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We are all familiar with the “usual” mathematics of maximum likelihood.
Under the “usual regularity conditions” the MLE is consistent and asymp-
totically normal, and the inverse of the Fisher information matrix estimates
the asymptotic variance of the MLE. The phrase “usual regularity condi-
tions” sweeps a lot under the rug, since every theory book seems to have
slightly different regularity conditions and each list of regularity conditions
is too complicated and technical to provide any insight into what is going
on.

But it gets worse. One can radically weaken the “usual” regularity condi-
tions and get the same asymptotics for some estimators other than the MLE.
The main source for this is Lucian Le Cam (Le Cam and Yang, 2000). His
theory is notoriously hard to read and far beyond the scope of this course.
The purpose of this note is just to present one concrete example.
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Hence for any real θ, the function fθ defined by

fθ(x) =
e−|x−θ|

α

2Γ
(
1 + 1

α

) , −∞ < x <∞ (1)

is a probability density and the family of densities { fθ : θ ∈ R } is a statis-
tical model (a location family).

Having derived this density, we see that it can be derived from the gamma
distribution by change of variable. Suppose X is a random variable with
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density (1), then, defining Y = |X − θ|α, we see that the distribution of Y
does not depend on θ and has density

g(y) =
e−y

Γ
(
1 + 1

α

) · 1

α
y1/α−1

that is, Y ∼ Gamma(1/α), and X = θ + SY 1/α, where S is a random sign
(equal to −1 or +1 with equal probabilities).

> set.seed(42)

> n <- 1e2

> alpha <- 3 / 4

> theta <- 0

> y <- rgamma(n, shape = 1 / alpha)

> x <- theta + y^(1 / alpha) * sample(c(-1, 1), n, replace = TRUE)

If we treat α as a known constant, so θ is the only unknown parameter,
the log likelihood is

ln(θ) = −
n∑
i=1

|xi − θ|α (2)

If we choose α < 1, then the log likelihood has a cusp at every xi. And
the “usual” notions of maximum likelihood go out the window. But Le Cam
and Yang (2000) assert that for 1/2 < α the log likelihood is asymptotically
quadratic at a root n rate. The MLE is useless, but other likelihood-based
estimators keep going.

Evaluate the log likelihood at a prespecified finite set of points (“pre-
specified” meaning specified before any data are observed). Fit a quadratic
function to this log likelihood evaluated on a grid by any reasonable method,
say robust regression, take the maximum of the quadratic approximation as
the parameter estimate, and take the inverse of minus the second deriva-
tive of the quadratic approximation evaluated at the maximum, that is, we
replace the actual log likelihood with a good quadratic approximation and
then proceed to do likelihood inference as if the quadratic approximation
were a log likelihood satisfying the “usual regularity conditions.”

> xgrid <- pretty(x, n = 20)

> l <- function(theta) sum(- abs(x - theta)^alpha)

> vl <- Vectorize(l)

> lgrid <- vl(xgrid)

> # xgrid

> # lgrid
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> library(MASS)

> rout <- rlm(lgrid ~ xgrid + I(xgrid^2))

> beta <- rout$coefficients

> theta.hat <- as.numeric(- beta[2] / (2 * beta[3]))

> theta.hat

[1] -0.2854965

> fish.hat <- as.numeric(- 2 * beta[3])

> theta.hat + c(- 1, 1) * qnorm(0.975) * sqrt(1 / fish.hat)

[1] -0.9902583 0.4192653

Now we try to picture what is going on. The picture (Figure 1) is given by
the following code

> plot(xgrid, lgrid, ylab = "log likelihood", xlab = "theta")

> curve(predict(rout, newdata = data.frame(xgrid = x)),

+ add = TRUE, lty = "dashed")

> # and now for actual log likelihood

> foo <- par("usr")

> xgrid2 <- seq(foo[1], foo[2], length = 10001)

> xgrid2 <- sort(c(x, xgrid2))

> lgrid2 <- vl(xgrid2)

> lines(xgrid2, lgrid2)

Perhaps we should have fit the quadratic just to the middle part of the
curve.

> xgrid <- theta.hat + c(- 1, 1) * qnorm(0.995) * sqrt(1 / fish.hat)

> lgrid <- vl(xgrid)

> xgrid <- pretty(xgrid2[min(lgrid) <= lgrid2], n = 20)

> lgrid <- vl(xgrid)

> rout <- rlm(lgrid ~ xgrid + I(xgrid^2))

> beta <- rout$coefficients

> theta.hat <- as.numeric(- beta[2] / (2 * beta[3]))

> theta.hat

[1] -0.01002563

> fish.hat <- as.numeric(- 2 * beta[3])

> theta.hat + c(- 1, 1) * qnorm(0.975) * sqrt(1 / fish.hat)
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Figure 1: Log likelihood and quadratic approximation.
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[1] -0.3076781 0.2876269

Of course, this is not what the theory says to do. We were suppose to choose
the points where the log likelihood is evaluated before we saw the data, but
this is impossible in practice. We would need more complicated theory to
say that what we are doing here is o. k. Since this method is not used
by applied people (only by theoreticians), there is no theory (AFAIK) that
justifies what we have to do to get a practical method.

Now the picture (Figure 2) is given by the following code

> plot(xgrid, lgrid, ylab = "log likelihood", xlab = "theta",

+ xlim = range(xgrid))

> curve(predict(rout, newdata = data.frame(xgrid = x)),

+ add = TRUE, lty = "dashed")

> foo <- par("usr")

> xgrid2 <- seq(foo[1], foo[2], length = 10001)

> xgrid2 <- sort(c(x, xgrid2))

> xgrid2 <- xgrid2[foo[1] < xgrid2 & xgrid2 < foo[2]]

> lgrid2 <- vl(xgrid2)

> lines(xgrid2, lgrid2)
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Figure 2: Log likelihood and quadratic approximation.
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