
Aster Models
Stat 8053 Lecture Notes

Charles J. Geyer

School of Statistics
University of Minnesota

October 27, 2014



Aster Models

Aster models (named after the flowers)

Charles J. Geyer, Stuart Wagenius, and Ruth G. Shaw (2007).
Aster Models for Life History Analysis.
Biometrika, 94, 415–426.

are a new kind of exponential family regression model (canonical
affine submodels of regular full exponential families) that allow for

dependence among components of the response vector, which
is specified by a graphical model, and

components of the response vector having different familes,
some Bernoulli, some Poisson, some zero-truncated Poisson,
some normal, etc.



Aster Models (cont.)

The main point of these slides is not to get you to fully
understand aster models. That would take all semester and was
done last fall in a special topics course. All of the slides for that
course and recorded sound from the lectures are at

http://users.stat.umn.edu/geyer/8931aster/

The main point of these slides is to get you to have a vague
understanding of aster models, enough to get the point of how
powerful exponential family regression models can be.

http://users.stat.umn.edu/geyer/8931aster/


Aster Models in R

R contributed package aster on CRAN.

install.packages("aster")

library(aster)

Function aster fits models. Generic functions summary, predict,
and anova work like those for linear and generalized linear models.



Aster Models on the Web

Main aster web page

http://www.stat.umn.edu/geyer/aster/

has links to papers and tech reports. All tech reports done with
Sweave so everything is exactly reproducible.

Google group

https://groups.google.com/forum/#!forum/

aster-analysis-user-group

http://www.stat.umn.edu/geyer/aster/
https://groups.google.com/forum/#!forum/aster-analysis-user-group
https://groups.google.com/forum/#!forum/aster-analysis-user-group


Aster Models (cont.)

Lots of papers.

I am co-author on 5.

My sister, Ruth Shaw, Professor in the Department of Ecology,
Evolution, and Behavior on the St. Paul Campus, is a co-author of
those and on several more.

Dan Eck is lead author on yet another (almost ready to submit).

Dozens of papers by biologists not in our group.



Life History Analysis

Life history analysis (LHA) follows organisms over the course of
their lives collecting various data: survival through various time
periods and also various other data, which only makes sense
conditional on survival.

Thus LHA generalizes survival analysis, which only uses data on
survival.

The LHA of interest to many biologists concerns Darwinian
fitness conceptualized as the lifetime number of offspring an
organism has. The various bits of data collected over the course of
the life that contribute to this are called components of fitness.



Life History Analysis (cont.)

The fundamental statistical problem of LHA is that overall fitness,
considered as a random variable, fits (in the statistical sense) no
brand-name distribution. It has a large atom at zero (individuals
that died without producing offspring) as well as multiple modes
(one for each breeding season the organism survives). No
statistical methodology before aster deals with data like that.

This issue has long been well understood in the LHA literature. So
what was done instead was analyze components of fitness
separately conditional on survival, but this doesn’t address the
variable (overall fitness) of primary interest (an issue also well
understood, but you do what you can do).



An Aster Graph

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

yi are components of response vector for one individual (all
individuals have isomorphic graphs). 1 is the constant 1.

Arrows indicate conditional distributions of variable at head of
arrow (successor) given variable at tail of arrow (predecessor).
Ber = Bernoulli, 0-Poi = zero-truncated Poisson.



Graphical Terminology

For one arrow in a graph

y2
Ber−−−−→ y3

we say y3 is the successor of y2 and (conversely) we say y2 is the
predecessor of y3.

A node of the graph (random variable) having no successors is
called a terminal node of the graph.

A node of the graph (random variable) having no predecessors is
called an initial node of the graph.



General Aster Graphs

Graphs for aster models have the following properties

they are acyclic (there is no path following arrows in the
directions they point that gets back to where it started)

every node has at most one predecessor (initial nodes have
none, non-initial nodes have one),

arrows represent conditional distributions of successor given
predecessor, and

each such distribution is one-parameter exponential family
with

the successor is the canonical statistic and
the predecessor is the sample size (more on this presently).



Aster Model Joint Distribution

Nodes (variables) have at most one predecessor, hence graph is
specified by function p that maps from set J of non-initial nodes to
set N of all nodes. yp(j) is predecessor of yj .

yj at initial nodes treated as constants. Then, because graph is
acyclic, joint distribution factors as product of conditionals

fθ(y) =
∏
j∈J

fθ(yj | yp(j))

Log likelihood is

l(θ) =
∑
j∈J

log fθ(yj | yp(j))



Aster Model Joint Distribution (cont.)

fθ(y) =
∏
j∈J

fθ(yj | yp(j))

In a term fθ(yj | yp(j)) where yp(j) is an initial node, hence a
constant random variable, conditioning on a constant random
variable is like not conditioning at all

fθ(yj | yp(j)) =
fθ(yj , yp(j))

fθ(yp(j))
= fθ(yj)

because fθ(yp(j)) = 1 and fθ(yj , yp(j)) = fθ(yj) when yp(j) has the
only value it is possible for it to have (the constant it is).



Predecessor is Sample Size

An arrow

yp(j)
whatever−−−−−→ yj

indicates that the conditional distribution of yj given yp(j) is the
distribution of the sum of IID (independent and identically
distributed) random variables having the “whatever” distribution,
and there are yp(j) terms in the sum.

By convention, a sum with zero terms is zero.

Hence the conditional distribution of yj given yp(j) is

concentrated at zero when yp(j) = 0,

is the “whatever” distribution when yp(j) = 1, and

is the sum of k IID “whatever” distributed random variables
when yp(j) = k.



Predecessor is Sample Size (cont.)

1
Ber−−−−→ y1

Whatever−−−−−→ y2

The unconditional distribution of y1 is Bernoulli, hence
zero-or-one-valued.

The conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Whatever if y1 = 1

We see that, in the zero-or-one-valued predecessor case, the
interpretation is simple. Predecessor = 0 implies successor = 0.
Otherwise, the conditional distribution of the successor is the
named distribution.



Predecessor is Sample Size (cont.)

But predecessors do not have to be zero-or-one-valued.

1
Poi−−−−→ y1

Ber−−−−→ y2

Now y1 is nonnegative-integer-valued (Poi = Poisson).

The sum of n IID Bernoulli random variables is binomial with
sample size n.

The conditional distribution of y2 given y1 is

degenerate, concentrated at zero if y1 = 0

Binomial with sample size y1 if y1 > 0



The Zero-Truncated Poisson Distribution

Zero-truncated Poisson is a Poisson random variable conditioned
on not being zero. The probability mass function (PMF) is

f (x) =
µxe−µ

x!(1− e−µ)
, x = 1, 2, . . . ,

where µ > 0 is the mean of the untruncated Poisson variable, (just
the Poisson PMF divided by the probability the Poisson variable is
nonzero, which is 1− e−µ).



Zero-Truncated and Zero-Inflated

The reason why we want the zero-truncated Poisson distribution is
that sometimes random variables are zero for reasons other than
Poisson variation.

If we want to deal with this we need the so-called zero-inflated
Poisson distribution (about which there has been much recent
literature, nearly 5,000 hits in Google Scholar).



Zero-Truncated and Zero-Inflated (cont.)

Because aster models have one parameter per arrow, the aster
model way to get the zero-inflated Poisson distribution uses two
arrows rather than one

yi
Ber−−−−→ yj

0-Poi−−−−→ yk

The conditional distribution of yk given yi (both arrows) is

degenerate, concentrated at zero if yi = 0

zero-inflated Poisson, if yi = 1

the sum of yi IID zero-inflated Poisson random variables, if
yi > 1



An Aster Graph (cont.)

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

Graph for Echinacea angustifolia example in Geyer, Wagenius and
Shaw (Biometrika, 2007).
y1, y2, y3 indicate survival in each of three years (2002–2004).
y4, y5, y6 indicate flowering status (1 = some flowers, 0 = no
flowers) in corresponding years.
y7, y8, y9 are flower counts in corresponding years.



An Aster Graph (cont.)

1
Ber−−−−→ y1

Ber−−−−→ y2
Ber−−−−→ y3yBer

yBer

yBer

y4 y5 y6y0-Poi

y0-Poi

y0-Poi

y7 y8 y9

The top layer (survival indicators) are necessary to model survival
components of fitness.

The middle and bottom layers (flowering indicators and flower
counts) are necessary to model fecundity components of fitness
while accounting for zero-inflation of the Poisson distributions.



Aster Model Log Likelihood

l(θ) =
∑
j∈J

log fθ(yj | yp(j))

Because of the way IID works for exponential families (Section 1.13
of the handout on exponential families) and because each arrow
corresponds to a one-parameter exponential family with yj as
canonical statistic and yp(j) as sample size,

log fθ(yj | yp(j)) = yjθj − yp(j)cj(θj)

here θj is the canonical parameter and cj is the cumulant function
(for this one-parameter exponential family).



Aster Model Log Likelihood (cont.)

l(θ) =
∑
j∈J

[
yjθj − yp(j)cj(θj)

]

=
∑
j∈J

yj

θj − ∑
k∈J

j=p(k)

ck(θk)

− ∑
k∈J

p(k)/∈J

yp(k)ck(θk)

This is recognizable as log likelihood for joint exponential family.
Blue term is j-th component of joint canonical parameter vector.
Red term is cumulant function of joint family.



Aster Model Log Likelihood (cont.)

l(ϕ) = 〈y , ϕ〉 − c(ϕ)

where
ϕj = θj −

∑
k∈J

j=p(k)

ck(θk), j ∈ J

and
c(ϕ) =

∑
k∈J

p(k)/∈J

yp(k)ck(θk)



Aster Transform

Map between θ and ϕ is invertible

θj = ϕj +
∑
k∈J

j=p(k)

ck(θk)

where θk on right-hand side have “already” been determined as
function of ϕ. Use in any order that does successors before
predecessors (always is one because graph is acyclic).



Aster Transform (cont.)

We call θ the conditional canonical parameter vector.
We call ϕ the unconditional canonical parameter vector.

They are not as parallel as the names suggest.

The vector θ has components that are the canonical parameters of
the conditional distributions associated with the arrows of the
graph.

The vector ϕ is the canonical parameter vector of the joint
distribution of the aster model (which is an exponential family).



The Aster Transform (cont.)

Each θj is the canonical parameter of a one-parameter exponential
family model (for one arrow). The vector θ is not a canonical
parameter vector of a multivariate exponential family.

The vector ϕ is the canonical parameter vector of a multivariate
exponential family. Each ϕj is not a canonical parameter of a
one-parameter exponential family.



The Aster Transform (cont.)

Are you lost? If so, no surprise.

The aster transform makes mathematical-statistical-theoretical
sense, but it doesn’t make common sense. It is not intuitive at all.

To understand it we must apply Zen and not try to understand it.

If that doesn’t make sense, wait a while. We hope you will
eventually achieve enlightenment.

The technical report A Philosophical Look at Aster Models goes
through one very simple example, but it only shows the algebraic
formulas are a big mess that no one can understand intuitively.
(The whole point of the example is to show you that you do not
want to try to understand the aster transform by staring at the
formulas.)



The Aster Transform (cont.)

A quote from my master’s level theory notes

Parameters are meaningless quantities. Only probabilities
and expectations are meaningful.

Of course, some parameters are probabilities and expectations, but
most exponential family canonical parameters are not.

A quote from Alice in Wonderland

‘If there’s no meaning in it,’ said the King, ‘that saves a
world of trouble, you know, as we needn’t try to find any.’

