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1 Exponential Families

1.1 Definition

An exponential family of distributions is a parametric statistical model
having log likelihood
10) = y"0 - c(6), (1)

where y is a vector statistic and 6 is a vector parameter. This uses the
convention that terms that do not contain the parameter can be dropped
from a log likelihood; otherwise such terms might also appear in (1). A
statistic y and parameter 6 that give a log likelihood of this form are called
canonical or natural. The function c is called the cumulant function of the
family.

1.2 Non-Uniqueness

The canonical statistic and parameter are not unique.

e Any one-to-one affine function of a canonical statistic is again canoni-
cal, although this also changes the canonical parameter and cumulant
function.

e Any one-to-one affine function of a canonical parameter is again canon-
ical, although this also changes the canonical statistic and cumulant
function.

e Any scalar-valued affine function of the canonical parameter can be
added to the cumulant function, although this also changes the canon-
ical statistic.

We usually do not worry about this. We fix one choice of canonical statis-
tic, canonical parameter, and cumulant function and say “the” canonical
statistic, “the” canonical parameter, and “the” cumulant function.



1.3 Densities

With our definitions we have some trouble writing down densities. First
y is not the data; rather it is a statistic, a function of the data. Let w
represent the full data, then the densities have the form

f&(w) _ h(w)eY(w)TG—c(O)

and the word “density” here can refer to a probability mass function (PMF)
or a probability density function (PDF) in the usual senses of master’s level
statistics or to a probability mass-density function (PMDF) if we are refer-
ring to a distribution that is partly discrete and partly continuous (either
some components of the y are discrete and some continuous or some com-
ponents are a mixture of discrete and continuous — both arise in practical
examples, as we shall see) or to a density with respect to an arbitrary posi-
tive measure in the sense of Ph. D. level probability theory. The h(w) arises
from any term not containing the parameter that is dropped in going from
log densities to log likelihood.

The function h has to be nonnegative, and any point w such that h(w) =
0 is not in the support of any distribution in the family.

When we look at a ratio of densities, the h(w) cancels, and

Fop(w) = oY (W) (0=1)—c(0)+c() (2)

is a density of the distribution with parameter value 6 with respect to the
distribution with parameter value ¢ (a Radon-Nikodym derivative for those
who have had measure-theoretic probability; everyone else should ignore this
comment). For w such that A(w) = 0 (2) still makes sense because such w
are not in the support of the distribution with parameter value ¥ and hence
do not not contribute to any probability or expectation calculation, so it
does not matter how (2) is defined for such w.

Now, since (2) is everywhere strictly positive, we see that every distri-
bution in the family has the same support.

1.4 Cumulant Functions

Being a density, (2) must sum, integrate, or sum-integrate (when we
have a PMDF) to one. Hence

c(0) = ¢(y) + log Ey{e” 0=9)} (3)

Being the expectation of a strictly positive quantity, the expectation here
must always be strictly positive, so the logarithm is well-defined. By con-
vention, for # such that the expectation does not exist, we say ¢(f) = co.



1.5 Full Families

Define
O={0:¢f) <o} (4)

Then (2) defines a distribution for all € O, thus giving a statistical model
that may be larger than the originally given model. We say an exponential
family is full if its canonical parameter space is (4).

There is literature about so-called “curved exponential families” and
other non-full exponential families, but we will not discuss them.

We have just seen that even if the originally given family only had one
distribution in it (the one for parameter value 1), we get the whole full ex-
ponential family from it via (3) and (2) and (4). We say that the exponential
family is generated by any of the distributions in it.

1.6 Moment Generating Functions

The moment generating function of the canonical statistic, if it exists, is
given by

mo(t) = Eg{e”" '}
= Ey{ oY T (t+0—p)—c(0) () } (5)

_ €c(t-H9)—c(9)
The moment generating function exists if it is finite on a neighborhood of
zero, that is, if 6 is an interior point of the full canonical parameter space
(4). For other § we say the moment generating function does not exist.

By the theory of moment generating functions (Fristedt and Gray, 1996,
Sections 13.5 and 13.6), if the moment generating function exists, then mo-
ments of all orders exist and ordinary moments are given by the derivatives
of my evaluated at zero. In particular

Eyp(Y) = Vmyp(0) = Ve(0)
Eo(YYT) = V2my(0) = V2¢(0) + [Ve(8)] - [Ve(0)F

1.7 Cumulant Generating Functions

A log moment generating function is called a cumulant generating func-
tion and its derivatives evaluated at zero are called the cumulants of the
distribution. Cumulants of order m are polynomial functions of moments of
orders up to m and vice versa (Cramér, 1951, Section 15.10).



