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1 License

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R

e The version of R used to make this document is 4.3.2.
e The version of the rmarkdown package used to make this document is 2.25.

e The version of the memc package used to make this document is 0.9.8.

3 Functionals of a Markov Chain

If X;, Xo, ... is a Markov chain and ¢ is a real-valued function on the state space, then g(X;), g(X3), ... is
called a functional of the Markov chain (Geyer, 2011, Introduction to MCMC, in Handbook of Markov Chain
Monte Carlo, hereinafter referred to as the “Intro”, Section 1.6)

4 Estimates of Expectations of Functionals of a Markov Chain

If we cannot calculate, either by hand or by using a computer algebra system, an expectation

n=E{g(X)}
for some random object X and some real-valued function g on the state space (the set where X takes values),
then we estimate it by simulating a Markov chain X7, X5, ..., whose unique equilibrium distribution is the

distribution of X, and using

fin =

S|

Zg(xi)
i=1

as our estimator (these are equations (1.1) and (1.2) in the Intro).

5 Asymptotic Variance and Autocovariances

The Markov chain central limit theorem says that ji,, is a consistent and asymptotically normal estimator of
u with asymptotic variance o2 /n, where

o’ =+2) W
k=1
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where
Y = cov{g(Xi), g(Xivr)}

(these are equations (1.9) and (1.8) in the Intro Intro), where here the covariances refer to the stationary
Markov chain having the same transition probabilities as the Markov chain actually being run so that there
is no dependence on @ as is required for this to be a good definition (more on this in Section 1.8 of the intro).

The natural estimator of the “little gammas” -y is

(this is equation (1.10) in the Intro).

Each vy is called an autocovariance (of this functional of the Markov chain) and the function k +— ~;, is called
the autocovariance function. R function acf estimates autocovariance functions.

6 Behavior of the Autocovariance Estimates

The behavior of the autocovariance estimates is extremely bad. For large k, when - is nearly zero, the
variance of 4y does not depend on k and hence does not go to zero. Similarly, the covariance of 4y and x4
does not depend on k, and hence does not decrease with k. Thus, the part of the autocovariance function
that corresponds to k such that ~ is nearly zero, looks like a stationary time series. Geyer (1992, Practical
Markov Chain Monte Carlo, Statistical Science, Section 3.1, discusses this, not deriving anything new but
rather citing earlier work by Bartlett and Priestly).

As a simple example, we take the Markov chain from the examples section of the help page for R function
initseq
n <- 2e4

rho <- 0.99
x <- arima.sim(model = list(ar = rho), n = n)

This is an AR(1) time series, which is also a Markov chain (Section 1.9 of the Intro).

Unlike in the Intro), we look at the boring part of the estimated autocovariance function (where the true
autocovariance function is nearly zero). The following code

aout <- acf(x, type = "covariance", lag.max = n / 5, plot = FALSE)
bound <- max(abs(aout$act [aout$lag >= 400]))
plot(aout, xlim = c(400, max(aout$lag)), ylim = c(-1, 1) * bound)

produces the following figure.

Although we think the true autocovariance function should go to zero as k goes to infinity (more on this
later), the estimated autocovariance function does not do this. Both the figure and the theory discussed
above show this.

Thus the naive estimator of o which just adds up the estimated autocovariances
n—1
Yo + 2 Z Vi
k=1

is a terrible estimator! It isn’t even consistent. It’s variance is O(1) not O(1/n) as one would expect for a
good estimator (Geyer, 1992, Section 3.1, cited above).

Incidentally, this explains why we divided by n rather than by n — k in the expression for 4. If the estimator
is already terrible for large k, then dividing by n — k rather than n would only make it worse. Also our
definition agrees with what R function acf computes and with most of the time series literature.


http://mcmchandbook.net/HandbookChapter1.pdf
http://mcmchandbook.net/HandbookChapter1.pdf
https://www.jstor.org/stable/2246094
https://www.jstor.org/stable/2246094
http://mcmchandbook.net/HandbookChapter1.pdf
http://mcmchandbook.net/HandbookChapter1.pdf
https://www.jstor.org/stable/2246094

ACF (cov)

-4 -2 0

-6

Series x

1000

I I
2000 3000

Lag

Figure 1: Estimated Autocovariance Function
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This phenomenon was well understood in the time series literature long before most statisticians became
interested in MCMC. So many methods of dealing with the problem for stationary time series (that are not
necessarily functionals of Markov chains) have been proposed. But none is so good as to be obviously better
than the others, and none is anywhere as good for functionals of reversible Markov chains as the methods
proposed by Geyer (1992, cited above, Section 3.3) and called initial sequence methods and implemented in R
function initseq in CRAN package mcmc.

