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The combination of some data and an aching desire for an answer does not ensure that a reasonable
answer can be extracted from a given body of data.

— John W. Tukey (the first of six “basics” against statistician’s hubrises) in “Sunset Salvo”,
American Statistician, 40, 72–76 (1986).

quoted by the fortunes package

Figure 1: xkcd:1781 Artifacts
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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (https:
//creativecommons.org/licenses/by-sa/4.0/).

2 R
• The version of R used to make this document is 4.2.1.

• The version of the rmarkdown package used to make this document is 2.17.

• The version of the MASS package used to make this document is 7.3.58.1.

• The version of the quantreg package used to make this document is 5.94.

• The version of the rvest package used to make this document is 1.0.3.

• The version of the jsonlite package used to make this document is 1.8.3.

• The version of the pkgsearch package used to make this document is 3.1.2.

• The version of the RSQLite package used to make this document is 2.2.18.

• The version of the DBI package used to make this document is 1.1.3.

• The version of the dplyr package used to make this document is 1.0.10.
library(MASS)
library(quantreg)

## Loading required package: SparseM

##
## Attaching package: 'SparseM'

## The following object is masked from 'package:base':
##
## backsolve
library(rvest)
library(jsonlite)
library(pkgsearch)
library(dplyr)

##
## Attaching package: 'dplyr'

## The following object is masked from 'package:MASS':
##
## select

## The following objects are masked from 'package:stats':
##
## filter, lag

## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
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3 Data
3.1 Data Frames
Statistics or “data science” starts with data. Data can come in many forms but it often comes in a data
frame — or at least something R can turn into a data frame. As we saw at the end of the handout about
matrices, arrays, and data frames, the two R functions most commonly used to input data into data frames
are read.table and read.csv. We will see some more later.

3.2 Data Artifacts, Errors, Problems
3.2.1 Introduction

Anything which uses science as part of its name isn’t: political science, creation science, computer
science.

— Hal Abelson

Presumably he would have added “data science” if the term had existed when he said that. Statistics doesn’t
get off lightly either because of the journal Statistical Science.

It is the dirty little secret of science, business, statistics, and “data science” is that there are a lot of errors in
almost all data when they get to a data analyst, whatever his or her job title may be.

Hence, the most important skill of a data analyst (whatever his or her job title may be) is IMHO knowing
how to find errors in data. If you can’t do that, anything else you may be able to do has no point. GIGO.

But this is a secret because businesses don’t like to admit they make errors, and neither do scientists or
anyone else who generates data. So the data clean up always takes place behind the scenes. Any publicly
available data set has already been cleaned up.

Thus we look at a made-up data set (I took an old data set, the R dataset growth in the CRAN package fda
and introduced errors of the kind I have seen in real data sets).

As we shall see. There are no R functions or packages that help with data errors. You just have to think
hard and use logic (both logic in your thinking and R logical operators).

3.2.2 Overview

growth <- read.csv("https://www.stat.umn.edu/geyer/3701/data/growth.csv",
stringsAsFactors = FALSE)

class(growth)

## [1] "data.frame"
names(growth)

## [1] "HT1" "HT1.25" "HT1.5" "HT1.75" "HT2" "HT3" "HT4" "HT5"
## [9] "HT6" "HT7" "HT8" "HT8.5" "HT9" "HT9.5" "HT10" "HT10.5"
## [17] "HT11" "HT11.5" "HT12" "HT12.5" "HT13" "HT13.5" "HT14" "HT14.5"
## [25] "HT15" "HT15.5" "HT16" "HT16.5" "HT17" "HT17.5" "HT18" "SITE"
## [33] "SEX"
sapply(growth, class)

## HT1 HT1.25 HT1.5 HT1.75 HT2 HT3
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
## HT4 HT5 HT6 HT7 HT8 HT8.5
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
## HT9 HT9.5 HT10 HT10.5 HT11 HT11.5
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## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
## HT12 HT12.5 HT13 HT13.5 HT14 HT14.5
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
## HT15 HT15.5 HT16 HT16.5 HT17 HT17.5
## "numeric" "numeric" "numeric" "numeric" "numeric" "numeric"
## HT18 SITE SEX
## "numeric" "character" "integer"

The variables whose names start with HT are heights at the indicated age in years. SITE and SEX are
sort(unique(growth$SITE))

## [1] "A" "B" "C" "D"
sort(unique(growth$SEX))

## [1] 1 2

both categorical despite the latter being coded with integers. We will have to figure all that out.

