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The Branch and Bound Algorithm

Furnival, G. M. and Wilson, R. W., Jr. (1974).
Regressions by leaps and bounds.
Technometrics, 16, 499–511.
doi:10.1080/00401706.1974.10489231
Reprinted, Technometrics, 42, 69–79.

Hand, D. J. (1981).
Branch and bound in statistical data analysis.
Journal of the Royal Statistical Society, Series D,

(The Statistician), 30, 1–13.
doi:10.2307/2987699

Furnival and Wilson (1974) is almost maximally unreadable but
introduced branch and bound into statistics. Hand (1981) is very
readable.

https://doi.org/10.1080/00401706.1974.10489231
https://doi.org/10.2307/2987699


The Branch and Bound Algorithm (cont.)

The branch and bound algorithm originated in computer science.
When a search over a huge but finite space is attempted — for
example when a chess playing program searches for its next move
— the branch and bound algorithm makes the search much more
efficient by using bounds on the objective function to prune large
parts of the search tree.

Although huge improvements are possible (if the bounds are
good), generally an exponential time problem remains exponential
time. So branch and bound does not allow arbitrarily large
problems to be done.

Useful, but not magic.



The Branch and Bound Algorithm (cont.)

Typical use in statistics is frequentist model selection.

Consider a regression problem with p predictors and 2p possible
models when any subset of the predictors is allowed to specify a
model.

Exponential time means the naive algorithm that simply fits 2p

models takes time exponential in p.

Branch and bound is also exponential time, but typically much
faster, sometimes thousands of times faster.

Thus many problems that cannot be done by the naive algorithm
are easily done by branch and bound. But other problems are too
large for branch and bound.



Penalized Likelihood and Least Squares

The key idea for model selection is not to use least squares or
maximum likelihood. They always pick the supermodel containing
all submodels under consideration. This usually “overfits” the data.

Hence we minimize least squares plus a penalty or maximize log
likelihood minus a penalty.



Mallows’ Cp

Cp =
SSResidp

σ̂2
+ 2p − n

=
SSResidp −SSResidk

σ̂2
+ p − (k − p)

= (k − p)(Fk−p,n−k − 1) + p

where SSResidp is the sum of squares of residuals for model with p
predictors, σ̂2 = SSResidk /(n − k) is the estimated error variance
for the largest model under consideration with k predictors, and
Fp,k is the F statistic for the F test for comparison of these two
models. If small model is correct, then Cp ≈ p. All such models
must be considered reasonably good fits.



Akaike Information Criterion (AIC)

Akaike (1973)
AIC(m) = −2l(θ̂m) + 2p

for a model m with p parameters.

Hurvich and Tsai (1989)

AICc(m) = −2l(θ̂m) + 2p +
2p(p + 1)

n − p − 1

AICc(m) = AIC(m) +
2p(p + 1)

n − p − 1

corrects for small-sample bias.



Bayes Information Criterion (BIC)

Schwarz (1978)

BIC(m) = −2l(θ̂m) + p log(n)

for a model m with p parameters.

Chooses much smaller models than AIC.

Consistent when true models is one of models under consideration.
AIC inconsistent in this case.



R Package Leaps

Old S had an implementation of branch and bound. The function
was called leaps after the title of Furnival and Wilson (1974). R
has more or less the same thing in the leaps function in the
leaps package (on-line help)

An Rweb example is given on this web page.

https://cloud.r-project.org/package=leaps
http://www.stat.umn.edu/geyer/8054/notes/leaps.html


Bounds

To fix ideas suppose we are using AIC for model selection. In the
branch and bound algorithm we need bounds for the criterion
function evaluated over a set M of models that is not necessarily
the whole family under consideration.

Let gcs(M) denote the greatest common submodel of all the
models in M. This is not necessarily an element of M. In the
regression setting where models are specified by the predictor
variables they include, gcs(M) has those and only those predictors
contained in all elements of M.

Let lcs(M) denote the least common supermodel of all the models
in M. In the regression setting, lcs(M) has those and only those
predictors contained in any element of M.



Bounds (cont.)

Let θ̂m denote the maximum likelihood estimate for model m, and
let pm denote the number of parameters for model m. Recall

AIC(m) = −2l(θ̂m) + 2pm

Bounds are

AIC(m) ≥ −2l(θ̂lcs(M)) + 2pgcs(M), m ∈ M

AIC(m) ≤ −2l(θ̂gcs(M)) + 2plcs(M), m ∈ M

Similar bounds are available for Cp, for BIC and for AICc .



Bounds (cont.)

