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1 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R

• The version of R used to make this document is 4.0.2.

• The version of the rmarkdown package used to make this document is 2.3.

• The version of the parallel package used to make this document is 4.0.2. This is a “recommended”
package that is installed by default in every installation of R, so the package version goes with the R
version.

3 Introduction

The example that we will use throughout this document is simulating the sampling distribution of the MLE
for Normal(θ, θ2) data.

4 Set-Up

# sample size
n <- 10
# simulation sample size
nsim <- 1e4
# true unknown parameter value
# of course in the simulation it is known, but we pretend we don't
# know it and estimate it
theta <- 1

doit <- function(estimator, seed = 42) {
set.seed(seed)
result <- double(nsim)
for (i in 1:nsim) {

x <- rnorm(n, theta, abs(theta))
result[i] <- estimator(x)
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}
return(result)

}

mlogl <- function(theta, x) sum(- dnorm(x, theta, abs(theta), log = TRUE))

mle <- function(x) {
theta.start <- sign(mean(x)) * sd(x)
if (all(x == 0) || theta.start == 0)

return(0)
nout <- nlm(mlogl, theta.start, iterlim = 1000, x = x)
if (nout$code > 3)

return(NaN)
return(nout$estimate)

}

• R function doit simulates nsim datasets, applies an estimator supplied as an argument to the function
to each, and returns the vector of results.

• R function mlogl is minus the log likelihood of the model in question. We could easily change the code
to do another model by changing only this function. (When the code mimics the math, the design is
usually good.)

• R function mle calculates the estimator by calling R function nlm to minimize mlogl. The starting
value sign(mean(x)) * sd(x) is a reasonable estimator because mean(x) is a consistent estimator of
θ and sd(x) is a consistent estimator of |θ|.

5 Doing the Simulation without Parallelization

5.1 Try It

theta.hat <- doit(mle)

5.2 Check It

hist(theta.hat, probability = TRUE, breaks = 30)
curve(dnorm(x, mean = theta, sd = theta / sqrt(3 * n)), add = TRUE)
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Histogram of theta.hat
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The curve is the PDF of the asymptotic normal distribution of the MLE, which uses the formula

In(θ) = 3n
θ2

(the “usual” asymptotics of maximum likelihood).

Looks pretty good. The large negative estimates are probably not a mistake. The parameter is allowed to be
negative, so sometimes the estimates come out negative even though the truth is positive. And not just a
little negative because |θ| is also the standard deviation, so it cannot be small and the model fit the data.
sum(is.na(theta.hat))

## [1] 0
mean(is.na(theta.hat))

## [1] 0
sum(theta.hat < 0, na.rm = TRUE)

## [1] 9
mean(theta.hat < 0, na.rm = TRUE)

## [1] 9e-04

5.3 Time It

Now for something new. We will time it.
time1 <- system.time(theta.hat.mle <- doit(mle))
time1
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## user system elapsed
## 0.842 0.004 0.848

The components of this vector are (these are taken from the R help page for R function proc.time, which
R function system.time calls, and the UNIX man page for the UNIX system call getrusage system call,
which proc.time calls)

• user.self the time the parent process (the R process executing the commands we see, like doit)
spends in user mode

• sys.self the time the parent process spends in kernel model (doing system calls),

• elapsed the clock time,

We see that there is not a lot of difference between user mode time and elapsed time. We can take either to
be the time.

5.4 Time It More Accurately

That’s too short a time for accurate timing. So increase the number of iterations. Also we should probably
average over several IID iterations to get a good average. Try again.
nsim <- 1e5
nrep <- 7
time1 <- NULL
for (irep in 1:nrep)

time1 <- rbind(time1, system.time(theta.hat.mle <- doit(mle)))
time1

## user.self sys.self elapsed user.child sys.child
## [1,] 7.315 0 7.314 0 0
## [2,] 7.081 0 7.081 0 0
## [3,] 7.772 0 7.773 0 0
## [4,] 7.479 0 7.479 0 0
## [5,] 7.446 0 7.446 0 0
## [6,] 7.570 0 7.569 0 0
## [7,] 7.613 0 7.614 0 0

Now we see two more components of proc.time objects

• user.child total user mode time for for all children of the calling process that have terminated
and been waited for and grandchildren and further removed descendants, if all of the intervening
descendants waited on their terminated children, which is a mouthful, here it is all the work done by
the fork-and-exec’ed children, and

• sys.child like the preceding except kernel mode rather than user mode.

