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1 Theory of Maximum Likelihood Estimation

1.1 Likelihood

A likelihood for a statistical model is defined by the same formula as the
density, but the roles of the data x and the parameter θ are interchanged

Lx(θ) = fθ(x). (1)

Thus the likelihood is considered a function of θ for fixed data x, whereas the
density is considered a function of x for fixed θ (but both are the same function
of x and θ jointly).

Likelihood is actually a slightly more general concept, we also call

Lx(θ) = h(x)fθ(x) (2)

a likelihood for the model when h(x) is any strictly positive valued function
of x that does not contain the parameter θ. The reason for this extension of
the notion is that all of the uses we make of the likelihood function will not be
affected in any way by the presence or absence of h(x). The way we make use
of the extended definition is to simply drop multiplicative terms in the density
that do not contain the parameter.

1.2 Maximum Likelihood Estimation

The so-called method of maximum likelihood uses as an estimator of the
unknown true parameter value, the point θ̂x that maximizes the likelihood Lx.
This estimator is called the maximum likelihood estimator (MLE). We say “so-
called method” because it is not really a method, being rather vague in what is
considered a maximizer. The likelihood function Lx need not have a maximizer,
and even if it does, the maximizer need not be unique. It is often left unclear
whether a global or local maximizer is intended. People often talk as if the
global maximizer is intended, but theory says that a “good” local maximizer
can have better properties than the global maximizer. So not only are global
maximizers very hard to find, they aren’t even desirable here.
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So what is generally done is to start a good local optimization algorithm
at a “good” starting point and take the solution produced by the algorithm to
be the MLE (if the algorithm converges to a solution). Technically, what is
required of the starting point to be “good” is that it obeys the square root law:
its estimation error goes to zero like a constant divided by the square root of
the sample size. Generally, one just uses the best estimator one can calculate
as the starting point.

1.3 Expected Fisher Information

Because the log function is monotone, maximizing the likelihood is the same
as maximizing the log likelihood

lx(θ) = log Lx(θ). (3)

For many reasons it is more convenient to use log likelihood rather than likeli-
hood.

The derivatives of the log likelihood function (3) are very important in likeli-
hood theory. The moments of log likelihood derivatives satisfy some important
identities. Note that if the likelihood is given by (2), then the log likelihood is
given by

lx(θ) = log h(x) + log fθ(x) (4)

and the derivatives (these are derivatives with respect to θ) do not involve the
log h(x) term because it does not contain θ. So these derivatives are well defined
and the same regardless of what h(x) we use. Also note that the maximizer of
(4) no matter how defined (local or global maximizer) does not depend on h(x).
Thus the MLE is the same (if defined) regardless of what h(x) we use.

First, the first derivative has expectation zero

Eθ

{
∇lx(θ)

}
= 0, (5)

where ∇f denotes the vector of partial derivatives of a scalar function f of a
vector variable, often called the gradient of f , and ∇f(x) denotes the value of
the gradient at the point x.

Second, the variance of the first derivative is minus the expectation of the
second

varθ

{
∇lx(θ)

}
= −Eθ

{
∇2lx(θ)

}
, (6)

where ∇2f denotes the matrix of second partial derivatives of a scalar function
f of a vector variable, often called the hessian of f , and ∇2f(x) denotes the
value of the hessian at the point x.

Either side of (6) is called the expected Fisher information (or just “Fisher
information” with no “expected” when it is clear what is meant) and is denoted
I(θ).
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1.4 Asymptotic Distribution of the MLE

The “large sample” or “asymptotic” approximation of the sampling distri-
bution of the MLE θ̂x is multivariate normal with mean θ (the unknown true
parameter value) and variance I(θ)−1. Note that in the multiparameter case
I(θ) is a matrix so “inverse Fisher information” involves a matrix inverse.