Realizing that canonical parameters are meaningless quantities
“saves a world of trouble”. We “needn’t try to find any”.



Mean Value Parameters

Define

ξj = E{yj | yp(j) = 1}
µj = E (yj)

By properties of exponential families

ξj = c ′j (θj)

µ = ∇c(ϕ)

where prime denotes univariate derivative and ∇ denotes
multivariate derivative (vector of partial derivatives).

By properties of exponential families these changes of parameters
are also invertible (although no closed-form expression in general).



Mean Value Parameterizations (cont.)

It is useful to examine the direct change of parameter

µ←→ ξ

rather than the long way round

µ←→ ϕ←→ θ ←→ ξ

Applying the iterated expectation theorem to

E (yj |yp(j)) = yp(j)ξj

gives

µj = E (yj) = E{E (yj |yp(j))} = E (yp(j)ξj) = ξjE (yp(j)) = ξjµp(j)



Mean Value Parameterizations (cont.)

And iterating this gives

µj = ξjµp(j)

= ξjξp(j)µp(p(j))

= ξjξp(j)ξp(p(j))µp(p(p(j)))

= ξjξp(j)ξp(p(j))ξp(p(p(j)))µp(p(p(p(j))))

and so forth.

Keep going until the only µ is for an initial node, in which case,
since the expectation of a constant is a constant,

µp(p(p(p(j)))) = yp(p(p(p(j))))

(or perhaps with more p’s, whatever it takes to get to an initial
node).



Mean Value Parameterizations (cont.)

Going the other way is even easier

ξj =
µj
µp(j)

assuming we do not have divide by zero. Since we already know
that the mapping µ←→ ξ is invertible, it must be that we never
have divide by zero (this follows from the aster model distribution
being non-degenerate).



A Plethora of Parameterizations

Now we have four different parameterizations. All are equally
good, and any one can be mapped to any other.

θ ϕ

ξ µ
-

�

-
�

multiplication

division

aster transform

inverse aster transform

?

6

?

6

c ′j ∇c

(no closed-form expression for red arrows).



A Plethora of Parameters

Four different parameterizations µ, ξ, θ, and ϕ.

All are important. All play a role in some scientific arguments.
Users have to understand all four.

But wait, there’s more!



Canonical Affine Submodels

In an exponential family, with canonical parameter ϕ, the change
of parameter

ϕ = a + Mβ

where a is a known vector, called the offset vector, and M is a
known matrix, called the model matrix, gives a new exponential
family (Section 1.15 of the handout on exponential families)

Submodel canonical parameter vector is β.
Submodel canonical statistic vector is MT y .
Submodel mean value parameter vector is τ = E (MT y) = MTµ.



A Plethora of Parameters (cont.)

Six different parameterizations

µ saturated model unconditional mean value
ξ saturated model conditional mean value
ϕ saturated model unconditional canonical
θ saturated model conditional canonical
β submodel unconditional canonical
τ submodel unconditional mean value



Fisher Information

Fisher information for submodel canonical parameter vector β is

I (β) = −∇2l(β) = MT∇2c(Mβ)M

Computer can convert to any other parameterization. And
compute derivatives for applying the delta method to transfer
standard errors.



Interpretation

The pillars of interpretation of an aster model, just like for any
exponential family model, are

sufficient dimension reduction (submodel canonical statistic is
sufficient, Section 1.17 of exponential family handout),

observed equals expected (MLE of submodel mean value
parameter equals submodel sufficient statistic, Section 1.12.2
of exponential family handout),

maximum entropy (submodel leaves every aspect of data as
random as possible given that it fixes the submodel mean
value parameter, Section 1.18 of exponential family handout),
and

multivariate monotonicity of the map ϕ←→ µ and univariate
monotonicity of the map θj ←→ ξj (Section 1.11 of
exponential family handout).



Example Data Analysis

Data are found in the R dataset echinacea in the R package aster.

> library(aster)

> data(echinacea)

> class(echinacea)

[1] "data.frame"

> dim(echinacea)

[1] 570 12

> names(echinacea)

[1] "hdct02" "hdct03" "hdct04" "pop" "ewloc"

[6] "nsloc" "ld02" "fl02" "ld03" "fl03"

[11] "ld04" "fl04"



Example Data Analysis (cont.)

The variables that correspond to nodes of the graph are, in the
order they are numbered in the graph

> vars <- c("ld02", "ld03", "ld04", "fl02", "fl03",

+ "fl04", "hdct02", "hdct03", "hdct04")

The graphical structure is specified by a vector that gives for each
node the index (not the name) of the predecessor node or zero if
the predecessor is an initial node.

> pred <- c(0, 1, 2, 1, 2, 3, 4, 5, 6)

This says the first node given by the vars vector is initial (because
pred[1] == 0), the predecessor of the second node given by the
vars vector is the first node given by the vars vector (because
pred[2] == 1), and so forth.



Example Data Analysis (cont.)

Let’s check this makes sense.

> foo <- rbind(vars, c("initial", vars)[pred + 1])

> rownames(foo) <- c("successor", "predecessor")

> foo

[,1] [,2] [,3] [,4] [,5]

successor "ld02" "ld03" "ld04" "fl02" "fl03"

predecessor "initial" "ld02" "ld03" "ld02" "ld03"

[,6] [,7] [,8] [,9]

successor "fl04" "hdct02" "hdct03" "hdct04"

predecessor "ld04" "fl02" "fl03" "fl04"

That’s right.



Example Data Analysis (cont.)

The last part of the specification of the graph is given by a
corresponding vector of integers coding families (distributions).
The default is to use the codes: 1 = Bernoulli, 2 = Poisson, 3 =
zero-truncated Poisson. Optionally, the integer codes specify
families given by an optional argument famlist to functions in the
aster package, and this can specify other distributions besides
those in the default coding.