3.2.3 Missing Data

The first tool we use is grep. This command has a weird name inherited from unix. It (and its relatives
documented on the same help page) is the R command for matching text strings (and for doing search and
replace).
is.ht <- grep("HT", names(growth))
foo <- growth[is.ht]
foo <- as.matrix(foo)
apply(foo, 2, range)

## HT1 HT1.25 HT1.5 HT1.75 HT2 HT3 HT4 HT5 HT6 HT7 HT8 HT8.5 HT9 HT9.5
## [1,] NA NA 0.0 NA 0.0 NA NA NA NA NA 110.9 NA NA 103.3
## [2,] NA NA 95.4 NA 97.3 NA NA NA NA NA 313.8 NA NA 318.6
## HT10 HT10.5 HT11 HT11.5 HT12 HT12.5 HT13 HT13.5 HT14 HT14.5 HT15 HT15.5
## [1,] 126.8 NA NA 0.0 NA -999.0 NA NA NA NA NA NA
## [2,] 611.5 NA NA 519.7 NA 512.5 NA NA NA NA NA NA
## HT16 HT16.5 HT17 HT17.5 HT18
## [1,] NA 152.6 NA 107.0 NA
## [2,] NA 255.6 NA 617.8 NA

Try again.
apply(foo, 2, range, na.rm = TRUE)

## HT1 HT1.25 HT1.5 HT1.75 HT2 HT3 HT4 HT5 HT6 HT7 HT8 HT8.5
## [1,] -999.0 -999.0 0.0 9.4 0.0 39.6 -999.0 0 -999 -999.0 110.9 119.2
## [2,] 84.1 90.4 95.4 95.0 97.3 201.3 120.6 210 134 218.8 313.8 236.6
## HT9 HT9.5 HT10 HT10.5 HT11 HT11.5 HT12 HT12.5 HT13 HT13.5 HT14
## [1,] 121.4 103.3 126.8 -999.0 -999.0 0.0 -999 -999.0 139.5 -999.0 145.0
## [2,] 312.8 318.6 611.5 166.1 410.5 519.7 176 512.5 257.0 714.9 268.8
## HT14.5 HT15 HT15.5 HT16 HT16.5 HT17 HT17.5 HT18
## [1,] -999.0 150.8 152.1 -999.0 152.6 0.0 107.0 0
## [2,] 614.9 285.6 192.2 715.5 255.6 616.9 617.8 819

Clearly −999 and 0 are not valid heights. What’s going on?

Many statistical computing systems — I don’t want to say “languages” because many competitors to R are
not real computer languages — do not have a built-in way to handle missing data, like R’s predecessor S has

4

https://en.wikipedia.org/wiki/Grep


had since its beginning. So users pick an impossible value to indicate missing data. But why some NA, some
−999, and some 0?
hasNA <- apply(foo, 1, anyNA)
has999 <- apply(foo == (-999), 1, any)
has0 <- apply(foo == 0, 1, any)
sort(unique(growth$SITE[hasNA]))

## [1] "C" "D"
sort(unique(growth$SITE[has999]))

## [1] "A"
sort(unique(growth$SITE[has0]))

## [1] "B"

So clearly the different “sites” coded missing data differently. Now that we understand that we can

• fix the different missing data codes, and

• be on the lookout for what else the different “sites” may have done differently.

Fix.
foo[foo == -999] <- NA
foo[foo == 0] <- NA
min(foo, na.rm = TRUE)

## [1] 9.4

3.2.4 Impossible Data

3.2.4.1 Finding the Problems

Clearly, people don’t decrease in height as they age (at least when they are young). So that is another sanity
check.
bar <- apply(foo, 1, diff)
sum(bar < 0)

## [1] NA

Hmmmmm. Didn’t work because of the missing data. Try again.
bar <- apply(foo, 1, function(x) {

x <- x[! is.na(x)]
diff(x)

})
class(bar)

## [1] "list"

according to the documentation to apply it returns a list when the function returns vectors of different
lengths for different “margins” (here rows).
any(sapply(bar, function(x) any(x < 0)))

## [1] TRUE

So we do have some impossible data. Is it just slightly impossible or very impossible?
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baz <- sort(unlist(lapply(bar, function(x) x[x < 0])))
length(baz)

## [1] 186
range(baz)

## [1] -539.4 -0.1

The -0.1 may be a negligible error, but the -539.4 is highly impossible. We’ve got work to do on this issue.

3.2.4.2 Fixing the Problems

At this point anyone (even me) would be tempted to just give up using R or any other computer language to
work on this issue. It is just too messy. Suck the data into a spreadsheet or other editor, fix it by hand, and
be done with it.

But this is not reproducible and not scalable. There is no way anyone (even the person doing the data
editing) can reproduce exactly what they did or explain what they did. So why should we trust that? We
shouldn’t. Moreover, for “big data” it is a nonstarter. A human can fix a little bit of the data, but we need
an automatic process if we are going to fix all the data. Hence we keep plugging away with R.