These components are in every proc_time object. The reason why we didn’t see them before is something
about what R function print.proc_time does. Now
class(time1)

## [1] "matrix" "array"

the printing is being done by R function print.default since there is no print.matrix and the class of
what we are printing is no longer proc_time.
apply(time1, 2, mean)

## user.self sys.self elapsed user.child sys.child
## 7.468 0.000 7.468 0.000 0.000
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apply(time1, 2, sd) / sqrt(nrep)

## user.self sys.self elapsed user.child sys.child
## 0.08418064 0.00000000 0.08432251 0.00000000 0.00000000

So we have about one and a half significant figures in our timing on this. Longer runs would have more
accuracy.

6 Parallel Computing With Unix Fork and Exec

6.1 Introduction

This method is by far the simplest but

• it only works on one computer (using however many simultaneous processes the computer can do), and

• it does not work on Windows.

6.2 Toy Problem

First a toy problem that does nothing except show that we are actually using different processes.
library(parallel)
ncores <- detectCores()
mclapply(1:ncores, function(x) Sys.getpid(), mc.cores = ncores)

## [[1]]
## [1] 7171
##
## [[2]]
## [1] 7172
##
## [[3]]
## [1] 7173
##
## [[4]]
## [1] 7174
##
## [[5]]
## [1] 7175
##
## [[6]]
## [1] 7176
##
## [[7]]
## [1] 7177
##
## [[8]]
## [1] 7178

6.3 Warning

Quoted from the help page for R function mclapply
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It is strongly discouraged to use these functions in GUI or embedded environments, because
it leads to several processes sharing the same GUI which will likely cause chaos (and possibly
crashes). Child processes should never use on-screen graphics devices.

GUI includes RStudio. If you want speed, then you will have to learn how to use plain old R. The examples in
the section on using clusters show that. Of course, this whole document shows that too. (No RStudio was used
to make this document. In plain old R we said library("rmarkdown") and then render("parallel.Rmd").)

6.4 Parallel Streams of Random Numbers

To get random numbers in parallel, we need to use a special random number generator (RNG) designed for
parallelization.
RNGkind("L'Ecuyer-CMRG")
set.seed(42)
mclapply(1:ncores, function(x) rnorm(5), mc.cores = ncores)

## [[1]]
## [1] 1.11932846 -0.07617141 -0.35021912 -0.33491161 -1.73311280
##
## [[2]]
## [1] -0.2084809 -1.0341493 -0.2629060 0.3880115 0.8331067
##
## [[3]]
## [1] 0.001100034 1.763058291 -0.166377859 -0.311947389 0.694879494
##
## [[4]]
## [1] 0.2262605 -0.4827515 1.7637105 -0.1887217 -0.7998982
##
## [[5]]
## [1] 0.8584220 -0.3851236 1.0817530 0.2851169 0.1799325
##
## [[6]]
## [1] -1.1378621 -1.5197576 -0.9198612 1.0303683 -0.9458347
##
## [[7]]
## [1] -0.04649149 3.38053730 -0.35705061 0.17722940 -0.39716405
##
## [[8]]
## [1] 1.3502819 -1.0055894 -0.4591798 -0.0628527 -0.2706805

Just right! We have different random numbers in all our jobs. And it is reproducible.

But this may not work like you may think it does. If we do it again we get exactly the same results.
mclapply(1:ncores, function(x) rnorm(5), mc.cores = ncores)

## [[1]]
## [1] 1.11932846 -0.07617141 -0.35021912 -0.33491161 -1.73311280
##
## [[2]]
## [1] -0.2084809 -1.0341493 -0.2629060 0.3880115 0.8331067
##
## [[3]]
## [1] 0.001100034 1.763058291 -0.166377859 -0.311947389 0.694879494
##

6



## [[4]]
## [1] 0.2262605 -0.4827515 1.7637105 -0.1887217 -0.7998982
##
## [[5]]
## [1] 0.8584220 -0.3851236 1.0817530 0.2851169 0.1799325
##
## [[6]]
## [1] -1.1378621 -1.5197576 -0.9198612 1.0303683 -0.9458347
##
## [[7]]
## [1] -0.04649149 3.38053730 -0.35705061 0.17722940 -0.39716405
##
## [[8]]
## [1] 1.3502819 -1.0055894 -0.4591798 -0.0628527 -0.2706805

Running mclapply does not change .Random.seed in the parent process (the R process you are typing into).
It only changes it in the child processes (that do the work). But there is no communication from child to
parent except the list of results returned by mclapply.