For 0 in the interior of the full canonical parameter space, the cumulant
generating function of the canonical statistic is

t—c(t+6)—c(0), (6)

where ¢ is the cumulant function. Note that derivatives of the cumulant

generating function (6) evaluated at zero are the same as derivatives of the

cumulant function ¢ evaluated at 6. Hence the name “cumulant function.”
The first and second cumulants of the canonical statistic are

Ve(9) = Ep(Y) (7a)
V2e(0) = Bp(YYT) — By(Y)Ep(Y)" (7b)
= vary(Y)

In short, the mean and variance of the natural statistic always exist when
f is in the interior of the full canonical parameter space, and they are given
by derivatives of the cumulant function.

1.8 Regular Exponential Families

This property of having mean and variance of the canonical statistic
given by derivatives of the cumulant function is so nice that families which
have it for all f are given a special name. An exponential family is reqular
if its full canonical parameter space (4) is an open set so that the moment
and cumulant generating functions exist for all # and the formulas in the
preceding section hold for all 6.

Nearly every exponential family that arises in applications is regular.
One that is not regular is the Strauss process, a spatial point process (Geyer
and Mgller, 1994). We won’t say anything else about non-regular exponen-
tial families.

1.9 Identifiability and Directions of Constancy

A statistical model is identifiable if any two distinct parameter values
correspond to distinct distributions.

An exponential family fails to be identifiable if there are two distinct
canonical parameter values 6 and v such that the density (2) of one with
respect to the other is equal to one with probability one. This happens if
Y7(0 — 1)) is equal to a constant with probability one. And this says that
the canonical statistic Y is concentrated on a hyperplane and the vector
0 — 1 is perpendicular to this hyperplane.



Conversely, if the canonical statistic is concentrated on a hyperplane

H={y:y"v=a} (8)

for some non-zero vector v, then by (3) for any scalar s

c(0 + sv) = c(y) + log E¢{6YT(9+S”_¢’)}
_ c(@b) + log E¢{esa+YT(0—¢)}
= sa + ¢(0)

(the second equality being that Y7v = a with probability one). And plug-

ging into (2) gives
fotsvp(w) = Y ()T (Osv—t)—c(@+sv)+e(¥) _ eS(YT”_a)fe;w(w)

hence fopisv;p = fo,p on the support of the family and hence canonical

parameters 6 + sv and 6 correspond to the same distribution for all 6.
We summarize this as follows.

Theorem 1. An exponential family fails to be identifiable if and only if
the canonical statistic is concentrated on a hyperplane. If that hyperplane is
given by (8) and the family is full, then 6 and 0+ sv are in the full canonical
parameter space and correspond to the same distribution for every canonical
parameter value 6 and every scalar s.

A direction along a vector v in the parameter space such that # and
0 + sv always correspond to the same distribution is called a direction of
constancy. The theorem says that v is such a vector if and only if Y7 v is
constant with probability one. It is clear from this that the set of all such
vectors is closed under vector addition and scalar multiplication, hence is a
vector subspace. This subspace is called the constancy space of the family.

It is always possible to choose the canonical statistic and parameter so
the family is identifiable. Y being concentrated on a hyperplane means
some components are affine functions of other components with probability
one, and this relation can be used to eliminate components of the canonical
statistic vector until one gets to an identifiable choice of canonical statistic
and parameter. But this is not always advisable. Prematurely enforcing
identifiability may complicate many theoretical issues.

I claim that the multinomial distribution is an exponential family and
the usual vector statistic is canonical. To see this, let canonical parameter
value ¢ correspond to the multinomial distribution with sample size n and



usual parameter vector p, and we find the exponential family generated by
this distribution. Let d denote the dimension of y and 0, let (Z) denote
multinomial coefficients, and let S denote the sample space of the multino-
mial distribution (vectors having nonnegative integer components that sum
to n). Then (3) gives

c(0) = c(v) + log Ey{e @)}

= c(¢) +1ogzey (- w)( )HP/

yeSs

ctw) +10 Y (" )H Himi]

yeSs i=1

d
=c(v) + nlog Zpieefd”

i=1
Then (2) gives

T(O—9)—c(0)+c(y)

o) = Fulu)e” 3
O ) (g0 )