> fam <- c(1, 1, 1, 1, 1, 1, 3, 3, 3)

> rbind(vars, fam)

[,1] [,2] [,3] [,4] [,5] [,6]

vars "ld02" "ld03" "ld04" "fl02" "fl03" "fl04"

fam "1" "1" "1" "1" "1" "1"

[,7] [,8] [,9]

vars "hdct02" "hdct03" "hdct04"

fam "3" "3" "3"



Example Data Analysis (cont.)

There is one more step before we can fit models. The R function
aster which fits aster models wants the data in “long” rather than
“wide” format, the former having one line per node of the graph
rather than one per individual.

The magic incantation to do this is

> redata <- reshape(echinacea, varying = list(vars),

+ direction = "long", timevar = "varb",

+ times = as.factor(vars), v.names = "resp")

> redata <- data.frame(redata, root = 1)

If you forget this incantation, it and everything else we have done
in this example is on the help page for the R function aster

obtained by doing

help(aster)



Example Data Analysis (cont.)

> class(redata)

[1] "data.frame"

> dim(redata)

[1] 5130 7

> sapply(redata, class)

pop ewloc nsloc varb resp

"factor" "integer" "integer" "factor" "integer"

id root

"integer" "numeric"



Example Data Analysis (cont.)

> names(redata)

[1] "pop" "ewloc" "nsloc" "varb" "resp" "id"

[7] "root"

All of the variables in echinacea that are named in vars are
gone. They are packed into the variable resp. Which components
of resp correspond to which components of vars is shown by the
new variable varb

> levels(redata$varb)

[1] "fl02" "fl03" "fl04" "hdct02" "hdct03"

[6] "hdct04" "ld02" "ld03" "ld04"



Example Data Analysis (cont.)

Now we have all of the response variables (components of fitness)
collected into a single vector resp and we have learned what varb
is. What about the other variables?

root we defined ourselves. When the predecessor of a node is
initial, then the corresponding component of root gives the value
of the predecessor. Other components of root are ignored. We set
them all to one.

id is seldom (if ever) used. It tells what individual (what row of
the original data frame echinacea) a row of reshape came from.

nsloc (north-south location) and ewloc (east-west location) give
the position each individual was located in the experimental plot.



Example Data Analysis (cont.)

pop gives the ancestral populations: each individual was grown
from seed taken from a surviving population in a prairie remnant in
western Minnesota near the Echinacea Project field site.

> levels(redata$pop)

[1] "AA" "Eriley" "Lf" "Nessman" "NWLF"

[6] "SPP" "Stevens"



Regression Models

Different families for different nodes of the graph means it makes
no sense to have terms of the regression formula applying to
different nodes.

In particular, it makes no sense to have one “intercept” for all
nodes.

To in effect get a different “intercept” for each node in the graph,
include varb in the formula

y ~ varb + . . .

The categorical variable varb gets turned into as many dummy
variables as there are nodes in the graph, one is dropped, and the
“intercept” dummy variable (all components = 1) is added; the
effect is to provide a different intercept for each node.



Technical Quibble

Why is does the variable named varb have that name?

Because of the optional argument timevar = "varb" supplied to
the “magic incantation” (reshape function)

redata <- reshape(echinacea, varying = list(vars),

direction = "long", timevar = "varb",

times = as.factor(vars), v.names = "resp")

We could have given it the name fred or sally or whatever we
want. I picked varb (short for “variables”) without thinking about
it the first time I did this, and everyone (including me) has just
copied that ever since.

Similarly the name resp for the response is specified by the
optional argument v.names = "resp".



Regression Models (cont.)

Similar thinking says we want completely different regression
coefficients of all kinds of predictors for each node of the graph.
That would lead us to formulas like

y ~ varb + varb : ( . . . )

where . . . is any other part of the formula.

The : operator in the R formula mini-language denotes
interactions without main effects. The * operator in the R formula
mini-language denotes interactions with main effects. That is,
a * b means the same thing as a + b + a : b

So the above formula says we want the “main effects” for varb,
and we want the “interaction” of varb with “everything else” (the
. . .), but we do not want the “main effects” for “everything else”.



Regression Models (cont.)

y ~ varb + varb : ( . . . )

Having said that, we immediately want to take it back. The
language of “main effects” and “interactions” was never designed to
apply to aster models.

We should not think of this formula as specifying “main effects” for
varb (whatever that may mean) but rather as specifying a
separate “intercept” for each node of the graph.

Similarly, we should not think of this formula as specifying
“interaction” between varb and “everything else” (whatever that
may mean) but rather as specifying separate coefficients for
“everything else” for each node of the graph.



Regression Models (cont.)

Thus IMHO (in my humble opinion) you should always say “main
effects” and “interactions” with scare quotes, emphasizing that
these terms are at best highly misleading and confusing.



Regression Models (cont.)

y ~ varb + varb : ( . . . )

But formulas like this would yield too many regression coefficients
to estimate well! We can do better!

Maybe we don’t really need different regression coefficients for
each node. Maybe different for each kind of node (whatever that
may mean) would be enough.



Regression Models (cont.)

> layer <- gsub("[0-9]", "", as.character(redata$varb))

> unique(layer)

[1] "ld" "fl" "hdct"

> redata <- data.frame(redata, layer = layer)

> with(redata, class(layer))

[1] "factor"

Maybe
y ~ varb + layer : ( . . . )

good enough?



Regression Models (cont.)

y ~ varb + layer : ( . . . )

But formulas like this would still yield too many regression
coefficients to estimate well! We can do better!

Because of the way the aster transform works regression
coefficients “for” a node of the graph also influence all “earlier”
nodes of the graph (predecessor, predecessor of predecessor,
predecessor of predecessor of predecessor, etc.)

So maybe it would be good enough to only have separate
coefficients for the “layer” of the graph consisting of terminal
nodes?