Readers with previous exposure to likelihood theory may have a few ques-
tions here, mostly about n. So far we haven’t made any assumptions about the
data x. Specifically, we haven’t assumed that x is a vector (x1, . . . , xn) of IID
data. Likelihood theory works even when nothing is independent in the data
(time series, spatial statistics, statistical genetics, and so forth). And we don’t
want to limit ourselves to IID. (Readers who wonder what “large sample”means
when there is no n are invited to take my special topics course on advanced
asymptotics next semester).

But for readers who have a hard time shaking off previous exposure to bad
teaching that insisted on IID, we comment that in the IID case, if we write
the Fisher information for sample size n as In(θ), then it satisfies the identity
In(θ) = nI1(θ). This happens because the variance of a sum is the sum of the
variances when the terms are independent. Hence it obviously does not hold for
dependent data! What we are denoting I(θ) here is the Fisher information for
the actual data being analyzed, that is, In(θ) in the case of an IID sample of
size n.

Even when not analyzing dependent data (when you have to look at things
our way), our convention that there is only one Fisher information of interest—
and that is I(θ) the actual Fisher information for the actual data—is simpler
that the conventional way which invites confusion between In(θ) and I1(θ) and
actually does confuse a lot of users.

1.5 Plug In and Observed Fisher Information

In practice, it is useless that the MLE has asymptotic variance I(θ)−1 be-
cause we don’t know θ. If we knew θ, then we wouldn’t be estimating it!

Hence we approximate the asymptotic variance by “plugging in” the esti-
mated value of the parameter, that is, we use I(θ̂x)−1 as the approximate vari-
ance of the MLE.

Asymptotic theory guarantees that approximation of I(θ) by I(θ̂x) produces
an error that is negligible compared to the main approximation of the actual
sampling distribution of the MLE by Normal

(
θ, I(θ)−1

)
. This is the plug-in

principle, that plugging in θ̂x for θ in calculating asymptotic variance makes a
negligible contribution to the error.

There is a second form of plug-in. The second derivative form of Fisher
information −Eθ

{
∇2lx(θ)

}
, is by the law of large numbers well approximated

by the random variable itself. Thus we call

Jx(θ) = −∇2lx(θ)
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observed Fisher information and use it as another approximation to Fisher in-
formation. Of course, we still don’t know θ, so we need a second “plug-in” using
Jx(θ̂x) instead of Jx(θ). The plug-in principle applies here too. The error made
by approximating I(θ) by Jx(θ̂x) is negligible compared to the error approxi-
mating the actual sampling distribution of the MLE by Normal

(
θ, I(θ)−1

)
.

1.6 Summary of Theory

The asymptotic approximation to the sampling distribution of the MLE θ̂x is
multivariate normal with mean θ and variance approximated by either I(θ̂x)−1

or Jx(θ̂x)−1.

2 Maximum Likelihood Estimation in R

2.1 The Cauchy Location-Scale Family

The (standard) Cauchy Distribution is the continuous univariate distribution
having density

f(x) =
1
π
· 1
1 + x2

, −∞ < x < ∞. (7)

The standard Cauchy distribution has no parameters, but it induces a two-
parameter location-scale family having densities

fµ,σ(x) =
1
σ
· f

(
x− µ

σ

)
(8)

If f is any distribution having mean zero and variance 1, then fµ,σ has mean µ
and variance σ2. But the Cauchy distribution has neither mean nor variance.
Thus we call µ the location parameter and σ the scale parameter.

Since the standard Cauchy distribution is clearly symmetric about zero, the
Cauchy(µ, σ) distribution is symmetric about µ. Hence µ is the population
median and a “good” estimate is the sample median. A robust scale estimator
analogous to the sample median is the interquartile range (IQR). The IQR of
the standard Cauchy distribution is

> qcauchy(3/4) - qcauchy(1/4)

[1] 2

Thus the population IQR of the Cauchy(µ, σ) distribution is 2σ, and hence
a “good” estimate of σ is the sample IQR divided by 2.