Any negative increment between heights may be because of either of the heights being subtracted being
wrong. And just looking at those two numbers, we cannot tell which is wrong. So let us also look at he two
numbers to either side (if there are such).

This job is so messy I think we need loops.
qux <- NULL
for (i in 1:nrow(foo))

for (j in seq(1, ncol(foo) - 1))
if (foo[i, j + 1] < foo[i, j]) {

below <- if (j - 1 >= 1) foo[i, j - 1] else NA
above <- if (j + 2 <= ncol(foo)) foo[i, j + 2] else NA
qux <- rbind(qux, c(below, foo[i, j], foo[i, j + 1], above))

}

## Error in if (foo[i, j + 1] < foo[i, j]) {: missing value where TRUE/FALSE needed
qux

## HT1 HT1.25 HT1.5 HT1.75
## [1,] 73.8 78.7 38 85.8

That didn’t work. Forgot about the NA’s. Try again.
qux <- NULL
for (i in 1:nrow(foo)) {

x <- foo[i, ]
x <- x[! is.na(x)]
d <- diff(x)
jj <- which(d < 0)
for (j in jj) {

below <- if (j - 1 >= 1) x[j - 1] else NA
above <- if (j + 2 <= length(x)) x[j + 2] else NA
qux <- rbind(qux, c(below, x[j], x[j + 1], above))

}
}
qux
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## HT1 HT1.25 HT1.5 HT1.75
## [1,] 73.8 78.7 38.0 85.8
## [2,] 171.1 185.2 180.8 182.2
## [3,] 104.1 121.5 119.0 128.0
## [4,] 136.6 149.5 141.9 144.8
## [5,] 152.3 156.3 116.2 165.9
## [6,] 177.3 177.6 177.3 177.0
## [7,] 177.6 177.3 177.0 177.0
## [8,] 131.4 144.3 136.8 139.7
## [9,] 154.0 518.0 162.1 166.5
## [10,] 153.3 157.7 152.3 166.1
## [11,] 171.1 714.9 177.9 180.1
## [12,] 165.5 196.7 173.1 175.6
## [13,] 179.3 189.8 180.3 180.7
## [14,] 134.1 137.1 104.2 413.0
## [15,] 104.2 413.0 145.7 148.5
## [16,] 158.4 161.2 155.2 166.0
## [17,] 119.4 221.9 124.2 126.3
## [18,] 140.5 243.6 146.8 149.0
## [19,] 164.2 164.6 163.9 165.0
## [20,] 137.1 139.5 132.9 145.0
## [21,] 161.8 262.8 163.5 164.0
## [22,] 161.4 262.4 163.4 154.0
## [23,] 262.4 163.4 154.0 164.3
## [24,] 142.7 146.1 140.9 254.1
## [25,] 140.9 254.1 158.8 160.4
## [26,] 163.0 163.1 163.0 163.1
## [27,] 163.7 163.8 163.7 NA
## [28,] 78.3 92.4 87.2 91.4
## [29,] 170.4 171.3 127.0 162.7
## [30,] 129.8 312.8 125.2 137.6
## [31,] 75.9 79.4 72.1 85.7
## [32,] 115.3 124.0 103.6 137.6
## [33,] 144.8 248.0 151.8 155.3
## [34,] 175.8 176.1 176.0 NA
## [35,] 143.0 164.7 150.5 153.7
## [36,] 218.8 313.8 136.9 139.9
## [37,] 172.2 172.3 171.2 172.5
## [38,] 110.0 116.1 110.9 123.6
## [39,] 150.3 161.0 151.4 151.7
## [40,] 86.2 96.5 14.1 110.8
## [41,] 125.2 310.9 133.4 135.9
## [42,] 173.8 175.0 174.7 176.1
## [43,] 176.5 616.9 177.2 177.5
## [44,] 168.1 168.4 158.9 169.4
## [45,] 116.2 134.0 131.1 136.8
## [46,] 148.1 161.3 154.8 158.5
## [47,] 158.4 171.7 164.2 165.6
## [48,] 179.6 189.2 181.6 NA
## [49,] 149.6 162.2 155.3 159.2
## [50,] 176.1 178.3 177.9 178.2
## [51,] 81.3 85.1 39.6 101.9
## [52,] 130.9 143.1 137.8 139.3
## [53,] 151.7 155.0 148.9 163.3