Regression Models (cont.)

> fit <- as.numeric(layer == "hdct")

> unique(fit)

[1] 0 1

> redata <- data.frame(redata, fit = fit)

> with(redata, class(fit))

[1] "numeric"

Maybe
y ~ varb + fit : ( . . . )

good enough?



Regression Models (cont.)

We called this variable we just made up fit, short for Darwinian
fitness.

With formulas like

y ~ varb + fit : ( . . . )

the regression coefficients in terms specified by . . . have a direct
relationship with expected Darwinian fitness. And that’s usually
what is wanted in LHA.



A Technical Quibble

We shouldn’t have said Darwinian fitness. Rather we shouldn’t
have said the best surrogate of Darwinian fitness in these data.

Flower counts are not “lifetime number of offspring”. Still less are
flower counts over three years (not the whole life span).

Other Echinacea data (Wagenius, et al., 2010, Evolution) have
more years and more components of fitness.

Other data on other species (Stanton-Geddes, et al., 2012, PLoS
One) have “best surrogate of fitness” pretty close to “fitness” (with
no qualifiers).

After we have emitted academic weasel-wording making clear that
we are aware of the difference between what we are calling fitness
and the Platonic ideal of fitness, we can just drop the fuss and go
on with the analysis and interpretation.



Regression Models (cont.)

In practice we use formulas like

y ~ varb + layer : ( . . . ) + fit : ( . . . )

with the two . . . having different formula terms.

The formula terms in the second . . . are the ones that we want to
say have a direct effect on fitness (and want statistics to tell us
whether they do or not).

The formula terms in the first . . . are everything else (the terms
whose effect on fitness, if any, is not an issue of scientific interest
in this experiment).



No Naked Predictors

We summarize our advice about formulas for aster models with the
slogan

No naked predictors!

or more precisely

No naked predictors except varb and factor or indicator
variables derived from it, like layer and fit

Our slogan means every predictor other than these must occur
“interacted with” one of these.



Example Data Analysis (cont.)

> aout <- aster(resp ~ varb + layer : (nsloc + ewloc) +

+ fit : pop, pred, fam, varb, id, root, data = redata)

> summary(aout)

Call:

aster.formula(formula = resp ~ varb + layer:(nsloc + ewloc) +

fit:pop, pred = pred, fam = fam, varvar = varb, idvar = id,

root = root, data = redata)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.050644 0.184332 -5.700 1.20e-08

varbfl03 -0.349096 0.267919 -1.303 0.1926

varbfl04 -0.344222 0.243899 -1.411 0.1581

varbhdct02 1.321414 0.261174 5.060 4.20e-07

varbhdct03 1.343374 0.214625 6.259 3.87e-10

varbhdct04 1.851328 0.199853 9.263 < 2e-16

varbld02 -0.029302 0.315703 -0.093 0.9260

varbld03 1.740051 0.396189 4.392 1.12e-05

varbld04 4.188577 0.334266 12.531 < 2e-16

layerfl:nsloc 0.070102 0.014652 4.785 1.71e-06

layerhdct:nsloc -0.005804 0.005550 -1.046 0.2956

layerld:nsloc 0.007165 0.005867 1.221 0.2220

layerfl:ewloc 0.017977 0.014413 1.247 0.2123

layerhdct:ewloc 0.007606 0.005561 1.368 0.1714

layerld:ewloc -0.004787 0.005919 -0.809 0.4186

fit:popAA 0.129238 0.089129 1.450 0.1471

fit:popEriley -0.049561 0.071279 -0.695 0.4869

fit:popLf -0.033279 0.079573 -0.418 0.6758

fit:popNessman -0.186269 0.127787 -1.458 0.1449

fit:popNWLF 0.021028 0.063600 0.331 0.7409

fit:popSPP 0.149179 0.067716 2.203 0.0276

(Intercept) ***

varbfl03

varbfl04

varbhdct02 ***

varbhdct03 ***

varbhdct04 ***

varbld02

varbld03 ***

varbld04 ***

layerfl:nsloc ***

layerhdct:nsloc

layerld:nsloc

layerfl:ewloc

layerhdct:ewloc

layerld:ewloc

fit:popAA

fit:popEriley

fit:popLf

fit:popNessman

fit:popNWLF

fit:popSPP *

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Original predictor variables dropped (aliased)

fit:popStevens



Example Data Analysis (cont.)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.0506435 0.1843320 -5.6997 1.200e-08

varbfl03 -0.3490958 0.2679185 -1.3030 0.19258

varbfl04 -0.3442222 0.2438992 -1.4113 0.15815

varbhdct02 1.3214136 0.2611741 5.0595 4.203e-07

varbhdct03 1.3433740 0.2146250 6.2592 3.870e-10

varbhdct04 1.8513276 0.1998528 9.2635 < 2.2e-16

varbld02 -0.0293022 0.3157033 -0.0928 0.92605

varbld03 1.7400507 0.3961890 4.3920 1.123e-05

varbld04 4.1885771 0.3342661 12.5307 < 2.2e-16

layerfl:nsloc 0.0701024 0.0146520 4.7845 1.714e-06

layerhdct:nsloc -0.0058043 0.0055499 -1.0458 0.29564

layerld:nsloc 0.0071652 0.0058667 1.2213 0.22196

layerfl:ewloc 0.0179769 0.0144128 1.2473 0.21229

layerhdct:ewloc 0.0076060 0.0055608 1.3678 0.17138

layerld:ewloc -0.0047874 0.0059191 -0.8088 0.41863

fit:popAA 0.1292377 0.0891292 1.4500 0.14706

fit:popEriley -0.0495612 0.0712789 -0.6953 0.48686

fit:popLf -0.0332786 0.0795727 -0.4182 0.67579

fit:popNessman -0.1862690 0.1277869 -1.4577 0.14494

fit:popNWLF 0.0210283 0.0635998 0.3306 0.74092

fit:popSPP 0.1491795 0.0677156 2.2030 0.02759



Example Data Analysis (cont.)