- d b
Y i=1 Zi:l piegZ v

We simplify this by choosing p and @ so that p;e ¥ = 1 for all i and

c(yp) =0, so ;
0) = nlog <Z eai>
i=1

and this is the PMF of the multinomial distribution with sample size n and
probability vector having components

and

(0) = —
pil?) Z?:leei



This, however, is not an identifiable parameterization. The components
of y sum to n so Y is concentrated on a hyperplane to which the vector
(1,1,...,1) is perpendicular, hence by Theorem 1 a direction of constancy
of the family. Eliminating a component of Y to get an identifiability would
destroy symmetry of formulas and make everything harder and messier. Best
to wait until when (if ever) identifiability becomes absolutely necessary.

The Right Way (IMHO) to deal with nonidentifiability, which is also
called collinearity in the regression context, is the way the R functions 1m
and glm deal with it. (We will have to see how linear and generalized linear
models relate to exponential families before this becomes fully clear, but I
assure you this is how what they do relates to a general exponential family).
When you find you have a non-identifiable parameterization, you have Y7o
constant with probability one. Pick any i such that v; # 0 and fix 6; = 0
giving a submodel that (we claim) has all the distributions of the original
one (we have to show this).

For any parameter vector 6 in the original model (with 6; free to vary)
we know that 6 + sv corresponds to the same distribution for all s. Choose
s such that 6; 4+ sv; = 0, which is possible because v; # 0, hence we see that
this distribution is in the new family obtained by constraining 6; to be zero
(and the other components of § vary freely).

This new model obtained by setting 6; equal to zero is another expo-
nential family. Its canonical statistic and parameter are just those of the
original family with the i-th component eliminated. Its cumulant function
is just that of the original family with the i-th component of the parameter
set to zero.

This new model need not be identifiable, but if not there is another
direction of constancy and the process can be repeated until identifiability
is achieved (which it must because the dimension of the sample space and
parameter space decreases in each step and cannot go below zero, and if it
gets to zero the canonical statistic is concentrated at a single point, hence
there is only one distribution in the family, and identifiability vacuously
holds).

This is what 1m and glm do. If there is non-identifiability (collinear-
ity), they report NA for some regression coefficients. This means that the
corresponding predictors have been “dropped” but this is equivalent to say-
ing that the regression coefficients reported to be NA have actually been
constrained to be equal to zero.



1.10 Mean Value Parameterization

The mean of the canonical statistic is also a parameter. It is given as a
function of the canonical parameter by (7a)

p=g(0) = V(o). (9)

Theorem 2. For a regular exponential family, the change-of-parameter from
canonical to mean value parameter is invertible if the model is identifiable.
Moreover both the change-of-parameter and its inverse are infinitely differ-
entiable.

To prove this let u be a possible value of the mean value parameter (that
is, u = g(#) for some #) and consider the function

h(B) = o — c(6). (10)

The second derivative of this —V2¢(6) is equal to —varg(Y) by (7b), and
this is a negative definite matrix because Y is not concentrated on a hy-
perplane. Hence (10) is a strictly concave function (Rockafellar and Wets,
1998, Theorem 2.14), and this implies that the maximum of (10) is unique
if it exists (Rockafellar and Wets, 1998, Theorem 2.6). Moreover, we know
a solution exists because the derivative of (10) is

Vh(0) = pu— V().

and we were assuming that p = Ve(6) for some 6.

Moment generating functions are infinitely differentiable at zero. Hence
so are cumulant generating functions because the logarithm function is in-
finitely differentiable. Hence cumulant functions are infinitely differentiable
on the interior of the full canonical parameter space. Hence the change-of-
parameter (9) is infinitely differentiable.

The Jacobian matrix of the change-of-parameter (9) is

Vg() = V3c(8). (11)

If the model is identifiable, then Y is not concentrated on a hyperplane,
so its variance matrix is nonsingular, hence by (7b) the Jacobian (11) is
nonsingular for all 6.

The inverse function theorem (Browder, 1996, Theorems 8.15 and 8.27)
thus says that g is locally invertible (and the local inverse must agree with



the global inverse we have already proved exists), and the derivative of the
inverse is the inverse of the derivative

_ -1 _
Vg '(n) =[Vg®)] , whenpu=g(0)andd=g"(n) (12)
Now the formula for the derivative of a matrix inverse

ot =4 EA ’

which can be proved by differentiating AA~! = I, shows that the matrix
inversion is infinitely differentiable, and this shows that ¢—' is infinitely
differentiable. And that proves the theorem.