This is a fundamental problem with mclapply and the fork-exec method of parallelization. And it has no
real solution. You just have to be aware of it.

If you want to do exactly the same random thing with mclapply and get different random results, then
you must change .Random.seed in the parent process, either with set.seed or by otherwise using random
numbers in the parent process.

6.5 The Example

We need to rewrite our doit function

• to only do 1 / ncores of the work in each child process,

• to not set the random number generator seed, and

• to take an argument in some list we provide.
doit <- function(nsim, estimator) {

result <- double(nsim)
for (i in 1:nsim) {

x <- rnorm(n, theta, abs(theta))
result[i] <- estimator(x)

}
return(result)

}

6.6 Try It

mout <- mclapply(rep(nsim / ncores, ncores), doit,
estimator = mle, mc.cores = ncores)

lapply(mout, head)

## [[1]]
## [1] 0.9051972 0.9589889 0.9799828 1.1347548 0.9090886 0.9821320
##
## [[2]]

7



## [1] 0.8317815 1.3432331 0.7821308 1.2010078 0.9792244 1.1148521
##
## [[3]]
## [1] 0.8627829 0.9790400 1.1787975 0.7852431 1.2942963 1.0768396
##
## [[4]]
## [1] 1.0422013 0.9166641 0.8326720 1.1864809 0.9609456 1.3137716
##
## [[5]]
## [1] 0.8057316 0.9488173 1.0792078 0.9774531 0.8106612 0.8403027
##
## [[6]]
## [1] 1.0156983 1.0077599 0.9867766 1.1643493 0.9478923 1.1770221
##
## [[7]]
## [1] 1.2287013 1.0046353 0.9560784 1.0354414 0.9045423 0.9455714
##
## [[8]]
## [1] 0.7768910 1.0376265 0.8830854 0.8911714 1.0288567 1.1609360

6.7 Check It

Seems to have worked.
length(mout)

## [1] 8
sapply(mout, length)

## [1] 12500 12500 12500 12500 12500 12500 12500 12500
lapply(mout, head)

## [[1]]
## [1] 0.9051972 0.9589889 0.9799828 1.1347548 0.9090886 0.9821320
##
## [[2]]
## [1] 0.8317815 1.3432331 0.7821308 1.2010078 0.9792244 1.1148521
##
## [[3]]
## [1] 0.8627829 0.9790400 1.1787975 0.7852431 1.2942963 1.0768396
##
## [[4]]
## [1] 1.0422013 0.9166641 0.8326720 1.1864809 0.9609456 1.3137716
##
## [[5]]
## [1] 0.8057316 0.9488173 1.0792078 0.9774531 0.8106612 0.8403027
##
## [[6]]
## [1] 1.0156983 1.0077599 0.9867766 1.1643493 0.9478923 1.1770221
##
## [[7]]
## [1] 1.2287013 1.0046353 0.9560784 1.0354414 0.9045423 0.9455714
##
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## [[8]]
## [1] 0.7768910 1.0376265 0.8830854 0.8911714 1.0288567 1.1609360

Plot it.
theta.hat <- unlist(mout)
hist(theta.hat, probability = TRUE, breaks = 30)
curve(dnorm(x, mean = theta, sd = theta / sqrt(3 * n)), add = TRUE)

Histogram of theta.hat
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6.8 Time It

time4 <- NULL
for (irep in 1:nrep)

time4 <- rbind(time4, system.time(theta.hat.mle <-
unlist(mclapply(rep(nsim / ncores, ncores), doit,

estimator = mle, mc.cores = ncores))))
time4

## user.self sys.self elapsed user.child sys.child
## [1,] 0.002 0.028 1.836 12.063 0.232
## [2,] 0.000 0.030 1.766 11.662 0.288
## [3,] 0.005 0.032 1.856 12.197 0.220
## [4,] 0.006 0.024 2.142 14.153 0.252
## [5,] 0.003 0.028 1.984 12.813 0.347
## [6,] 0.006 0.032 2.529 16.588 0.268
## [7,] 0.005 0.040 2.738 17.637 0.487

Now we see that, unlike when we had no parallelism, now user.self is almost no time. All the time is in
user.child. The child processes are doing all the work. We also see that the total child time is far longer
than the actual elapsed time (in the real world). So we are getting parallelism.
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apply(time4, 2, mean)