The regression coefficients are of little interest. The main interest
is in what model among those that have a scientific interpretation
fits the best.

> aout.smaller <- aster(resp ~ varb +

+ fit : (nsloc + ewloc + pop),

+ pred, fam, varb, id, root, data = redata)

> aout.bigger <- aster(resp ~ varb +

+ layer : (nsloc + ewloc + pop),

+ pred, fam, varb, id, root, data = redata)



Example Data Analysis (cont.)

> anova(aout.smaller, aout, aout.bigger)

Analysis of Deviance Table

Model 1: resp ~ varb + fit:(nsloc + ewloc + pop)

Model 2: resp ~ varb + layer:(nsloc + ewloc) + fit:pop

Model 3: resp ~ varb + layer:(nsloc + ewloc + pop)

Model Df Model Dev Df Deviance P(>|Chi|)

1 17 -2746.7

2 21 -2712.5 4 34.203 6.772e-07 ***

3 33 -2674.7 12 37.838 0.0001632 ***

---

Signif. codes:

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1



Example Data Analysis (cont.)

Despite the largest model fitting the best, we choose the middle
model because that one tells us something about fitness directly
that the other one does not.

More on this later.



Predicted Values

Now we come to a really hard subject for applied work. Hypothesis
tests using the R function anova are fairly straightforward.
Confidence intervals using the R function predict are anything
but straightforward (crooked as a dog’s hind leg).

Part of this is programmer brain damage (PBD), which is a
technical term (an entry in the Hacker’s Dictionary). The predict

function has some aspects of its user interface that are clumsy and
hard to use, even for the author of the function. Unfortunately,
they cannot be fixed without breaking a lot of working examples
(which would be much worse than just living with these issues).
The R package aster2 fixes these issues (and does lots more) but
is still incomplete.



Predicted Values (cont.)

But the other part of what makes confidence intervals is just the
inherent complexity of aster models.

Whatever you personally are trying to do with aster models is a
very special case of what aster models can do. As we shall see,
they can do many things that look radically different and have no
obvious connection with each other. (They don’t have any obvious
similarities in their data or scientific interpretations of their data.
The only connection is aster model theory applies to both.)

Among other issues, aster models have six (!) different
parameterizations, all of which can be of scientific interest in some
application, not necessarily in your application, not necessarily all
in any one application.



A Technical Quibble

The R generic function named predict does not do prediction
except for linear models. What it does do is parameter estimation
and confidence intervals for parameters.

So it is misnamed. But that doesn’t have anything to do with
aster models. predict is misnamed even when applied to
generalized linear models (GLM).

A referee for the first aster paper complained about this, but we
replied that that is just the way R is. The name made some sense
when the function was introduced into S in 1988 (before R even
existed – S was proprietary software from AT&T that defined the
statistical computing language that R is a free software
implementation of) because it was mostly just for linear models
(although for generalized linear models too, so it was a misnomer
even then, but not such an obvious one).



Predicted Values (cont.)

> pout <- predict(aout)

> class(pout)

[1] "numeric"

> length(pout)

[1] 5130

> nrow(redata)

[1] 5130



Predicted Values (cont.)

predict.aster and predict.aster.formula have many
complicated options. When invoked with no optional arguments
(as just shown), it produces a numeric vector of the same length as
the response vector.

The result of predict(aout) is the maximum likelihood estimate
(MLE) of the saturated model mean value parameter vector µ.

If y denotes the response vector, then

E (y) = µ

meaning
E (yi ) = µi

(the components of µ are the unconditional expectations of the
corresponding components of y).



Predicted Values (cont.)

As everywhere else in statistics we distinguish parameters like µ
from their estimates µ̂. We say µ is the unknown true parameter
(vector) value that determined the distribution of the data, and µ̂
is only an estimator of µ.

If we want to say how bad or good our estimators are, then we
need confidence intervals (or perhaps just standard errors).

> pout <- predict(aout, se.fit = TRUE)

> class(pout)

[1] "list"

> sapply(pout, class)

fit se.fit gradient

"numeric" "numeric" "matrix"



Predicted Values (cont.)

The component fit gives the estimators (the same vector that was
returned when predict was invoked with no optional arguments).
The component se.fit gives the corresponding standard errors.

These are asymptotic (large sample size, approximate) estimated
standard deviations of the components of µ̂ derived using the
“usual” theory of maximum likelihood estimation (more on that
later).



Predicted Values (cont.)

> low <- pout$fit - qnorm(0.975) * pout$se.fit

> hig <- pout$fit + qnorm(0.975) * pout$se.fit

> length(hig)

[1] 5130

gives us vector containing confidence bounds for approximate 95%
confidence intervals (not corrected for simultaneous coverage!) for
each of the components of the response vector.

These are of no scientific interest whatsoever.



Predicted Values (cont.)

The question of scientific interest addressed by confidence intervals
in the first aster paper was about (best surrogate of) fitness of a
typical individual in each population. Thus we only want

> nlevels(redata$pop)

[1] 7

confidence intervals, one for each population.

What do we mean by “typical” individuals? Those that are directly
comparable. Those that the same in all respects except for
population.

In particular, they should be planted at exactly the same place
(have the same values of nsloc and ewloc). Clearly, real
individuals are not comparable in this way. (Two different plants
cannot have the same location.)



Predicted Values (cont.)

Thus we have to make up covariate data for hypothetical
individuals that are comparable like this and get estimated mean
values for them.