1.11 Multivariate Monotonicity

A mapping from g : R — R? is multivariate monotone (Rockafellar and
Wets, 1998, Definition 12.1) if

[g(xl) - g(asg)]T(xl —x9) >0, for 71 and 7o in R?, (13)

and strictly multivariate monotone if (13) holds with strict inequality when-
ever r1 # xa.

If g is differentiable, then (Rockafellar and Wets, 1998, Proposition 12.3)
it is multivariate monotone if and only if the symmetric part of the Jaco-
bian matrix Vg(z) is positive-semidefinite for each x. A sufficient but not
necessary condition for g to be strictly multivariate monotone is that the
symmetric part of Vg(x) be positive definite for each z.

If g is the mapping from canonical to mean value parameter (9) then we
showed in the previous section that its Jacobian matrix is positive semidef-
inite in general and strictly positive definite when the model is identifi-
able. Thus this change-of-parameter is multivariate monotone in general
and strictly multivariate monotone when the model is identifiable.

Thus, if p1 corresponds to 01 and uo to 02, we have

(u1 — p2)" (61 —62) >0, whenever puy # pia. (14)

In general, this is all we can say about the map from canonical to mean
value parameters.
There is a dumbed down version of (14). If we rewrite (14) using sub-

scripts
d

> (i1i = p2i) (61 — 62:) > 0
i—1



and consider #; and 6, that differ in only one coordinate, say the k-th, then
we get
(t1k — pok) (O1r — Oa) > 0,

which says if we increase one component of the canonical parameter vector,
leaving the other components fized, then the corresponding component of the
mean value parameter vector also increases, and the other components can
go any which way.

This is easier to explain than the full multivariate monotonicity property,
but is not equivalent to it. The dumbed down property is not enough to make
some arguments about exponential families that are needed in applications
(Shaw and Geyer, 2010, Appendix).

Here is another rewrite of (14) that preserves its full force. Fix a vector
v # 0. Write #; = 6 and 61 = 6 + sv, so multivariate monotonicity (13)
becomes

[9(0+ sv) — g(0)]"v >0,  fors#0.

Differentiate with respect to s and set s = 0, which gives the so-called
directional derivative of g in the direction v at the point 6

q0;v) =0T [Vg(8)]v= vl [V%(Q)]v. (15)

We know that V2¢(6) is positive semi-definite in general and strictly positive
definite when the model is identifiable. Hence we see (again) that the 6 to
(4 mapping is multivariate monotone in general and strictly multivariate
monotone when the model is identifiable.

Partial derivatives are special cases of directional derivatives when the
vector v points along a coordinate direction (only one component of v is
nonzero). So the dumbed down property only says that all the partial
derivatives are nonzero and this corresponds to asserting (15) with v be-
ing along coordinate directions, and this is equivalent to asserting that the
diagonal components of V2¢(#) are positive. And now we clearly see how the
dumbed down property is dumbed down. It only asserts that the diagonal
elements of V2¢(#) are positive, which is far from implying that V2c(6) is a
positive definite matrix.

1.12 Maximum Likelihood
The derivative of the log likelihood is

Vi(#) =y — V(D).
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The second derivative is
V21(0) = —V3c(0).

Hence observed and expected Fisher information for the canonical parameter
are the same

1(0) = VZc(0). (16)

When the model is identifiable, the second derivative matrix is negative
definite everywhere, hence the log likelihood is strictly concave, hence the
maximum likelihood estimate is unique if it exists.

1.12.1 Non-Existence of the MLE, Take One

Unlike our proof in Section 1.10, where we assumed the existence of a
solution, we cannot prove the maximum likelihood estimate (for the canoni-
cal parameter) exists. Consider the binomial distribution. The MLE for the
usual parameterization is p = y/n. The canonical parameter is § = logit(p).
But § = logit(p) does not exist when p = 0 or p = 1, which is when we
observe zero successes or when we observe n successes in n trials.

One might think the lesson to draw from this is not to use the canon-
ical parameterization, but it turns out that generalized linear models and
log-linear models for categorical data and other applications of exponential
families always use the canonical parameterization for many reasons. Hence
we have to deal with possible non-existence of the MLE.

1.12.2 Observed Equals Expected

For a regular full exponential family, the MLE cannot be on the boundary
of the canonical parameter space (regular means the boundary is empty),
and the MLE, if it exists, must be a point where the first derivative is zero,
that is, a 0 that satisfies

y = Ve(d) = Ey(Y).