7 Theory of Initial Sequence Estimators

The infinite-dimensional analog of eigenvalues and eigenvectors, which is called the spectral decomposition of
a bounded operator on a Hilbert space, is used by Geyer (1992, cited above, Section 3.3) to prove things about
the behavior of the sequence of “big gammas”

'y = vy + Y2k+1

But first we look at the little gammas
w= [ E, @)

where E, is some positive measure concentrated on the interval (—1,1) of the real line if the Markov chain is
irreducible and aperiodic, which it must be in order to be useful in MCMC (Chan and Geyer, 1994, Discussion
of the paper by Tierney, Annals of Statistics, Lemma 6 and the surrounding discussion).

In this equation the A are the infinite-dimensional analog of eigenvalues. There are infinitely many of them.
The infinite-dimensional analog of eigenvectors is hidden in the measure E,. The details don’t matter because
we cannot calculate Ey. Nor do we even need to know what bounded operator on a Hilbert space this comes
from. It is the transition operator of the Markov chain (Chan and Geyer, 1994, cited above, pp. 1750 ff.), but
that doesn’t help us do any calculations.

Nor does this representation tell us much about the autocovariance function, but when we use this represen-
tation on the big gammas we get

Iy = /)\2"'(1 —\) Ey(d\)

from which we immediately see that, unlike the little gammas, the big gammas are strictly positive (because
even powers are positive and 1 — X is positive because X is concentrated on the interval (—1,1)). Actually, a
point that Geyer (1992) missed, is that E; could be concentrated at zero, but this can only happen when the
Markov chain is actually independent and identically distributed, which is not interesting (no source for this,
it comes from a paper I am working on — a triviality but it needs to be mentioned in order to make the
theorem about initial sequence estimators correct).

It is also obvious from this representation that the big gammas are strictly decreasing in k, because A%* is
decreasing in k£ when A is less than one in absolute value, which it is almost everywhere with respect to F,.
It is a little less obvious that the big gamma sequence is a strictly convex function of k but Geyer (1992,
cited above) proves this in just a few lines.
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Much less obvious is that

oo
O’2 —Y + 2 Z Ty
k=0
o0
=—%+2> W
k=0

— 1 _ k
= lim_ ( 1+2];))\>Eg(d)\)

= lim (—1+21_A )Eg(d)\)

n—00 1—X
. 1+XA—2)\"
= Mmooy Beldy

1+ A
= | —— E,(d\
by monotone and dominated convergence.

The Kipnis-Varadhan Markov chain central limit theorem for functionals of reversible Markov chains (Kipnis
and Varadhan, 1986, Central limit theorem for additive functionals of reversible Markov processes and
applications to simple exclusions, Communications in Mathematical Physics) says the central limit theorem
holds if the integral above is finite.

So that tells us the I'y, must decrease to zero as k goes to infinity if there is to be a central limit theorem.

8 Example of Initial Sequence Estimators

8.1 Initial Positive Sequence Estimator

So let’s look at the initial sequence estimators for our example. The following code

library("mcmc")

iout <- initseq(x)

plot(seq(along = iout$Gamma.pos) - 1, iout$Gamma.pos,
ylab = expression(Gamma[k]), xlab = expression(k))

abline(h = 0)

produces the following figure.

(this figure and the other figures in this handout change every time the document is processed by R function
render in R package rmarkdown because we do not set random number generator seeds anywhere in this
document).

This is already a very good estimator, we first estimated all of the big gammas by the obvious
Uy = Y2k + Yor+1

and then set to zero all of the negative fk and all of the fk after any that are negative. That’s what is shown
in the figure. Already we have gotten rid of all the spurious wiggles of the autocovariance function for large
lag (by setting them to zero as just described). Summing these gives a pretty good estimator.