## user.self sys.self elapsed user.child sys.child
## 0.003857143 0.030571429 2.121571429 13.873285714 0.299142857
apply(time4, 2, sd) / sqrt(nrep)

## user.self sys.self elapsed user.child sys.child
## 0.0008571429 0.0018880217 0.1417438765 0.8959501133 0.0350743622

We got the desired speedup. The elapsed time averages
apply(time4, 2, mean)["elapsed"]

## elapsed
## 2.121571

with parallelization and
apply(time1, 2, mean)["elapsed"]

## elapsed
## 7.468

without parallelization. But we did not get an 8-fold speedup with 8 cores. There is a cost to starting and
stopping the child processes. And some time needs to be taken from this number crunching to run the rest of
the computer. However, we did get a 3.5-fold speedup. If we had more cores, we could do even better.

7 The Example With a Cluster

7.1 Introduction

This method is more complicated but

• it works on clusters like the ones at LATIS (College of Liberal Arts Technologies and Innovation
Services) or at the Minnesota Supercomputing Institute.

• according to the documentation, it does work on Windows.

7.2 Toy Problem

First a toy problem that does nothing except show that we are actually using different processes.
library(parallel)
ncores <- detectCores()
cl <- makePSOCKcluster(ncores)
parLapply(cl, 1:ncores, function(x) Sys.getpid())

## [[1]]
## [1] 7211
##
## [[2]]
## [1] 7204
##
## [[3]]
## [1] 7208
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##
## [[4]]
## [1] 7206
##
## [[5]]
## [1] 7210
##
## [[6]]
## [1] 7205
##
## [[7]]
## [1] 7209
##
## [[8]]
## [1] 7207
stopCluster(cl)

This is more complicated in that

• first you you set up a cluster, here with makePSOCKcluster but not everywhere — there are a variety
of different commands to make clusters and the command would be different at LATIS or MSI — and

• at the end you tear down the cluster with stopCluster.

Of course, you do not need to tear down the cluster before you are done with it. You can execute multiple
parLapply commands on the same cluster.

There are also a lot of other commands other than parLapply that can be used on the cluster. We will see
some of them below.

7.3 Parallel Streams of Random Numbers

cl <- makePSOCKcluster(ncores)
clusterSetRNGStream(cl, 42)
parLapply(cl, 1:ncores, function(x) rnorm(5))

## [[1]]
## [1] -0.93907708 -0.04167943 0.82941349 -0.43935820 -0.31403543
##
## [[2]]
## [1] 1.11932846 -0.07617141 -0.35021912 -0.33491161 -1.73311280
##
## [[3]]
## [1] -0.2084809 -1.0341493 -0.2629060 0.3880115 0.8331067
##
## [[4]]
## [1] 0.001100034 1.763058291 -0.166377859 -0.311947389 0.694879494
##
## [[5]]
## [1] 0.2262605 -0.4827515 1.7637105 -0.1887217 -0.7998982
##
## [[6]]
## [1] 0.8584220 -0.3851236 1.0817530 0.2851169 0.1799325
##
## [[7]]
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## [1] -1.1378621 -1.5197576 -0.9198612 1.0303683 -0.9458347
##
## [[8]]
## [1] -0.04649149 3.38053730 -0.35705061 0.17722940 -0.39716405
parLapply(cl, 1:ncores, function(x) rnorm(5))

## [[1]]
## [1] -2.1290236 2.5069224 -1.1273128 0.1660827 0.5767232
##
## [[2]]
## [1] 0.03628534 0.29647473 1.07128138 0.72844380 0.12458507
##
## [[3]]
## [1] -0.1652167 -0.3262253 -0.2657667 0.1878883 1.4916193
##
## [[4]]
## [1] 0.3541931 -0.6820627 -1.0762411 -0.9595483 0.0982342
##
## [[5]]
## [1] 0.5441483 1.0852866 1.6011037 -0.5018903 -0.2709106
##
## [[6]]
## [1] -0.57445721 -0.86440961 -0.77401840 0.54423137 -0.01006838
##
## [[7]]
## [1] -1.3057289 0.5911102 0.8416164 1.7477622 -0.7824792
##
## [[8]]
## [1] 0.9071634 0.2518615 -0.4905999 0.4900700 0.7970189

We see that clusters do not have the same problem with continuing random number streams that the fork-exec
mechanism has.