So the MLE is the (unique if the model is identifiable) parameter value that
makes the observed value of the canonical statistic equal to its expected
value. We call this the observed equals expected property of maximum like-
lihood in exponential families.

This property is even simpler to express in terms of the mean value pa-
rameter. By invariance of maximum likelihood under change-of-parameter,
the MLE for p is

i = Ve(h)

11



and the observed equals expected property is
y=f (17)

1.13 Independent and Identically Distributed

Suppose y1, ..., Yy, are independent and identically distributed (IID)
from some distribution in an exponential family (unlike our notation in the
preceding section, y; are not components of the canonical statistic vector
but rather IID realizations of the canonical statistic vector, so each y; is a
vector). The log likelihood for sample size n is

(0) = > [y 0 — e(9)]

i=1
" T
= (Z yz> 0 — nc(0)
i=1
and we see that we again have an exponential family with
e canonical statistic >\ | y;,
e cumulant function 6 +— nc(f), and

e canonical parameter  and full canonical parameter space © the same
as for the originally given family.

Thus IID sampling gives us a new exponential family, but still an exponential
family.

1.14 Asymptotics of Maximum Likelihood

Rewrite (18) as
1(6) = n[510 — c(9)]

Vin(0) = n[gn — Ve(8)]

From which we see that for an identifiable regular full exponential family
where the MLE must be a point where the first derivative is zero, we can
write .

On =9~ " (Un) (19)

1

where ¢ is the 6 to p mapping given by (9) and ¢~ is its inverse function,

which was proved to exist in Section 1.10. More precisely, (19) holds when

12



the MLE exists (when the MLE does not exist, g, is not in the domain of
g~ !, which is the range of g).
By the multivariate central limit theorem (CLT)

Vn(gn — p) — Normal (0, 1(6))

and we know that g—! is differentiable with the derivative given by (12). So
the usual asymptotics of maximum likelihood

Vn(0, — ) — Normal (0, I(Q)_l) (20)

is just the multivariate delta method applied to the multivariate CLT. For
details see the 8112 notes (Geyer, 2013). In fact, Theorem 10 in those notes
asserts a slightly stronger conclusion, that (20) holds for every identifiable
full exponential family, whether or not it is regular, so long as the true
unknown parameter 6 is in the interior of the canonical parameter space.

In summary, one “regularity condition” for (20) to hold is that we have
an identifiable regular full exponential family. Of course, (20) holds for
many non-exponential-family models, but the regularity conditions are so
complicated that they are often hard to verify. In exponential families the
verification is trivial: the usual asymptotics of maximum likelihood always
works.

1.15 Canonical Affine Submodels

A canonical affine submodel of an exponential family is a submodel hav-
ing parameterization

0=a+ Mp,

where 6 is the canonical parameter of the originally given exponential family,
B is the parameter of the submodel, a is a known vector, and M is a known
matrix. The matrix M is called the model matriz in the terminology used
by the R functions 1m and glm. Other people call M the design matriz,
although this is not really appropriate when data are not from a designed
experiment. The vector a is called the offset vector in the terminology used
by the R functions 1m and glm.

In most applications the offset vector is not used giving parameterization

0= Mp,

in which case we say the submodel is a canonical linear submodel.

13



The submodel log likelihood is

1(B) =y"(a+ MB) — cla+ MB)
:yTa—l-yTMﬁ—c(a—l-Mﬂ)
=yla+ (M"y)"B - cla+ Mp)

and the term y” a can be dropped because it does not contain the parameter
B giving log likelihood

1(B) = (MTy)" B — cla+ MPB) (21)
and we see that we again have an exponential family with

e canonical statistic M7y,
e cumulant function 5+ c(a + M), and

e canonical parameter 3.

If 6 varies freely (over a whole vector space), then [ also varies freely (over
a whole vector space of lower dimension). But if the originally given full
canonical parameter space was ©, then the full submodel canonical param-
eter space is

B={B:a+MpcO}.

Thus a canonical affine submodel gives us a new exponential family, with
lower-dimensional canonical parameter and statistic. The submodel expo-
nential family is full if the original exponential family was full.

To distinguish between the submodel and the originally given exponen-
tial family, we often call the latter the saturated model.

Now we have four parameters: the saturated model canonical and mean
value parameters # and p and the canonical affine submodel canonical and
mean value parameters 3 and 7 = M7 p.