2.2 Maximum Likelihood

2.2.1 One Parameter

The R function nlm minimizes arbitrary functions written in R. So to max-
imize the likelihood, we hand nlm the negative of the log likelihood (for any
function f , minimizing −f maximizes f).
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For the Cauchy location model (µ is unknown, but σ = 1 is known) minus
the log likelihood can be written either as

> mlogl <- function(mu, x) {

+ sum(-dcauchy(x, location = mu, log = TRUE))

+ }

using dcauchy to avoid having to know the formula (7) and (8) for the densities
or as

> mlogl2 <- function(mu, x) {

+ sum(log(1 + (x - mu)^2))

+ }

using our knowledge of the Cauchy densities.
Either produces the same results on the simulated data

> n <- 30

> set.seed(42)

> x <- rcauchy(n)

Here the true “unknown” µ is zero, but we pretend we don’t know that and see
how good the MLE is as an estimator.

The following does the estimation

> mu.start <- median(x)

> mu.start

[1] -0.1955062

> out <- nlm(mlogl, mu.start, x = x)

> mu.hat <- out$estimate

> mu.hat

[1] -0.1816501

And the following does the estimation using the other “minus log likelihood”
function

> out2 <- nlm(mlogl2, mu.start, x = x)

> mu.hat <- out$estimate

> mu.hat

[1] -0.1816501

2.2.2 A Simulation Study

We see for these data, the MLE is slightly better than the sample median.
But this is just one data set. For random data sometimes the MLE will be
better and sometimes the sample median will be better. As statisticians, what
we are interested is in the sampling distributions of the two estimators, which
we can easily study by simulation
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> nsim <- 100

> mu <- 0

> mu.hat <- double(nsim)

> mu.twiddle <- double(nsim)

> for (i in 1:nsim) {

+ xsim <- rcauchy(n, location = mu)

+ mu.start <- median(xsim)

+ out <- nlm(mlogl, mu.start, x = xsim)

+ mu.hat[i] <- out$estimate

+ mu.twiddle[i] <- mu.start

+ }

> mean((mu.hat - mu)^2)

[1] 0.06203118

> mean((mu.twiddle - mu)^2)

[1] 0.08242236

The two numbers reported from the simulation are the mean square errors
(MSE) of the two estimators. Their ratio

> mean((mu.hat - mu)^2)/mean((mu.twiddle - mu)^2)

[1] 0.7526013

is the asymptotic relative efficiency (ARE) of the estimators. Now we see the
MLE is more accurate, as theory says it must be.

2.2.3 Two Parameters

Minus the log likelihood for the two-parameter Cauchy can be written

> mlogl3 <- function(theta, x) {

+ sum(-dcauchy(x, location = theta[1], scale = theta[2], log = TRUE))

+ }

and the MLE calculated by

> theta.start <- c(median(x), IQR(x)/2)

> theta.start

[1] -0.1955062 0.7125899

> out <- nlm(mlogl3, theta.start, x = x)

> theta.hat <- out$estimate

> theta.hat

[1] -0.1809299 0.7605561
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2.3 Fisher Information

2.3.1 Observed Fisher Information

If asked nicely, nlm will calculate observed Fisher information evaluated at
the MLE.

> out <- nlm(mlogl3, theta.start, x = x, hessian = TRUE)

> fish <- out$hessian

> fish

[,1] [,2]
[1,] 32.50733727 0.01480913
[2,] 0.01480913 19.34819096

> solve(fish)

[,1] [,2]
[1,] 3.076230e-02 -2.354550e-05
[2,] -2.354550e-05 5.168444e-02

2.3.2 Confidence Intervals

Inverse Fisher information gives the asymptotic variance matrix of the MLE.
From it, we can construct asymptotic confidence intervals.