7



## [54,] 91.4 201.3 108.0 121.5
## [55,] 163.6 166.6 160.9 175.0
## [56,] 78.0 80.6 48.4 90.2
## [57,] 175.5 176.0 166.4 NA
## [58,] 165.9 166.1 166.0 176.0
## [59,] 81.8 95.4 77.9 89.6
## [60,] 161.8 161.8 161.7 161.9
## [61,] 161.9 161.9 161.7 161.9
## [62,] 106.7 123.3 118.4 124.2
## [63,] 164.4 165.8 164.9 NA
## [64,] 154.2 257.0 159.0 160.5
## [65,] 163.0 163.4 163.1 163.0
## [66,] 163.4 163.1 163.0 NA
## [67,] 153.6 154.1 145.4 154.6
## [68,] 135.8 318.6 141.4 144.2
## [69,] 167.8 168.6 159.2 169.8
## [70,] 169.8 169.8 107.0 170.3
## [71,] 141.8 154.8 150.5 155.2
## [72,] 168.6 617.8 169.2 NA
## [73,] 85.1 87.5 87.3 105.7
## [74,] 142.0 415.0 148.2 152.0
## [75,] 167.6 268.8 169.5 169.9
## [76,] 86.4 89.7 69.6 105.0
## [77,] 105.0 112.3 110.6 124.7
## [78,] 133.6 145.8 138.8 141.2
## [79,] 167.3 167.3 167.2 NA
## [80,] 137.4 410.5 134.3 145.9
## [81,] 172.4 182.5 172.5 127.5
## [82,] 182.5 172.5 127.5 NA
## [83,] 79.1 91.1 84.4 87.4
## [84,] 121.9 217.8 129.8 132.4
## [85,] 172.6 273.2 173.8 NA
## [86,] 76.0 79.4 28.0 84.2
## [87,] 171.1 271.8 127.6 NA
## [88,] 153.6 156.8 150.5 164.6
## [89,] 184.2 285.6 186.6 187.1
## [90,] 187.4 287.8 188.2 188.4
## [91,] 83.7 86.3 79.8 92.2
## [92,] 145.6 148.7 142.3 157.0
## [93,] 162.0 176.4 169.9 172.1
## [94,] 184.7 715.5 176.1 176.4
## [95,] 122.7 129.9 123.1 136.2
## [96,] 178.3 191.0 183.1 184.6
## [97,] 78.3 82.3 68.0 89.1
## [98,] 179.8 189.4 180.8 180.9
## [99,] 180.8 180.9 180.8 181.3
## [100,] 155.9 611.5 166.2 169.6
## [101,] 174.2 174.2 174.1 NA
## [102,] 76.2 90.4 83.3 85.7
## [103,] 134.2 139.6 132.0 138.5
## [104,] 132.0 138.5 131.6 144.9
## [105,] 163.6 165.3 164.5 164.4
## [106,] 165.3 164.5 164.4 164.3
## [107,] 164.5 164.4 164.3 164.1
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## [108,] 164.4 164.3 164.1 164.0
## [109,] 164.3 164.1 164.0 163.8
## [110,] 164.1 164.0 163.8 NA
## [111,] 84.4 87.1 49.6 103.4
## [112,] 128.1 230.4 133.2 135.8
## [113,] 145.2 184.5 151.3 154.6
## [114,] 81.3 95.0 87.6 94.6
## [115,] 122.7 139.4 132.4 135.6
## [116,] 159.4 159.7 150.9 160.2
## [117,] 160.4 160.4 160.3 160.3
## [118,] 77.0 87.5 19.1 94.0
## [119,] 169.3 196.6 169.8 170.1
## [120,] 170.3 180.5 170.6 170.8
## [121,] 133.2 236.6 139.8 142.7
## [122,] 171.5 171.5 171.4 171.2
## [123,] 171.5 171.4 171.2 NA
## [124,] NA 74.9 67.8 81.2
## [125,] 163.6 163.7 153.8 NA
## [126,] 132.6 236.1 139.4 142.4
## [127,] 162.1 166.0 160.3 174.3
## [128,] 180.4 180.4 180.2 180.5
## [129,] 163.8 614.9 175.8 166.8
## [130,] 614.9 175.8 166.8 168.9
## [131,] 166.8 168.9 168.2 168.2
## [132,] 168.2 168.2 168.1 NA
## [133,] 142.4 154.0 148.1 151.8
## [134,] 155.5 185.3 160.1 161.3
## [135,] 162.3 173.0 163.3 163.6
## [136,] 163.3 163.6 153.8 164.2
## [137,] 152.9 153.2 143.6 154.1
## [138,] 154.4 154.6 154.5 NA
## [139,] 84.2 96.4 94.0 101.8
## [140,] 121.9 126.8 119.3 121.9
## [141,] 163.6 163.9 154.3 164.2
## [142,] 154.3 164.2 164.0 NA
## [143,] 161.0 161.5 161.0 161.8
## [144,] 161.0 161.8 161.6 NA
## [145,] 125.5 128.0 103.3 132.5
## [146,] 142.1 244.2 146.4 148.9
## [147,] 144.4 158.4 152.5 156.6
## [148,] 156.6 611.5 166.1 170.2
## [149,] 182.6 182.8 182.7 183.2
## [150,] 172.6 172.9 137.1 173.3
## [151,] 78.2 84.2 78.0 88.4
## [152,] 168.7 169.1 160.5 169.9
## [153,] 170.1 179.3 170.3 170.6
## [154,] 100.2 180.0 114.9 121.2
## [155,] 131.3 143.9 136.7 140.1
## [156,] 156.9 157.0 156.9 NA
## [157,] 152.2 163.6 154.9 155.9
## [158,] 157.5 175.7 158.0 518.4
## [159,] 155.1 255.6 156.0 157.1
## [160,] 156.0 157.1 156.5 NA
## [161,] 133.1 136.0 128.8 142.9
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## [162,] 156.2 519.7 163.8 168.8
## [163,] 162.3 177.7 171.5 174.3
## [164,] 174.3 176.1 167.4 NA
## [165,] NA 84.1 78.4 82.6
## [166,] 123.2 129.9 123.0 136.0
## [167,] 154.5 157.7 152.2 167.4
## [168,] 85.0 86.4 77.1 96.2
## [169,] 117.3 214.1 130.0 133.6
## [170,] 148.7 252.3 154.3 158.1
## [171,] 167.5 181.5 175.1 178.0
## [172,] 95.6 120.1 109.2 117.5
## [173,] 173.0 276.3 178.5 180.0
## [174,] 180.0 181.0 171.8 182.2
## [175,] 95.6 120.6 109.7 126.8
## [176,] 109.7 126.8 121.7 127.2
## [177,] 178.0 179.1 108.2 181.0
## [178,] 118.6 133.7 126.4 129.1
## [179,] 102.0 207.5 114.0 119.4
## [180,] 131.6 143.0 136.5 138.8
## [181,] 104.2 210.0 116.0 123.8
## [182,] 150.1 512.5 155.1 158.4
## [183,] 83.3 87.0 9.4 93.1
## [184,] 153.4 156.1 149.3 163.7
## [185,] 189.6 199.7 191.3 191.7
## [186,] 136.8 239.8 142.6 145.1