The observed equals expected property for the submodel is

F=MTp=MTy. (22)

We cannot actually solve these equations for ji because M the mapping
g — M7y is usually not one-to-one (the n > p case where M is n x p and
full rank). Hence we cannot determine 6 and B from them either. The only
way to determine the MLE is to maximize the log likelihood (21) for 3 to
obtain 3 and then § = M and ji = Ve(d) and 7 = MTj.

But the observed equals expected property is nevertheless very impor-
tant. It is the only simple property of maximum likelihood that can be used
in interpretation of exponential families (more on this later, Section 1.19).

14



1.16 Sufficiency

A (possibly vector-valued) statistic is sufficient if the conditional distri-
bution of the full data given this statistic does not depend on the parameter.
The interpretation is that the full data provides no information about the
parameter that is not already provided by the sufficient statistic. The prin-
ciple of sufficiency follows: all inference should depend on the data only
through sufficient statistics.

The Fisher-Neyman factorization criterion (Lehmann, 1959, Corollary 1
of Chapter 2) says that a statistic is sufficient if and only if the likelihood de-
pends on the whole data only through that statistic. It follows that Bayesian
inference always obeys the likelihood principle. It also follows that likelihood
inference can obey the likelihood principle, although this is not automatic.
The maximum likelihood estimator (MLE), the likelihood ratio test statistic,
and observed and expected Fisher information with the MLE plugged in all
depend on the data only through the likelihood, hence obey the sufficiency
principle. Other procedures that are sometimes considered part of likelihood
inference, like one-step Newton updates of root-n-consistent estimators, do
not necessarily obey the sufficiency principle.

Corollary 3. The canonical statistic vector of an exponential family is a
sufficient statistic.

As areminder of this, some statisticians have a habit of saying “canonical
sufficient statistic” or “natural sufficient statistic,” although this is redun-
dant (the canonical statistic is always sufficient), in order to emphasize the
sufficiency property.

1.17 Sufficient Dimension Reduction

Here at Minnesota we hear a lot about sufficient dimension reduction
(Chiaromonte, Cook, and Li, 2002, and subsequent papers citing this). That
is very complicated theory and we shall not discuss it.

But, it is good to remember that the original “sufficient dimension
reduction” theory was about exponential families. The so-called Pitman-
Koopman-Darmois theorem (proved independently by three different per-
sons in 1935 and 1936) says that when we have IID sampling from a statisti-
cal model, all distributions in the model have the same support which does
not depend on the parameter, and all distributions in the model are contin-
uous, then there is a sufficient statistic whose dimension does not depend on
the parameter if and only if the statistical model is an exponential family of

15



distributions. This theorem was responsible for the interest in exponential
families early in the twentieth century.

The condition of the Pitman-Koopman-Darmois theorem that the sup-
port does not depend on the parameter is essential. For IID sampling from
the Uniform(0,#) model the maximal order statistic X, is sufficient. Its
dimension (one) does not depend on n. To show this note that the likelihood
is

H@ (0.0)(X
1 n
;H 0.0)(X.
1

= gnlonXm)

because if X(,,) < 6 then so are X; < 6 for all :.

The condition that the statistical model has to be continuous is ugly.
Many of the most important applications of exponential family theory (lo-
gistic and Poisson regression, log-linear models for categorical data) are
discrete, and the theorem does not say anything about them. But later the-
orems that did cover discrete distributions need extra conditions that seem
just there so the theorem can be proved (my brother-in-law’s thesis advisor
called these “ham and eggs theorems” — if we had some ham, we’d have
ham and eggs, if we had some eggs).

Interest in exponential families changed direction in the 1970’s with the
invention of generalized linear models (Nelder and Wedderburn, 1972; Wed-
derburn, 1974) and log-linear models for categorical data (Bishop, Fienberg,
and Holland, 2007, originally published 1975) and with the publication of au-
thoritative treatises (Barndorff-Nielsen, 1978; Brown, 1986) which used the
recently developed mathematics called convex analysis (Rockafellar, 1970).

In that context the sufficient dimension reduction for canonical affine
submodels (exponential family regression models) became more important
than the Pitman-Koopman-Darmois property. This is (Section 1.15) the
relation between the canonical sufficient statistic y of the saturated model
and the canonical sufficient statistic M7y of a canonical affine submodel.
The former has the row dimension of M and the latter has the column
dimension of M, which is usually much smaller.
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1.18 Maximum Entropy

Entropy is a physical quantity involved in the second law of thermody-
namics, which says that the the total entropy of an isolated physical system
is nondecreasing in any physical process. It has to do with the maximum
possible efficiency of a heat engine or refrigerator, with which chemical re-
actions proceed spontaneously, and with many other things.