8.2 Initial Decreasing Sequence Estimator

We can do a little better by imposing monotonicity. The following code
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Figure 2: Initial Positive Sequence Estimator
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plot(seq(along = iout$Gamma.pos) - 1, iout$Gamma.pos,
ylab = expression(Gammal[k]), xlab = expression(k))
abline(h = 0)
lines(seq(along = iout$Gamma.con) - 1, iout$Gamma.con, col = "blue", lwd = 3)

produces the following figure.
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Figure 3: Initial Decreasing Sequence Estimator. Dots are initial positive sequence estimator. Blue line is
initial decreasing sequence estimator

The improvement cannot even be seen on the plot, but there is some.

iout$var.pos

## [1] 15888.96

iout$var.dec

## [1] 14600.92

iout$var.pos - iout$var.dec

## [1] 1288.041

(iout$var.pos - iout$var.dec) / iout$var.dec

## [1] 0.08821638

about a 8.8 percent decrease in the estimator.



8.3 Initial Convex Sequence Estimator

We can do a little better by imposing convexity. The following code

plot(seq(along = iout$Gamma.dec) - 1, iout$Gamma.dec,
ylab = expression(Gamma[k]), xlab = expression(k))
abline(h = 0)
lines(seq(along = iout$Gamma.con) - 1, iout$Gamma.con, col = "red", lwd = 3)

produces the following figure.
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Figure 4: Initial Convex Sequence Estimator. Dots are initial decreasing sequence estimator. Red line is
initial convex sequence estimator

The improvement cannot even be seen on the plot, but there is some.

iout$var.dec

## [1] 14600.92

iout$var.con

## [1] 13051.15

iout$var.dec - iout$var.con

## [1] 1549.774

(iout$var.dec - iout$var.con) / iout$var.con

## [1] 0.1187462



about a 11.9 percent decrease in the estimator.

8.4 Some More Examples

Let’s just try this a bunch of times.

nsim <- 20

result <- NULL

for (i in 1:nsim) {
x <- arima.sim(model = list(ar = rho), n = n)
iout <- initseq(x)
tmp <- iout[c("var.pos", "var.dec", "var.con")]
tmp$imp.dec <- with(iout, 100 * (var.pos - var.dec) / var.dec)
tmp$imp.con <- with(iout, 100 * (var.dec - var.comn) / var.con)
result <- rbind(result, unlist(tmp))

}

round(result, 2)

## var.pos var.dec var.con imp.dec imp.con
## [1,] 11855.34 11449.27 11246.00 3.55 1.81
## [2,] 7833.80 7833.80 7816.81 0.00 0.22
## [3,] 15663.81 14719.74 13711.82 6.41 7.35
## [4,] 14370.66 13464.26 13038.44 6.73 3.27
## [5,] 8299.29 8299.29 8239.74 0.00 0.72
## [6,] 6874.06 6871.66 6846.03 0.04 0.37
## [7,] 8757.19 8747.25 8672.22 0.11 0.87
## [8,] 8694.83 8675.99 8497.94 0.22 2.10
## [9,] 6264.28 6264.28 6231.62 0.00 0.52
## [10,] 9045.71 8989.54 8850.59 0.62 1.57
## [11,] 8062.66 8056.73 8009.11 0.07 0.59
## [12,] 9191.10 9191.10 9188.02 0.00 0.03
## [13,] 8966.03 8664.25 8287.15 3.48 4.55
## [14,] 13104.39 13103.68 12690.30 0.01 3.26
## [15,] 9304.05 9304.05 9145.16 0.00 1.74
## [16,] ©8425.31 8424.34 8322.46 0.01 1.22
## [17,] 6835.82 6835.82 6802.62 0.00 0.49
## [18,] 10586.13 10585.55 10229.67 0.01 3.48
## [19,] 10229.96 10229.96 10226.69 0.00 0.03
## [20,] 9881.26 9881.26 9824.75 0.00 0.58

We can see that the amount of improvement (fourth and fifth columns, relative improvements in percent) is
quite variable. Sometimes negligible, sometimes appreciable. Most of the time, the initial positive sequence
estimator is just as good as the others. But rarely, the initial decreasing sequence estimator or the initial
convex sequence estimator produce big wins.

We can see that the estimators themselves (first, second, and third columns) are also quite variable. That is
because of the small Monte Carlo sample size. Increasing n would improve the estimates (of course).
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