In line 1 it looks like the data enterer transposed digits. These data would make sense if the 38.0 was actually
83.0. In line 2 it looks like the data enterer had an off-by-one error. These data would make sense if the
185.2 was actually 175.2. In fact, those are the two kinds of errors I put in the data. But in real life, we
wouldn’t know about the kinds of all of the errors in the data. There might be other kinds. Or our guess
about these kinds might be wrong.

At this point and perhaps long before, we would have gone back to the data source and asked if the data are
correctable at the source. Perhaps the data were entered correctly and corrupted later and we can get the
original version. But the kinds of errors we think we found are apparently data entry errors. So there may be
no correct data available.

In lines 26 and 27 we notice that the errors are negligible (only 0.1 in size). Perhaps those we can ignore.
They might just be different rounding before data entry.

In catching these errors — it is pretty clear that there is no way we can “correct” these errors if correct
data are unavailable — we don’t want to be clumsy and introduce more error. We want to use the best
methods we can. We’re statisticians, so perhaps we should use statistics. We need to use the whole data for
an individual to identify the errors for that individual.

So let’s go back and find which individuals have erroneous data. And while we are at it, let’s skip errors less
than 0.3 in size.
qux <- NULL
for (i in 1:nrow(foo)) {

x <- foo[i, ]
x <- x[! is.na(x)]
d <- diff(x)
jj <- which(d <= -0.2)
for (j in jj) {

below <- if (j - 1 >= 1) x[j - 1] else NA
above <- if (j + 2 <= length(x)) x[j + 2] else NA
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qux <- rbind(qux, c(i, below, x[j], x[j + 1], above))
}