> fred <- data.frame(nsloc = 0, ewloc = 0,

+ pop = levels(redata$pop), root = 1,

+ ld02 = 1, ld03 = 1, ld04 = 1,

+ fl02 = 1, fl03 = 1, fl04 = 1,

+ hdct02 = 1, hdct03 = 1, hdct04 = 1)

> fred

nsloc ewloc pop root ld02 ld03 ld04 fl02 fl03

1 0 0 AA 1 1 1 1 1 1

2 0 0 Eriley 1 1 1 1 1 1

3 0 0 Lf 1 1 1 1 1 1

4 0 0 Nessman 1 1 1 1 1 1

5 0 0 NWLF 1 1 1 1 1 1

6 0 0 SPP 1 1 1 1 1 1

7 0 0 Stevens 1 1 1 1 1 1

fl04 hdct02 hdct03 hdct04

1 1 1 1 1

2 1 1 1 1

3 1 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

7 1 1 1 1



Predicted Values (cont.)

Seems to work. The components of the response vector are
ignored in prediction so we can give them arbitrary values.
Somewhat annoyingly, they have to be possible values because
predict.aster.formula will check.

> renewdata <- reshape(fred, varying = list(vars),

+ direction = "long", timevar = "varb",

+ times = as.factor(vars), v.names = "resp")

> layer <- gsub("[0-9]", "", as.character(renewdata$varb))

> renewdata <- data.frame(renewdata, layer = layer)

> fit <- as.numeric(layer == "hdct")

> renewdata <- data.frame(renewdata, fit = fit)

We did exactly the same things we did to make redata in making
renewdata changing what had to be changed (mutatis mutandis
as the economists say).



Predicted Values (cont.)

Now we have predictions for these guys

> names(renewdata)

[1] "nsloc" "ewloc" "pop" "root" "varb" "resp"

[7] "id" "layer" "fit"

> pout <- predict(aout, newdata = renewdata, varvar = varb,

+ idvar = id, root = root, se.fit = TRUE)

> sapply(pout, class)

fit se.fit gradient modmat

"numeric" "numeric" "matrix" "array"

> sapply(pout, length)

fit se.fit gradient modmat

63 63 1323 1323



Predicted Values (cont.)

Why do we need the arguments varvar, idvar, and root when
we didn’t before? Dunno. More PBD. But help(predict.aster)
says we need them (especially look at the examples, which is
always good advice).

So now we can make 63 not corrected for simultaneous coverage
confidence intervals, one for each of the 9 nodes of the graph for
each of these 7 individuals (one per population).

These too are of no scientific interest whatsoever. But we are
getting closer.



Predicted Values (cont.)

What is of scientific interest is confidence intervals for Darwinian
fitness for these 7 individuals.

Fitness (best surrogate of) in these data is the lifetime headcount
which is

hdct02 + hdct03 + hdct04

where the variable names here are meant to indicate the actual
variables.



Wait! What?

hdct02 + hdct03 + hdct04

is fitness? What about the other components of fitness? Don’t
they contribute too?

Yes, they do. But their effect is already counted in the head count.
You can’t have nonzero head count if you are dead or if you had no
flowers, so that is already accounted for.

When we say this, what we mean is that the unconditional
expectation of head count incorporates the effect of these earlier
components of fitness.



Predicted Values (cont.)

Getting the predicted values is no problem if we know the order the
nodes of the graph are arranged in, which is shown by

> renewdata$id

[1] 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4

[26] 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1

[51] 2 3 4 5 6 7 1 2 3 4 5 6 7

> as.character(renewdata$varb)

[1] "ld02" "ld02" "ld02" "ld02" "ld02"

[6] "ld02" "ld02" "ld03" "ld03" "ld03"

[11] "ld03" "ld03" "ld03" "ld03" "ld04"

[16] "ld04" "ld04" "ld04" "ld04" "ld04"

[21] "ld04" "fl02" "fl02" "fl02" "fl02"

[26] "fl02" "fl02" "fl02" "fl03" "fl03"

[31] "fl03" "fl03" "fl03" "fl03" "fl03"

[36] "fl04" "fl04" "fl04" "fl04" "fl04"

[41] "fl04" "fl04" "hdct02" "hdct02" "hdct02"

[46] "hdct02" "hdct02" "hdct02" "hdct02" "hdct03"

[51] "hdct03" "hdct03" "hdct03" "hdct03" "hdct03"

[56] "hdct03" "hdct04" "hdct04" "hdct04" "hdct04"

[61] "hdct04" "hdct04" "hdct04"



Predicted Values (cont.)

We see it runs through all individuals for each node before going
on to the next node. So

> nnode <- length(vars)

> sally <- matrix(pout$fit, ncol = nnode)

> dim(sally)

[1] 7 9

> rownames(sally) <- unique(as.character(renewdata$pop))

> colnames(sally) <- unique(as.character(renewdata$varb))

stuffs the parameter estimates into a matrix with individuals along
rows and nodes along columns.



Predicted Values (cont.)

> round(sally, 4)

ld02 ld03 ld04 fl02 fl03 fl04

AA 0.7834 0.7521 0.7285 0.3229 0.2560 0.4561

Eriley 0.6954 0.6565 0.6299 0.2334 0.1774 0.3237

Lf 0.7029 0.6646 0.6382 0.2404 0.1834 0.3342

Nessman 0.6377 0.5946 0.5669 0.1824 0.1348 0.2469

NWLF 0.7289 0.6926 0.6670 0.2655 0.2051 0.3716

SPP 0.7937 0.7634 0.7402 0.3346 0.2666 0.4729

Stevens 0.7187 0.6816 0.6557 0.2555 0.1964 0.3567

hdct02 hdct03 hdct04

AA 0.6215 0.4990 1.2555

Eriley 0.4085 0.3140 0.7796

Lf 0.4242 0.3273 0.8144

Nessman 0.2993 0.2233 0.5418

NWLF 0.4817 0.3764 0.9422

SPP 0.6514 0.5257 1.3224

Stevens 0.4585 0.3565 0.8905



Predicted Values (cont.)