To simplify notation say our criterion function is F (m) and our
upper and lower bounds are

F (m) ≥ L(M), m ∈ M

F (m) ≤ U(M), m ∈ M



Branch and Bound Recursive Procedure

Input data: a set M of models and a bound l = F (m) for some
model m not necessarily in M. Before any models have been
evaluated set l = +∞. Each time a model m is evaluated, if
F (m) < l , then set l = F (m).

This procedure is designed to be called many times for many
different sets M, the global variable l keeps track of the lowest
value of the criterion seen in all calls so far.



Branch and Bound Recursive Procedure (cont.)

Partition M giving M1, . . ., Mk .

For 1 ≤ i ≤ k , if l < L(Mi ), then there is no point in examining
any of the models in Mi further. None can be optimal.

For 1 ≤ i ≤ k , if Mi = {m}, then evaluate F (m) adjusting l if
necessary.

For 1 ≤ i ≤ k , if Mi is not a singleton, then recursively call this
procedure with Mi as the given set (so it will be further
partitioned).



Branch and Bound Theorem

The branch and bound algorithm is guaranteed to terminate
because each step reduces the size of the largest set in the
partition so eventually partitions have only one element and the
recursion stops.

For each model m in the set M which is the argument to the top
level call, the branch and bound algorithm is guaranteed to either
evaluate F (m) or prove that m is not optimal because
F (m∗) < F (m) for some m∗ ∈ M.



Branch and Bound with Cutoff

If test for discarding Mi is l + c < L(Mi ), where c > 0 is a fixed
number (the “cutoff”) then branch and bound is guaranteed to
evaluate every model m such that

F (m) ≤ inf
m∗∈M

F (m∗) + c ,

that is, every model with F (m) within c of the optimal value.



Bayesian Model Averaging

Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T.
(1999).
Bayesian model averaging: A tutorial (with discussion).
Statistical Science, 19, 382–417.
Corrected version available at http://www.stat.washington.
edu/www/research/online/1999/hoeting.pdf.

Madigan, D. and Raftery, A. E. (1994).
Model selection and accounting for model uncertainty in

graphical models using Occam’s window.
Journal of the American Statistical Association, 89, 1535–1546.

http://www.stat.washington.edu/www/research/online/1999/hoeting.pdf
http://www.stat.washington.edu/www/research/online/1999/hoeting.pdf


Bayesian Model Averaging (cont.)

If one is truly Bayesian and has a problem in which both models
and parameters within models are uncertain, one averages over the
whole posterior.

For any function g(m, θ) a function of both model m and
within-model parameter θ, calculate posterior mean

E{g(m, θ) | data}

This usually requires MCMC with dimension jumping (MHG). It is
hard to implement. No available software.



Bayesian Model Averaging (cont.)

A reasonable approximation to the Right Thing (average with
respect to full posterior) is∑

m∈M
g(m, θ̂m)e−

1
2 BIC(m)

∑
m∈M

e−
1
2 BIC(m)

where θ̂m is the MLE for model m.

This makes sense because e−
1
2 BIC(m) is approximately the posterior

probability of model m for large sample sizes and θ is near θ̂m
when the sample size is large.



Occam’s Window

In order to avoid sums over a huge class of models use∑
m∈M∗

g(m, θ̂m)e−
1
2 BIC(m)

∑
m∈M∗

e−
1
2 BIC(m)

(1a)

where

M∗ =

{
m∗ ∈ M : BIC(m∗) ≤

(
inf

m∈M
BIC(m∗)

)
+ c

}
(1b)



Frequentist Model Averaging

Burnham, K. P. and Anderson, D. R. (2002).
Model Selection and Multimodel Inference: A Practical

Information-Theoretic Approach, 2nd ed.
New York: Springer-Verlag.

Hjort N. L. and Claeskens G. (2003).
Frequentist model average estimators.
Journal of the American Statistical Association, 98, 879–899.
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Model Selection and Model Averaging.
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https://doi.org/10.1198/016214503000000828
https://doi.org/10.1017/CBO9780511790485
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The estimation of prediction error: Covariance penalties
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Journal of the American Statistical Association, 99, 619–642.
doi:10.1198/016214504000000692
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Optimal model assessment, selection and combination.
Journal of the American Statistical Association, 101, 554–568.
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https://doi.org/10.1198/016214504000000692
https://doi.org/10.1198/016214505000001078


Frequentist Model Averaging (cont.)

Many different methods of frequentist model averaging. Simplest
just replaces BIC in (1a) and (1b) by AIC or AICc .

Basically, these procedures are Bayesian if you think like a Bayesian
and frequentist if you think like a frequentist.

When there is very little chance of selecting the true model —
even assuming one of the models under consideration is true,
which is unlikely except in simulations — selecting one model and
pretending it is true is just dumb.

There never was a theorem justifying dumb model selection.
People did it only because they didn’t know what else to do.


