
Stat 8053 (Geyer) Fall 2014

Homework Assignment 1
Due Friday, September 26, 2014

Instructions: do not hand in a mess. You can have an appendix or
“supplementary” material that is a mess, but we want to see a concise
description of what you did and more important what you conclude from
what you did and your argument as to why what you did implies what you
conclude.

1-1. The dataset scor in the bootstrap package, which is a CRAN pack-
age that goes with the book An Introduction to the Bootstrap by Efron and
Tibshirani (Chapman & Hall, 1993), gives scores on 5 tests (mechanics, vec-
tors, algebra, analysis, and statistics) taken by 88 students. Since these are
all somewhat related mathy subjects, Efron and Tibshirani suggest using
principal components for dimension reduction

library(bootstrap)

data(scor)

foo <- eigen(var(scor), symmetric = TRUE)

gives the eigenvalues and eigenvectors of the sample variance matrix of the
data. They look at the first two eigenvalues and the ratio of the sum of
these eigenvalues to the sum of all five eigenvalues (the “fraction of variance
explained by the first two principle components). They also bootstrap these
two eigenvalues, this ratio, and the corresponding two eigenvectors. They
do a really kludgy analysis of the bootstrap distribution of the eigenvectors
using boxplots. You should be able to think of something better.

One issue with bootstrapping this analysis is that the signs of eigenvec-
tors are arbitrary. You need to fix up the bootstrap eigenvectors so they
point in more or less the same direction as the corresponding eigenvectors
for the original data.

(a) Do a nonparametric bootstrap of these data. Make 95% confidence
intervals (not adjusted for simultaneous coverage) for all five eigenvalues
and for the ratio of the sum of the first k eigenvalues to the sum of all
eigenvalues (for each k). Use some reasonable method for your bootstrap
confidence intervals (your choice).

(b) For the first eigenvector devise a (bootstrap) method that gives some
sort of statistical inference about the direction of this eigenvector. Your
method should say something about the variability as a five-dimensional
vector. What does your method say about this vector?
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1-2. The dataset Duncan in the car package, which is a CRAN pack-
age that goes with the book An R Companion to Applied Regression by
Fox and Weisberg (SAGE Publications, 2010), contains four variables: type
(of occupation), income (percent of males in occupation earning $3500 or
more in 1950), education (percent of males in occupation in 1950 who were
high-school graduates), prestige (percent of raters in NORC study rating
occupation as excellent or good in prestige). Despite the oldness of the data
(published in 1961) and despite the rather odd way it has been reduced to
these four variables, we will analyze it. There are several “outliers” so we
will use robust regression.

(a) Compare the results of using lm, ltsreg, and rlm, the latter with both
methods ("M" and "MM"), on the formula

prestige ~ income + education

with these data.

(b) The ltsreg function does not come with standard errors. Compute
bootstrap standard errors for it.

(c) Use the nonparametric bootstrap (bootstrapping residuals rather than
cases) to check the standard errors for rlm, method "MM". Make 95%
confidence intervals for the regression coefficients (not adjusted for si-
multaneous coverage) based on the standard errors given by the summary
function and also make nonparametric bootstrap t confidence intervals.

1-3. The dataset LakeHuron in the R core (what you get with every install)
is a time series. We are going to fit some time series models to it. An AR(k)
time series with mean zero has the form

Xn = ρ1Xn−1 + ρ2Xn−2 + · · ·+ ρkXn−k + Yn

where the Yi are independent and identically distributed mean zero normal
random variables (also Yn is independent of X1, . . . , Xn−1). The R code

ar.mle(foo, order.max = k, aic = FALSE)

fits this model to the time series data foo. If instead the aic = FALSE is
omitted

ar.mle(foo)

then it selects the order k by AIC. The predict function does prediction of
future data, for example,
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out <- ar.mle(foo)

predict(out, n.ahead = 5)

predicts the next five (future) data points. It also gives standard errors if
the argument se.fit = TRUE is given (which is the default).

(a) Fit an AR(k) model to the LakeHuron data. If aic = TRUE, what order
is selected?

(b) Do a subsampling bootstrap fitting AR models to the LakeHuron data,
again allowing order selection by AIC. Ideally we want the subsample
size b to be large compared to one and small compared to n, but

√
n

is too small to use the ar.mle function with its defaults. Hence the
need to either use a larger batch length or a more stable estimation
method. Your choice. (The help page for ar.mle also describes two
other estimation methods.) The question we want this subsampling
bootstrap to answer is how stable the order selection is. What does the
bootstrap say about the order selection probabilities?

(c) Predict five steps ahead based on your fit to the observed data.

(d) Do another subsampling bootstrap fitting AR models (with order selec-
tion by AIC) and predicting five steps ahead for the LakeHuron data.
The question we want this subsampling bootstrap to answer is how good
the prediction is and how good the standard errors given by the predict
function are. What does this bootstrap say about that?

Be careful about relating the subsample predictions to the full sample
predictions. Note that if this were ordinary linear regression, the vari-
ance for a “prediction interval” is σ2 + c/n, where c is a constant (a
complicated function of the model matrices for the original data and
the new data being predicted). Hence prediction errors do not obey
the “square root law” even if the estimates do (part of the prediction
error obeys the square root law and part is constant, not a function of
n). Since the help page for predict.ar does not tell us exactly how it
calculates the prediction errors, doing this really well will not be easy.
Do something sensible.
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