> herman <- sally[ , grepl("hdct", colnames(sally))]

> herman

hdct02 hdct03 hdct04

AA 0.6215239 0.4990070 1.2554533

Eriley 0.4084934 0.3139651 0.7796097

Lf 0.4242352 0.3272954 0.8144317

Nessman 0.2993480 0.2233300 0.5418002

NWLF 0.4816654 0.3764236 0.9421609

SPP 0.6513874 0.5256736 1.3224073

Stevens 0.4584965 0.3565129 0.8905197

> rowSums(herman)

AA Eriley Lf Nessman NWLF SPP

2.375984 1.502068 1.565962 1.064478 1.800250 2.499468

Stevens

1.705529



Predicted Values (cont.)

These are the desired estimates of expected fitness, but they don’t
come with standard errors because there is no simple way to get
the standard errors for sums from the standard errors for the
summands (when the summands are not independent, which is the
case here).

So we have to proceed indirectly. We have to tell
predict.aster.formula what functions of mean values we want
and let it figure out the standard errors (which it can do).

It only figures out for linear functions. We can handle non-linear
functions using the delta method“by hand”(using R as a calculator
but doing derivatives ourselves), but that is much more
complicated. Since addition is a linear operation, we do not need
that complication for this example.



Predicted Values (cont.)

If µ̂ is the result of predict.aster.formula without the optional
argument amat, then when the optional argument amat is given it
does parameter estimates with standard errors for a new parameter

ζ̂ = AT µ̂,

where A is a known matrix (the amat argument).

Since we want 7 confidence intervals AT has 7 rows, and since µ is
length 63, AT has 63 columns. Thus A is a 63× 7 matrix.

Fairly simple, except now comes some serious PBD.



Predicted Values (cont.)

Quoted from help(predict.aster)

For predict.aster, a three-dimensional array with
dim(amat)[1:2] == dim(modmat)[1:2].

For predict.aster.formula, a three-dimensional array
of the same dimensions as required for predict.aster
(even though modmat is not provided). First dimension is
number of individuals in newdata, if provided, otherwise
number of individuals in object$data. Second
dimension is number of variables
(length(object$pred)).

Also clear as mud.



Predicted Values (cont.)

So here is another description. The argument amat is a three
dimensional array.

The first dimension is the number of individuals in newdata (if
provided) and otherwise in the data argument in the call to aster

produced the object provided as the first argument to
predict.aster.formula.

The second dimension is the number of nodes in the graph.

The third dimension is the number parameters we want point
estimates and standard errors for.



Predicted Values (cont.)

Let aijk denote the elements of this array, and let µij denote the
elements of the result of calling predict.aster.formula without
the amat argument, these elements being stuffed into a matrix
columnwise as we showed back on slide 83. Then we are trying to
estimate the parameter vector having components

ζk =

nind∑
i=1

nnode∑
j=1

aijkµij



Predicted Values (cont.)

> npop <- nrow(fred)

> nnode <- length(vars)

> amat <- array(0, c(npop, nnode, npop))

> dim(amat)

[1] 7 9 7

We want only the means for the k-th individual to contribute to
ζk . And we want to add only the headcount entries.

> foo <- grepl("hdct", vars)

> for (k in 1:npop)

+ amat[k, foo, k] <- 1

This three-way array is too big to print on a slide. We’ll just try it
out.



Predicted Values (cont.)

> pout.amat <- predict(aout, newdata = renewdata, varvar = varb,

+ idvar = id, root = root, se.fit = TRUE, amat = amat)

> pout.amat$fit

[1] 2.375984 1.502068 1.565962 1.064478 1.800250

[6] 2.499468 1.705529

> rowSums(herman)

AA Eriley Lf Nessman NWLF SPP

2.375984 1.502068 1.565962 1.064478 1.800250 2.499468

Stevens

1.705529

Hooray! They’re the same!



Predicted Values (cont.)

> foo <- cbind(pout.amat$fit, pout.amat$se.fit)

> rownames(foo) <- as.character(fred$pop)

> colnames(foo) <- c("estimates", "std. err.")

> round(foo, 3)

estimates std. err.

AA 2.376 0.446

Eriley 1.502 0.196

Lf 1.566 0.249

Nessman 1.064 0.309

NWLF 1.800 0.182

SPP 2.499 0.289

Stevens 1.706 0.222



Predicted Values (cont.)

> options(show.signif.stars = FALSE)

> anova(aout.smaller, aout, aout.bigger)

Analysis of Deviance Table

Model 1: resp ~ varb + fit:(nsloc + ewloc + pop)

Model 2: resp ~ varb + layer:(nsloc + ewloc) + fit:pop

Model 3: resp ~ varb + layer:(nsloc + ewloc + pop)

Model Df Model Dev Df Deviance P(>|Chi|)

1 17 -2746.7

2 21 -2712.5 4 34.203 6.772e-07

3 33 -2674.7 12 37.838 0.0001632

The only thing that remains to be done is to keep a “more later”
promise. In Geyer, et al. (2007) the scientists decided to pick the
middle of the three models. How can that be justified?



Predicted Values (cont.)

The justification is that the middle model fits the quantities of
scientific interest as well as the big model, those quantities being
the values of expected fitness for the different pop categories.

> levels(redata$pop)

[1] "AA" "Eriley" "Lf" "Nessman" "NWLF"

[6] "SPP" "Stevens"

Figure 2 in Geyer, et al. (2007) shows that confidence intervals for
these quantities of interest differ hardly at all when made with the
middle model and when made with the big model. This issue is
addressed again in the lecture slides for the special topics course

http://www.stat.umn.edu/geyer/8931aster/slides/s4.pdf

slides 74 to the end of deck 4.

http://www.stat.umn.edu/geyer/8931aster/slides/s4.pdf