}
qux

## HT1 HT1.25 HT1.5 HT1.75
## [1,] 1 73.8 78.7 38.0 85.8
## [2,] 1 171.1 185.2 180.8 182.2
## [3,] 2 104.1 121.5 119.0 128.0
## [4,] 2 136.6 149.5 141.9 144.8
## [5,] 2 152.3 156.3 116.2 165.9
## [6,] 2 177.3 177.6 177.3 177.0
## [7,] 2 177.6 177.3 177.0 177.0
## [8,] 3 131.4 144.3 136.8 139.7
## [9,] 3 154.0 518.0 162.1 166.5
## [10,] 4 153.3 157.7 152.3 166.1
## [11,] 6 171.1 714.9 177.9 180.1
## [12,] 7 165.5 196.7 173.1 175.6
## [13,] 7 179.3 189.8 180.3 180.7
## [14,] 8 134.1 137.1 104.2 413.0
## [15,] 8 104.2 413.0 145.7 148.5
## [16,] 8 158.4 161.2 155.2 166.0
## [17,] 9 119.4 221.9 124.2 126.3
## [18,] 9 140.5 243.6 146.8 149.0
## [19,] 10 164.2 164.6 163.9 165.0
## [20,] 11 137.1 139.5 132.9 145.0
## [21,] 11 161.8 262.8 163.5 164.0
## [22,] 12 161.4 262.4 163.4 154.0
## [23,] 12 262.4 163.4 154.0 164.3
## [24,] 13 142.7 146.1 140.9 254.1
## [25,] 13 140.9 254.1 158.8 160.4
## [26,] 14 78.3 92.4 87.2 91.4
## [27,] 14 170.4 171.3 127.0 162.7
## [28,] 16 129.8 312.8 125.2 137.6
## [29,] 17 75.9 79.4 72.1 85.7
## [30,] 17 115.3 124.0 103.6 137.6
## [31,] 17 144.8 248.0 151.8 155.3
## [32,] 18 143.0 164.7 150.5 153.7
## [33,] 19 218.8 313.8 136.9 139.9
## [34,] 19 172.2 172.3 171.2 172.5
## [35,] 20 110.0 116.1 110.9 123.6
## [36,] 20 150.3 161.0 151.4 151.7
## [37,] 21 86.2 96.5 14.1 110.8
## [38,] 21 125.2 310.9 133.4 135.9
## [39,] 21 173.8 175.0 174.7 176.1
## [40,] 21 176.5 616.9 177.2 177.5
## [41,] 22 168.1 168.4 158.9 169.4
## [42,] 23 116.2 134.0 131.1 136.8
## [43,] 23 148.1 161.3 154.8 158.5
## [44,] 24 158.4 171.7 164.2 165.6
## [45,] 26 179.6 189.2 181.6 NA
## [46,] 27 149.6 162.2 155.3 159.2
## [47,] 28 176.1 178.3 177.9 178.2
## [48,] 29 81.3 85.1 39.6 101.9
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## [49,] 29 130.9 143.1 137.8 139.3
## [50,] 29 151.7 155.0 148.9 163.3
## [51,] 30 91.4 201.3 108.0 121.5
## [52,] 30 163.6 166.6 160.9 175.0
## [53,] 31 78.0 80.6 48.4 90.2
## [54,] 32 175.5 176.0 166.4 NA
## [55,] 34 81.8 95.4 77.9 89.6
## [56,] 34 161.9 161.9 161.7 161.9
## [57,] 35 106.7 123.3 118.4 124.2
## [58,] 35 164.4 165.8 164.9 NA
## [59,] 36 154.2 257.0 159.0 160.5
## [60,] 36 163.0 163.4 163.1 163.0
## [61,] 37 153.6 154.1 145.4 154.6
## [62,] 38 135.8 318.6 141.4 144.2
## [63,] 38 167.8 168.6 159.2 169.8
## [64,] 38 169.8 169.8 107.0 170.3
## [65,] 40 141.8 154.8 150.5 155.2
## [66,] 41 168.6 617.8 169.2 NA
## [67,] 42 85.1 87.5 87.3 105.7
## [68,] 42 142.0 415.0 148.2 152.0
## [69,] 42 167.6 268.8 169.5 169.9
## [70,] 43 86.4 89.7 69.6 105.0
## [71,] 43 105.0 112.3 110.6 124.7
## [72,] 43 133.6 145.8 138.8 141.2
## [73,] 45 137.4 410.5 134.3 145.9
## [74,] 45 172.4 182.5 172.5 127.5
## [75,] 45 182.5 172.5 127.5 NA
## [76,] 46 79.1 91.1 84.4 87.4
## [77,] 46 121.9 217.8 129.8 132.4
## [78,] 46 172.6 273.2 173.8 NA
## [79,] 47 76.0 79.4 28.0 84.2
## [80,] 47 171.1 271.8 127.6 NA
## [81,] 49 153.6 156.8 150.5 164.6
## [82,] 49 184.2 285.6 186.6 187.1
## [83,] 49 187.4 287.8 188.2 188.4
## [84,] 50 83.7 86.3 79.8 92.2
## [85,] 51 145.6 148.7 