all scalars c

‖x+ y‖ ≤ ‖x‖+ ‖y‖, for all vectors x and y

Examples are the Lp norms

‖x‖p =

 ∑
1≤i≤d

|xi|p
1/p

and

‖x‖∞ = max
1≤i≤d

|xi|
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Matrix Norms (cont.)

Matrices of the same dimension form a vector space (they can

be added and multiplied by scalars).

Particularly useful matrix norms are related the fact that square

matrices A represent linear operators x 7→ Ax.

If ‖ · ‖ denotes a norm for the vector space V on which the matrix

acts (if A is d× d, then it acts on d-dimensional vectors), then

‖A‖matrix = max
x∈V
x6=0

‖Ax‖
‖x‖

is called the operator norm for matrices, corresponding to the

vector norm ‖ · ‖.
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Matrix Norms (cont.)

Since the 2-norm

‖x‖2 =
√ ∑

1≤i≤d
x2
i

is widely used for vectors, the operator 2-norm

‖A‖2M = max
x∈V
x6=0

‖Ax‖2
‖x‖2

is widely used for matrices.
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Pseudospectra

The set σ(A) of eigenvalues of a matrix A is called its spectrum.

The set σε(A) of eigenvalues of A + E, where ‖E‖ < ε, is called

its ε-pseudospectrum (this depends on the norm used).

For a normal operator, σε(A) is just the set of points less than ε

away from σ(A) when the operator 2-norm is used.

For a non-normal operator, σε(A) can be arbitrarily larger than

σ(A).

Eigenvalues don’t tell you much about non-normal matrices.
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Bauer-Ficke Theorem

Bε is open ball of radius ε in complex plane.

κ(A) =
‖V ‖2M

‖V −1‖2M

is 2-norm condition number of A.

σ(A) +Bε ⊂ σε(A) ⊂ σ(A) +Bε·κ(A)

Outer bound humongous if A ill-conditioned, i. e., κ(A) large.

(Holds for all invertible and diagonalizable A).
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Schur Decomposition

The eigenvectors of a square matrix need not form a vector basis,

in which case there is no M = V DV −1 decomposition, in which

case we say M is not diagonalizable.

But there is always a Schur decomposition

M = QUQ∗

where Q is unitary and U is upper triangular.
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Change of Basis

Any invertible matrix V can be thought of as a change of basis.

Its rows (resp. columns) are linearly independent and make up a
basis.

Its action on vectors is to transform from old basis to new. If

y = V x,

then

x =
∑
i xiei

where ei are vectors of the standard basis (rows of the identity
matrix) and

y =
∑
i yivi

where vi are vectors of the new basis (rows of V ).
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Similarity Transformations

If A is any square matrix (not necessarily invertible), then

y = Ax

is a linear transformation represented in the standard basis. In
the new basis

xnew = V x

ynew = V y

and

ynew = V y = V Ax = V AV −1xnew

so

V AV −1

represents the same abstract linear transformation in the new
basis.
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Similarity Transformations (cont.)

A 7→ V AV −1 is called a similarity transformation.

A and V AV −1 are similar matrices.
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Similarity Transformations do not Change Spectra

Ax = λx

y = V x

AV −1y = λV −1y

V AV −1y = λy
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Eigenvalues of Triangular Matrices

λ is eigenvalue of A if and only if A−λI is singular, which happens

if and only if det(A− λI) = 0.

If A is upper triangular with elements aii, then

det(A− λI) =
n∏
i=1

(aii − λ)

Hence every diagonal element of a triangular matrix is an eigen-

value, and vice versa.

44



Eigenvalues of Triangular Matrices (cont.)

A =


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2


Only eigenvalue is 2, and only one eigenvector.

Solve (A− 2I)x = 0 for eigenvector(s) x.

(A− 2I)x =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0




x1
x2
x3
x4
x5

 =


x2
x3
x4
x5
0

 = 0
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Eigenvalues of Triangular Matrices (cont.)


2 1 0 0 0
0 2 1 0 0
0 0 2 1 0
0 0 0 2 1
0 0 0 0 2


has only one eigenvector 

1
0
0
0
0


Corresponding eigenvalue is 2.
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New Stuff

Among the methods we studied LU , QR, and LLT are finite. The
spectral and singular value decompositions are not finite (take
an infinite number of iterations to get infinite precision, which,
of course, the computer doesn’t have).

For large matrices, the finite methods don’t pay. They do too
much work. Good approximations can be calculated faster.

These methods are

general matrices symmetric matrices
Eigenvalue-Eigenvector Arnoldi iteration Lanczos iteration
Solving Linear Equations GMRES CG, MinRes
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