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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R
• The version of R used to make this document is 4.3.2.

• The version of the glpkAPI package used to make this document is 1.3.4.

• The version of the Matrix package used to make this document is 1.6.4.

• The version of the rmarkdown package used to make this document is 2.25.
library(Matrix)
library(glpkAPI)

## using GLPK version 4.65

3 Motivation
A student asked in class discussion “Are there analogs of isotonic regression to regressing on the median or
other quantiles?”

4 Slack Variables
A “slack variable” is a nonnegative variable introduced to allow functions with discontinuous derivatives to be
represented in the form required by common optimization software. For example, the absolute value function
can be represented by replacing one variable with two. Instead of |x| we write x1 + x2 where x = x1 − x2 and
both x1 and x2 are required to be nonnegative.

5 Isotonic L1 Regression
We take for our example a simplified version of the isotonic regression problem where there are no repeated
predictor values. This can be generalized to handle repeated predictor values as discussed in the isotonic
regression handout.

minimize
n∑
i=1
|yi − µi|

subject to µ1 ≤ µ2 ≤ · · · ≤ µn
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And we reformulate this using slack variables in the obvious way (there may be a nonobvious way to
reformulate it using only half as many slack variables but I cannot be bothered to think it up).

minimize
n∑
i=1

(ui + vi)

subject to ui ≥ 0, i = 1, . . . , n
vi ≥ 0, i = 1, . . . , n
yi − µi = ui − vi, i = 1, . . . , n
µi ≤ µi+1 i = 1, . . . , n− 1

6 Try It
6.1 Data
Make up some data
set.seed(42)
n <- 30
x <- seq(1, 3, length = 30)
y <- rexp(n, 1 / x)

6.2 Linear Programming
Now we set up our problem as linear programming, as discussed in the preceding section. Our variables are
ui, vi, and µi for i = 1, . . . , n but linear programming treats them as components of one state vector. So we
have 3n variables n equality constraints and 3n− 1 inequality constraints.

The linear programming software we are going to use allows solves problems of the form

minimize gTx
subject to a ≤ x ≤ b

c ≤Mx ≤ d

where x is the variable which we are optimizing and everything else is a constant (a, b, c, and d are vectors and
M is a matrix). The lower bound vectors a and c can have components set to -Inf to allow for unbounded
variables and the upper bound vectors b and d can have components set to Inf to allow for unbounded
variables. Equality constraints are expressed in the scheme above by setting the lower bound and upper
bound the same.

We make this specific for our problem as follows

minimize
n∑
i=1

(ui + vi)

subject to −∞ ≤ µi <∞, i = 1, . . . , n
0 ≤ ui ≤ ∞, i = 1, . . . , n
0 ≤ vi ≤ ∞, i = 1, . . . , n
yi = µi + ui − vi, i = 1, . . . , n
0 ≤ µi+1 − µi ≤ ∞ i = 1, . . . , n− 1

So among the 3n − 1 inequality constraints we have 2n bound constraints and n − 1 general inequality
constraints.

We will have the variables (components of x) be the µi, the ui, and the vi in that order.
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gg <- c(rep(0, n), rep(1, 2 * n))
aa <- c(rep(-Inf, n), rep(0, 2 * n))
bb <- rep(Inf, 3 * n)
cc <- c(y, rep(0, n - 1))
dd <- c(y, rep(Inf, n - 1))
idmat <- diag(n)
mm <- cbind(idmat, idmat, - idmat)
mm2 <- matrix(0, n - 1, 3 * n)
mm2[row(mm2) == col(mm2)] <- -1
mm2[row(mm2) + 1 == col(mm2)] <- 1
mm <- rbind(mm, mm2)

Now we are set up, math objects g, a, b, c, d, and M are R objects gg, aa, bb, cc, dd, and mm (we doubled
the letters to avoid the name of R function c).
lp <- initProbGLPK()
addRowsGLPK(lp, nrow(mm))

## [1] 1

addColsGLPK(lp, ncol(mm))

## [1] 1

# STFU
setSimplexParmGLPK(MSG_LEV, GLP_MSG_OFF)
# column bounds: free variables
idx <- which(aa == -Inf & bb == Inf)
setColsBndsGLPK(lp, idx, aa[idx], bb[idx], rep(GLP_FR, length(idx)))
# column bounds: other variables
idx <- which(aa == 0 & bb == Inf)
setColsBndsGLPK(lp, idx, aa[idx], bb[idx], rep(GLP_LO, length(idx)))
# row bounds: fixed variables
idx <- which(cc == dd)
setRowsBndsGLPK(lp, idx, cc[idx], dd[idx], rep(GLP_FX, length(idx)))
# row bounds: other variables
idx <- which(cc < dd)
setRowsBndsGLPK(lp, idx, cc[idx], dd[idx], rep(GLP_LO, length(idx)))
# objective function
setObjDirGLPK(lp, GLP_MIN)
idx <- seq_along(gg)
setObjCoefsGLPK(lp, idx, gg)
# constraint matrix
mm <- Matrix(mm)
qux <- mat2triplet(mm)
idx <- qux$x != 0
loadMatrixGLPK(lp, sum(idx), qux$i[idx], qux$j[idx], qux$x[idx])

The types of variables are

• GLP_FR free, unbounded in both directions,
• GLP_FX fixed, equal to the lower bound (upper bound ignored),
• GLP_LO lower bound only (no upper bound),
• GLP_UP upper bound only (no lower bound), and
• GLP_DB double bound (lower bound and upper bound both used).