• Using fork-exec there is a parent process and child processes (all running on the same computer) and
the child processes end when their work is done (when mclapply finishes).

• Using clusters there is a controller process and worker processes (possibly running on many different
computers) and the worker processes end when the cluster is torn down (with stopCluster).

So the worker processes continue and each remembers where it is in its random number stream (each has a
different random number stream).

7.4 The Example on a Cluster

7.4.1 Set Up

Another complication of using clusters is that the worker processes are completely independent of the controller
process. Any information they have must be explicitly passed to them.

This is very unlike the fork-exec model in which all of the child processes are copies of the parent process
inheriting all of its memory (and thus knowing about any and all R objects it created).

So in order for our example to work we must explicitly distribute stuff to the cluster.
clusterExport(cl, c("doit", "mle", "mlogl", "n", "nsim", "theta"))
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Now all of the workers have those R objects, as copied from the controller process right now. If we change
them in the controller (pedantically if we change the R objects those names refer to) the workers won’t know
about it. Thus if we change these objects on the controller, we must re-export them to the workers.

7.4.2 Try It

So now we are set up to try our example.
pout <- parLapply(cl, rep(nsim / ncores, ncores), doit, estimator = mle)

7.4.3 Check It

Seems to have worked.
length(pout)

## [1] 8
sapply(pout, length)

## [1] 12500 12500 12500 12500 12500 12500 12500 12500
lapply(pout, head)

## [[1]]
## [1] 1.0079313 0.7316543 0.4958322 0.7705943 0.7734226 0.6158992
##
## [[2]]
## [1] 0.9589889 0.9799828 1.1347548 0.9090886 0.9821320 1.0032531
##
## [[3]]
## [1] 1.3432331 0.7821308 1.2010078 0.9792244 1.1148521 0.9269000
##
## [[4]]
## [1] 0.9790400 1.1787975 0.7852431 1.2942963 1.0768396 0.7546295
##
## [[5]]
## [1] 0.9166641 0.8326720 1.1864809 0.9609456 1.3137716 0.9832663
##
## [[6]]
## [1] 0.9488173 1.0792078 0.9774531 0.8106612 0.8403027 1.1296857
##
## [[7]]
## [1] 1.0077599 0.9867766 1.1643493 0.9478923 1.1770221 1.2789464
##
## [[8]]
## [1] 1.0046353 0.9560784 1.0354414 0.9045423 0.9455714 1.0312553

Plot it.
theta.hat <- unlist(mout)
hist(theta.hat, probability = TRUE, breaks = 30)
curve(dnorm(x, mean = theta, sd = theta / sqrt(3 * n)), add = TRUE)
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Histogram of theta.hat
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7.4.4 Time It

time5 <- NULL
for (irep in 1:nrep)

time5 <- rbind(time5, system.time(theta.hat.mle <-
unlist(parLapply(cl, rep(nsim / ncores, ncores),

doit, estimator = mle))))
time5

## user.self sys.self elapsed user.child sys.child
## [1,] 0.006 0.004 2.282 0 0
## [2,] 0.012 0.000 2.448 0 0
## [3,] 0.007 0.004 2.590 0 0
## [4,] 0.006 0.004 2.789 0 0
## [5,] 0.012 0.000 2.450 0 0
## [6,] 0.011 0.000 2.743 0 0
## [7,] 0.010 0.000 2.498 0 0

Now we are not seeing any child times because the workers are not children of the controller R process, they
need not even be running on the same computer. If we wanted to know about times on the workers, we would
have to run R function system.time on the workers and also include that information in the result somehow.
So the only time of interest here is elapsed.
apply(time5, 2, mean)

## user.self sys.self elapsed user.child sys.child
## 0.009142857 0.001714286 2.542857143 0.000000000 0.000000000
apply(time5, 2, sd) / sqrt(nrep)
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## user.self sys.self elapsed user.child sys.child
## 0.001033454 0.000808122 0.067355641 0.000000000 0.000000000

We got the desired speedup. The elapsed time averages
apply(time5, 2, mean)["elapsed"]

## elapsed
## 2.542857

with parallelization and
apply(time1, 2, mean)["elapsed"]

## elapsed
## 7.468

without parallelization. But we did not get an 8-fold speedup with 8 cores. There is a cost to starting and
stopping the child processes. And some time needs to be taken from this number crunching to run the rest of
the computer. However, we did get a 2.9-fold speedup. If we had more cores, we could do even better.