Ludwig Boltzmann and Josiah Willard Gibbs figured out the connection
between entropy and probability and between the thermodynamic properties
of bulk matter and the motions and interactions of atoms and molecules.

In this theory entropy is not certain to increase to its maximum possible
value. It is only overwhelmingly probable to do so in any large system. In
a very small system, such as a cubic micrometer of air, it is less probable
that entropy will be near its maximum value. In such a small system the
statistical fluctuations are large. This is the physical manifestation of the law
of large numbers. The larger the sample size (the more molecules involved)
the less stochastic variation.

Boltzmann thought this discovery so important that he had S = klog W
inscribed on his tombstone (S is entropy, W is probability, and k is a con-
stant of nature now known as Boltzmann’s constant).

Claude Shannon imported entropy into information theory, using it to de-
termine the maximum throughput of a noisy communication channel. Shan-
non information is negative entropy (minus log probability). Kullback and
Leibler imported the same concept into statistics, where it is usually called
Kullback-Leibler information. It is expected log likelihood and hence what
likelihood attempts to estimate.

Edwin Jaynes, a physicist, introduced the “maximum entropy formal-
ism” that describes exponential families in terms of entropy. To keep the
derivation simple, we will do the finite sample space case. The same idea
can be extended to the infinite discrete case or the continuous case, although
the math is harder.

The relative entropy of a distribution with PMF f to a distribution with
PMF m is defined to be

- ;f(x) log (%) ,

where S is the support of the distribution with PMF m. (It is the negative
of this quantity that is Kullback-Leibler information of f with respect to
m.) It is actually not necessary that m be a PMF; any positive function
will do.
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Suppose we “know” the value of some expectations
pi=B{t;(X)} =Y ti(@)f(x), jeJ
€S

and we want f to maximize entropy subject to these constraints plus the
constraints that f is nonnegative and sums to one. That is, we want to solve
the following optimization problem

maximize — Y f(z log( 3)

€S

subject to th () f(x) = py, jed
xeS
> fla)=
zeS
f(z) >0, xesS

It turns out that the inequality constraints here are unnecessary. If we solve
the problem without requiring f be nonnegative, the solution happens to be
nonnegative. But we do need to enforce the equality constraints.

To do that, we use the method of Lagrange multipliers. Multiply each
constraint function by a new parameter (Lagrange multiplier) and add to
the objective function. This gives the Lagrangian function

—Zf(:n)log( >+Ze D i) () + ) f(x)

TES z€eS z€S
= — x 0 f(x) — 4 (x
SN og (1) X002

0j, j € J, and v are the Lagrange multipliers.

Because the domain of f is finite, we can think of it as a vector having
components f(z). The Lagrangian is maximized where its first derivative is
zero, so we calculate first partial derivatives

OLS) _ ( >+Z€t )+ —1

of(@) = <

setting this equal to zero and solving for f(z) gives

flo) =m(z)exp | Y Oitj(z) +¢—1

jeJ
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Then we have to find the value of the Lagrange multipliers that make
all the constraints satisfied. In aid of this, define 6 to be the vector having
components #; and t(x) to be the vector having components t;(x), so we
can write

f(x) = m()e! @0t

In order to satisfy the constraint that the probabilities sum to one we must

have .
e¥ ! Zm(x)et(x) -1
xeS
or
1—1 =log (Z m(x)et(I)T(’)
zes
Now define
c(0) = log (Z m(x)et(:”)w)
zes
Then

f(ﬂj) = m(x)et(f)Te—c(B)

That looks familiar!

If we think of the Lagrange multipliers ¢; as unknown parameters rather
than constants we still have to adjust, then we see that we have an exponen-
tial family with canonical statistic vector ¢(x), canonical parameter vector
f, and cumulant function c.

Define p to be the vector with components j;. Then we know from
exponential family theory that

p=Ve(d) =g(0)

and ¢ is a one-to-one function (if the exponential family is identifiable, which
happens if there are no redundant constraints), so the Lagrange multiplier
vector is

0=g""(n)

and although we do not have a closed form expression for g~ we can evaluate
g~ Y(u) for any p that is a possible of the mean value parameter vector by
doing an optimization.