> conf.level <- 0.95

> crit <- qnorm((1 + conf.level)/2)

> inv.fish <- solve(fish)

> theta.hat[1] + c(-1, 1) * crit * sqrt(inv.fish[1, 1])

[1] -0.5246916 0.1628318

> theta.hat[2] + c(-1, 1) * crit * sqrt(inv.fish[2, 2])

[1] 0.3149737 1.2061385

These are, of course, not simultaneous confidence intervals. To get simultaneous
coverage we would have to replace the critical value calculation by a Bonferroni
correction

> crit

[1] 1.959964

> crit <- qnorm(1 - (1 - conf.level)/2/length(theta.hat))

> crit

[1] 2.241403
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2.3.3 Expected Fisher Information

R has a function deriv that does derivatives of R expressions. But it isn’t
very sophisticated. It won’t calculate likelihood derivatives here. So let’s do the
derivatives by pencil and paper.

First, the log likelihood itself

lx(µ, σ) = n log(σ)−
n∑

i=1

log
(
σ2 + (xi − µ)2

)
The first derivatives are

∂lx(µ, σ)
∂µ

=
n∑

i=1

2(xi − µ)
σ2 + (xi − µ)2

∂lx(µ, σ)
∂σ

=
n

σ
−

n∑
i=1

2σ

σ2 + (xi − µ)2

R doesn’t do analytic integrals at all. But it does do numerical integrals,
which is all we need to do Fisher information.

> theta.hat

[1] -0.1809299 0.7605561

> mu <- theta.hat[1]

> sigma <- theta.hat[2]

> grad1 <- function(x) 2 * (x - mu)/(sigma^2 + (x - mu)^2)

> grad2 <- function(x) (1/sigma - 2 * sigma/(sigma^2 + (x - mu)^2))

> fish.exact <- matrix(NA, 2, 2)

> fish.exact[1, 1] <- integrate(function(x) grad1(x)^2 * dcauchy(x,

+ mu, sigma), -Inf, Inf)$value

> fish.exact[2, 2] <- integrate(function(x) grad2(x)^2 * dcauchy(x,

+ mu, sigma), -Inf, Inf)$value

> fish.exact[1, 2] <- integrate(function(x) grad1(x) * grad2(x) *

+ dcauchy(x, mu, sigma), -Inf, Inf)$value

> fish.exact[2, 1] <- fish.exact[1, 2]

> round(n * fish.exact, 10)

[,1] [,2]
[1,] 25.93157 0.00000
[2,] 0.00000 25.93157

> fish

[,1] [,2]
[1,] 32.50733727 0.01480913
[2,] 0.01480913 19.34819096
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In hindsight these matrices are misnamed. The matrix fish is observed Fisher
information evaluated at the MLE, that is, Jx(θ̂x). The matrix fish.exact is
expected Fisher information evaluated at the MLE, that is, Ix(θ̂x). Neither is
“exact” both are approximations to the asymptotic variance of the MLE.

2.4 Using Derivative Information in Optimization

In its default mode of operation nlm uses derivatives calculated by finite
differences. It will work better and faster if we supply the derivatives. We don’t
need more speed or accuracy in this small example, but for large numbers of
parameters and complicated likelihoods, we do. So let’s see how it works.

> mlogl4 <- function(theta, x) {

+ if (length(theta) != 2)

+ stop("length(theta) must be 2")

+ mu <- theta[1]

+ sigma <- theta[2]

+ value <- sum(-dcauchy(x, location = mu, scale = sigma, log = TRUE))

+ denom <- sigma^2 + (x - mu)^2

+ grad1 <- sum(-2 * (x - mu)/denom)

+ grad2 <- sum(-(1/sigma - (2 * sigma/denom)))

+ attr(value, "gradient") <- c(grad1, grad2)

+ return(value)

+ }

defines minus the log like and adds an attribute "gradient", which is the gra-
dient. So let’s see how it works.

> theta.start

[1] -0.1955062 0.7125899

> out <- nlm(mlogl4, theta.start, x = x)

> out$estimate

[1] -0.1809294 0.7605566

Same answer as before to about six significant figures.
And what does our mlogl4 do?

> mlogl4(out$estimate, x = x)

[1] 77.0496
attr(,"gradient")
[1] 4.367115e-05 5.032129e-05
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