We also see that this method isn’t quite as fast as the other method. So why do we want it (other than that
the other doesn’t work on Windows)? Because it scales. You can get clusters with thousands of cores, but
you can’t get thousands of cores in one computer.

7.5 Tear Down

Don’t forget to tear down the cluster when you are done.
stopCluster(cl)

8 LATIS

For more about the LATIS see https://cla.umn.edu/latis.

For more about the compute cluster compute.cla.umn.edu run by LATIS see https://cla.umn.edu/research-
creative-work/research-development/research-computing-and-software.

For all the info on various queues and resource limits see https://neighborhood.cla.umn.edu/node/5371.

8.1 Fork-Exec

This is just like the fork-exec section above except for a few minor changes for running on LATIS.

8.1.1 Interactive Session

SSH into compute.cla.umn.edu. Then
qsub -I -l nodes=1:ppn=8
cd tmp/8054/parallel # or wherever
wget -N http://www.stat.umn.edu/geyer/8054/scripts/latis/fork-exec.R
module load R/3.6.1
R CMD BATCH --vanilla fork-exec.R
cat fork-exec.Rout
exit
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8.1.2 Batch Job

cd tmp/8054/parallel # or wherever
wget -N http://www.stat.umn.edu/geyer/8054/scripts/latis/fork-exec.R
wget -N http://www.stat.umn.edu/geyer/8054/scripts/latis/fork-exec.pbs
qsub fork-exec.pbs

If you want e-mail sent to you when the job starts and completes, then add the lines

### EMAIL NOTIFICATION OPTIONS ###
# Send email on a:abort, b:begin, e:end
#PBS -m abe
# Your email address
#PBS -M yourusername@umn.edu

to fork-exec.pbs where, of course, yourusername is replaced by your actual username.

You may also need to alter the line in the file fork-exec.pbs about walltime. This asks for 20 minutes. If
the job doesn’t finish in that amount of time, then it is killed. If you delete this line entirely, then the default
two days.

The linux command

qstat

will tell you if your job is running.

The linux command

qdel jobnumber

where jobnumber is the actual job number shown by qstat, will kill the job.

You can log out of compute.cla.umn.edu after your job starts in batch mode. It will keep running.

8.2 MPI Cluster

MPI clusters are the way “big iron” does parallel processing. So if you ever want to move up to the clusters
at the Minnesota Supercomputing Institute or even bigger clusters, you need to start here.

This is just like the cluster section above except for a few minor changes for running on LATIS.

8.2.1 Interactive Session

In order for an MPI cluster to work, we need to install R packages Rmpi and snow which LATIS does not
install for us. So users have to install them themselves (like any other CRAN package they want to use).
It also turns out that we have to load two modules rather than one: the module containing R and another
module containing a newer version of openmpi than the default. This means we will also have to load these
two modules whenever we want to use an MPI cluster.

qsub -I
module load R/3.6.1
module load openmpi/3.1.3
R --vanilla
options(repos = c(CRAN="https://cloud.r-project.org/"))
install.packages("Rmpi")
install.packages("snow")
q()

16

https://en.wikipedia.org/wiki/Message_Passing_Interface
https://www.msi.umn.edu/


exit

R function install.packages will tell you that it cannot install the packages in the usual place and asks
you if you want to install it in a “personal library”. Say yes. Then it suggests a location for the “personal
library”. Say yes.

Now almost the same thing again (again we use only one node because we are only allowed one node for an
interactive queue)
qsub -I -l nodes=1:ppn=8
cd tmp/8054/parallel # or wherever
wget -N http://www.stat.umn.edu/geyer/8054/scripts/latis/cluster.R
module load R/3.6.1
module load openmpi/3.1.3
R CMD BATCH --vanilla cluster.R
cat cluster.Rout
exit

The qsub command says we want to use 8 cores on 1 node (computer). The interactive queue is not allowed
to use more than one node.

8.2.2 Batch Job

Same as above mutatis mutandis
cd tmp/8054/parallel # or wherever
wget -N http://www.stat.umn.edu/geyer/8054/scripts/latis/cluster.R
wget -N http://www.stat.umn.edu/geyer/8054/scripts/latis/cluster.pbs
qsub cluster.pbs

with the same comments about email and walltime.

8.3 Sockets Cluster on LATIS

You can make a sockets cluster on LATIS if you are only using one node. It works just like in the example in
the main text.
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