142.3 157.0
## [86,] 51 162.0 176.4 169.9 172.1
## [87,] 51 184.7 715.5 176.1 176.4
## [88,] 52 122.7 129.9 123.1 136.2
## [89,] 52 178.3 191.0 183.1 184.6
## [90,] 53 78.3 82.3 68.0 89.1
## [91,] 53 179.8 189.4 180.8 180.9
## [92,] 54 155.9 611.5 166.2 169.6
## [93,] 55 76.2 90.4 83.3 85.7
## [94,] 56 134.2 139.6 132.0 138.5
## [95,] 56 132.0 138.5 131.6 144.9
## [96,] 56 163.6 165.3 164.5 164.4
## [97,] 56 164.4 164.3 164.1 164.0
## [98,] 57 84.4 87.1 49.6 103.4
## [99,] 57 128.1 230.4 133.2 135.8
## [100,] 57 145.2 184.5 151.3 154.6
## [101,] 58 81.3 95.0 87.6 94.6
## [102,] 58 122.7 139.4 132.4 135.6
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## [103,] 58 159.4 159.7 150.9 160.2
## [104,] 59 77.0 87.5 19.1 94.0
## [105,] 59 169.3 196.6 169.8 170.1
## [106,] 59 170.3 180.5 170.6 170.8
## [107,] 60 133.2 236.6 139.8 142.7
## [108,] 60 171.5 171.4 171.2 NA
## [109,] 61 NA 74.9 67.8 81.2
## [110,] 61 163.6 163.7 153.8 NA
## [111,] 62 132.6 236.1 139.4 142.4
## [112,] 62 162.1 166.0 160.3 174.3
## [113,] 62 180.4 180.4 180.2 180.5
## [114,] 63 163.8 614.9 175.8 166.8
## [115,] 63 614.9 175.8 166.8 168.9
## [116,] 63 166.8 168.9 168.2 168.2
## [117,] 64 142.4 154.0 148.1 151.8
## [118,] 64 155.5 185.3 160.1 161.3
## [119,] 64 162.3 173.0 163.3 163.6
## [120,] 64 163.3 163.6 153.8 164.2
## [121,] 66 152.9 153.2 143.6 154.1
## [122,] 67 84.2 96.4 94.0 101.8
## [123,] 67 121.9 126.8 119.3 121.9
## [124,] 67 163.6 163.9 154.3 164.2
## [125,] 68 161.0 161.5 161.0 161.8
## [126,] 68 161.0 161.8 161.6 NA
## [127,] 71 125.5 128.0 103.3 132.5
## [128,] 71 142.1 244.2 146.4 148.9
## [129,] 72 144.4 158.4 152.5 156.6
## [130,] 72 156.6 611.5 166.1 170.2
## [131,] 73 172.6 172.9 137.1 173.3
## [132,] 74 78.2 84.2 78.0 88.4
## [133,] 74 168.7 169.1 160.5 169.9
## [134,] 74 170.1 179.3 170.3 170.6
## [135,] 75 100.2 180.0 114.9 121.2
## [136,] 76 131.3 143.9 136.7 140.1
## [137,] 77 152.2 163.6 154.9 155.9
## [138,] 77 157.5 175.7 158.0 518.4
## [139,] 78 155.1 255.6 156.0 157.1
## [140,] 78 156.0 157.1 156.5 NA
## [141,] 79 133.1 136.0 128.8 142.9
## [142,] 80 156.2 519.7 163.8 168.8
## [143,] 81 162.3 177.7 171.5 174.3
## [144,] 81 174.3 176.1 167.4 NA
## [145,] 82 NA 84.1 78.4 82.6
## [146,] 82 123.2 129.9 123.0 136.0
## [147,] 82 154.5 157.7 152.2 167.4
## [148,] 83 85.0 86.4 77.1 96.2
## [149,] 83 117.3 214.1 130.0 133.6
## [150,] 84 148.7 252.3 154.3 158.1
## [151,] 84 167.5 181.5 175.1 178.0
## [152,] 85 95.6 120.1 109.2 117.5
## [153,] 85 173.0 276.3 178.5 180.0
## [154,] 85 180.0 181.0 171.8 182.2
## [155,] 86 95.6 120.6 109.7 126.8
## [156,] 86 109.7 126.8 121.7 127.2
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## [157,] 87 178.0 179.1 108.2 181.0
## [158,] 88 118.6 133.7 126.4 129.1
## [159,] 89 102.0 207.5 114.0 119.4
## [160,] 89 131.6 143.0 136.5 138.8
## [161,] 90 104.2 210.0 116.0 123.8
## [162,] 90 150.1 512.5 155.1 158.4
## [163,] 91 83.3 87.0 9.4 93.1
## [164,] 91 153.4 156.1 149.3 163.7
## [165,] 91 189.6 199.7 191.3 191.7
## [166,] 93 136.8 239.8 142.6 145.1