Also note that this packages uses sparse arithmetic for the constraint matrix. If we had used sparse arithmetic
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all the way through (using R package Matrix), then we could have done a very large problem with millions
of variables without using more memory than in a laptop. The fact that the constraint matrix has 3n(n− 1)
components would not matter. It has only 3n+ 2(n− 1) nonzero components.

Now we have loaded the data into the format required by this package. And we are ready to solve.
solveSimplexGLPK(lp)

## [1] 0

getPrimStatGLPK(lp) == GLP_FEAS

## [1] TRUE

TRUE means solution status optimal.
x <- getColsPrimGLPK(lp)

Only the first n components of x are interesting.
mu <- x[1:n]

Let’s take a look.
plot(y)
points(mu, pch = 19)
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Figure 1: Scatterplot with Isotonic L1 Regression. Hollow dots observed, solid dots fitted.
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6.3 Kuhn-Tucker Conditions
6.3.1 Primal Feasibility

First get the rest of the variables.
u <- x[(n + 1):(2 * n)]
v <- x[(2 * n + 1):(3 * n)]

And check the constraints on them.
all(u >= 0)

## [1] TRUE

all(v >= 0)

## [1] TRUE

all(diff(mu) >= 0)

## [1] TRUE

all(y == mu + u - v)

## [1] FALSE

max(abs(y - (mu + u - v)))

## [1] 6.661338e-16

OK. Primal feasibility checks, to within the accuracy of computer arithmetic. Note that the test failed when
we naively expected the computer to have real real numbers. But it is clear that 6.6613381× 10−16 is just
rounding error (inexactness of computer arithmetic).

We might have had to make similar modifications to the other tests, but the naive approach just happened to
work.

6.3.2 Dual Feasibility

Now get Lagrange multipliers. These are called dual variables by the linear programming software.
lambda.row <- getRowsDualGLPK(lp)
lambda.col <- getColsDualGLPK(lp)
length(lambda.row) == nrow(mm)

## [1] TRUE

length(lambda.col) == ncol(mm)

## [1] TRUE

We are not sure what sign conventions the linear programming software is using, so we just look at what we
got.
lambda.col.mu <- lambda.col[1:n]
lambda.col.u <- lambda.col[(n + 1):(2 * n)]
lambda.col.v <- lambda.col[(2 * n + 1):(3 * n)]
range(lambda.col.mu)

## [1] 0 0

range(lambda.col.u)
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## [1] 0 2

range(lambda.col.v)

## [1] 0 2

Actually the lambda.col.mu are not Lagrange multipliers because they do not correspond to constraints (the
µi are unbounded).

This checks if the rule is that Lagrange multiplers for lower bound constraints are nonnegative. We have no
upper bound constraints in this part.
nrow(mm) == 2 * n - 1

## [1] TRUE

lambda.row.y <- lambda.row[1:n]
lambda.row.mu <- lambda.row[- (1:n)]
range(lambda.row.mu)

## [1] 0 3

range(lambda.row.y)

## [1] -1 1

The check for lambda.row.y is OK. These are for the equality constraints y = µ + u − v, and Lagrange
multipliers for equality constraints can be either sign.

The way we wrote the µ constraints µi+1 − µi ≥ 0, these are again lower bound constraints, so if the rule we
guessed above is correct, then these are also correct (all nonnegative).

Since we have no upper bound constraints in this part either, we are not going to learn the rule for upper
bound constraints, unless we rewrite the problem.

6.3.3 Complementary Slackness

range(lambda.col.mu * mu)

## [1] 0 0

range(lambda.col.u * u)

## [1] 0 0

range(lambda.col.v * v)

## [1] 0 0

range(lambda.row.y * (y - (mu + u - v)))

## [1] -6.661338e-16 4.440892e-16

range(lambda.row.mu * diff(mu))

## [1] 0 0

Everything checks. All zero up to accuracy of computer arithmetic.

6.3.4 Lagrangian Derivative Zero

The gradient vector of the objective function is gg so the derivative evaluated at the solution is
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sum(gg * x)

## [1] 40.35924

After some trial and error, we decide the Lagrangian is

L =
[

n∑
i=1

(ui + vi)
]
− λTuu− λTv v − λTy (µ+ u− v − y)−

n−1∑
i=1

λµ(i)(µi+1 − µi)

and the derivatives are

∂L/∂µi = −λy(i)− λµ(i− 1) + λµ(i)
∂L/∂ui = 1− λu(i)− λy(i)
∂L/∂vi = 1− λv(i) + λy(i)

where we define λµ(0) = λµ(n) = 0 in order not to have to special case the first equation for i = 1 and i = n.

So the checks are
range(- lambda.row.y - c(0, lambda.row.mu) + c(lambda.row.mu, 0))

## [1] 0 0

range(1 - lambda.col.u - lambda.row.y)

## [1] 0 0

range(1 - lambda.col.v + lambda.row.y)

## [1] 0 0

So everything checks. We have proved this is the unique global optimum (because this is a convex problem).
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