Our use of the maximum entropy argument is a bit peculiar. First we
said that we “knew” the expectations

p=E{t(X)}

1
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and wanted to pick out one probability distribution that maximizes entropy
and satisfies this constraint. Then we forgot about “knowing” this constraint
and said as u ranges over all possible values we get an exponential family of
probability distributions. Also we have to choose a base measure.

Despite this rather odd logic, the maximum entropy argument does say
something important about exponential families. Suppose we have a big
exponential family (a “saturated model”) and are interested in submodels.
Examples are Bernoulli regression, Poisson regression, or categorical data
analysis. The maximum entropy argument says the canonical affine sub-
models are the submodels that, subject to constraining the means of their
submodel canonical statistics, leave all other aspects of the data as random
as possible, where “as random as possible” means maximum entropy. Thus
these models constraint the means of their canonical statistics and anti-
constrain (leave as unconstrained as possible) everything else.

In choosing a particular canonical affine submodel parameterization 6 =
a+ M we are, in effect, modeling only the the distribution of the submodel
canonical statistic t(y) = M7y, leaving all other aspects of the distribution
of y as random as possible given the control over the distribution of ¢(y).

1.19 Interpretation

So now we can put all of this together to discuss interpretation of regular
full exponential families and their canonical affine submodels.

The MLE is unique if it exists (from strict concavity). Existence is
a complicated story, and non-existence results in complicated problems of
interpretation, which we leave for now.

The MLE satisfies the observed equals expected property, either (17) for
a saturated model or (22) for a canonical affine submodel.

The sufficient dimension reduction property and maximum entropy prop-
erty say that M7y is a sufficient statistic, hence captures all information
about the parameter. All other aspects of the distribution of y are left as
random as possible; the canonical affine submodel does not constrain them
in any way other than its constraints on the expectation of M7y.

A quote from my master’s level theory notes

Parameters are meaningless quantities. Only probabilities and
expectations are meaningful.

Of course, some parameters are probabilities and expectations, but most
exponential family canonical parameters are not.
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A quote from Alice in Wonderland

‘If there’s no meaning in it,” said the King, ‘that saves a world
of trouble, you know, as we needn’t try to find any.’

Realizing that canonical parameters are meaningless quantities “saves a
world of trouble”. We “needn’t try to find any”.

Hence our interpretations should be focused on mean value parameters.
This conclusion flies in the face the traditional way regression models are
taught. In most courses, students are taught to “interpret” the equation
0 = a+ Mp, or, more precisely, since in lower level courses students aren’t
assumed to know about matrices, students are taught to interpret this with
the matrix multiplication written out explicitly, interpreting equations like

0; = Bo + Bz + 52953, where i runs over cases.
The model matrix M determines two linear transformations

B— Mp
e M7y

We claim, that the second one, which takes saturated model canonical statis-
tic to submodel canonical statistic and saturated model mean value param-
eter to submodel mean value parameter, is the more important of the two
and should lead in interpretation, because the former is about canonical
parameters (the meaningless ones) and the latter is about mean value pa-
rameters (the meaningful ones). This is especially so in light of the fact that
M7y = M7 i (observed equals expected) is the only algebraically simple
property of maximum likelihood that users can hang an interpretation on.
So we need to rethink the way we teach regression and interpret regression
when talking to users.

When we do need to think about canonical parameters, the key concept
is the multivariate monotone relationship (14) between canonical and mean
value parameters. Note that this holds not only for saturated model param-
eters but also for canonical affine submodel parameters. If, as before, we let
7 = M7 denote the submodel mean value parameter, and 7 corresponds
to B1 and 1 to 3, then

(11 — 12)T(B1 — B2) > 0, whenever 7 # To. (23)

By standard theory of maximum likelihood, MLE’s of all the parameters
are consistent, efficient (have minimum asymptotic variance), and asymp-
totically normal, with easily calculated asymptotic variance (inverse Fisher
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information matrix). Fisher information is easily calculated, (16) is Fisher
information for the saturated model canonical parameter 6,

Vic(a+ MB) = M [V?c(a+ MB)| M

is Fisher information for the submodel canonical parameter 3.
The delta method then gives asymptotic variance matrices for mean
value parameters. If ;1 = g(#), then the asymptotic variance for [

[Vg(6)]1(6) " [Vg(6)]" = I(6)1(8)1(8) = 1(6)

and MTI(0)M is the asymptotic variance for 7. These can be used for
hypothesis tests and confidence intervals about these other parameters.
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