So let’s try a bit of statistical modeling. We know there is a problem with individual 1, so lets work on him
or her (we still don’t know what the codes are for SEX).

This is always a good idea. Focus on getting one thing right before moving on. I could tell many stories
about people coming to me for help with data analysis, and the only problem they had was trying to do too
much at once so there was no way to tell what was wrong with what they were doing. At the end, you need
to have processed all of the data and done it automatically. But you don’t have to start that way.

So individual 1 data.
age <- as.numeric(sub("HT", "", colnames(foo)))
age

## [1] 1.00 1.25 1.50 1.75 2.00 3.00 4.00 5.00 6.00 7.00 8.00 8.50
## [13] 9.00 9.50 10.00 10.50 11.00 11.50 12.00 12.50 13.00 13.50 14.00 14.50
## [25] 15.00 15.50 16.00 16.50 17.00 17.50 18.00
plot(age, foo[1, ], ylab = "height")
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It is pretty clear looking at the picture which points are the gross errors. But can we get statistics to tell us
that?

The one thing we know we don’t want to use is the usual sort of linear models (those fit by lm) because the
“errors” are not normal. We want what is called “robust” or “resistant” regression.

The R command ??robust turns up the commands lqs and rlm in the MASS (a “recommended” package that
comes with every R installation) package and the command line in the stats package (a core package that
comes with every R installation). The line function is not going to be helpful because clearly the growth
curves curve. So we want to use either lqs or rlm. Both are complicated. Let us just try lqs because it
comes first in alphabetical order.
plot(age, foo[1, ], ylab = "height")
# R function lqs requires library(MASS) unless already done
lout <- lqs(foo[1, ] ~ poly(age, degree = 6))
curve(predict(lout, newdata = data.frame(age = x)), add = TRUE)
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Humph! Doesn’t seem to fit these data well. Try rlm.
plot(age, foo[1, ], ylab = "height")
# R function rlm requires library(MASS) unless already done
rout <- rlm(foo[1, ] ~ poly(age, degree = 6))
curve(predict(lout, newdata = data.frame(age = x)), add = TRUE)

15



5 10 15

50
10

0
15

0

age

he
ig

ht

Neither of these work because polynomials don’t asymptote. Polynomial regression is a horrible tool for
curves that asymptote.

Some googling suggested the function smooth in the stats package. On reading the documentation for that,
it is much more primitive and harder to use. But it may work, so let’s try it.
plot(age, foo[1, ], ylab = "height")
y <- foo[1, ]
x <- age[! is.na(y)]
y <- y[! is.na(y)]
sout <- smooth(y)
sally <- splinefun(x, sout)
curve(sally, add = TRUE)
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Not robust enough.

More googling discovers the CRAN Task View for Robust Statistical Methods in which the only mention of
splines is the CRAN package quantreg. So we try that.
plot(age, foo[1, ], ylab = "height")
y <- foo[1, ]
x <- age[! is.na(y)]
y <- y[! is.na(y)]
lambda <- 0.5 # don't repeat yourself (DRY rule)
# R function rqss requires library(quantreg) unless already done
qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
curve(predict(qout, newdata = data.frame(x = x)),

from = min(x), to = max(x), add = TRUE)
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The model fitting function rqss and its method for the generic function predict were a lot fussier than
those for lqs and rlm. Like with using smooth we had to remove the NA values by hand rather than just let
the model fitting function take care of them (because rqss couldn’t take care of them and gave a completely
incomprehensible error message). And we had to add optional arguments from and to to the curve function
because predict.rqss refused to extrapolate beyond the range of the data (this time giving a comprehensible
error message).

Anyway, we seem to have got what we want. Now we can compute robust residuals.
rresid <- foo[1, ] - as.numeric(predict(qout, newdata = data.frame(x = age)))
rbind(height = foo[1, ], residual = rresid)

## HT1 HT1.25 HT1.5 HT1.75 HT2 HT3 HT4
## height 73.80000000 78.700000 38.0000 85.8000000 8.840000e+01 97.30 106.7
## residual -0.09275655 1.162221 -43.1828 0.9721773 9.355006e-11 -0.15 0.2
## HT5 HT6 HT7 HT8 HT8.5
## height 1.128000e+02 1.191000e+02 1.257000e+02 1.323000e+02 135.4
## residual -2.584244e-10 -2.917716e-09 3.795719e-11 3.125223e-09 0.1
## HT9 HT9.5 HT10 HT10.5 HT11 HT11.5
## height 1.383000e+02 1.413000e+02 144.7 1.479000e+02 NA 1.545000e+02
## residual -2.804541e-09 -5.930048e-09 0.1 -8.265033e-11 NA -1.577405e-10
## HT12 HT12.5 HT13 HT13.5 HT14 HT14.5
## height 1.58200e+02 1.623000e+02 166.5000000 1.711000e+02 185.200000 NA
## residual -1.25624e-11 -1.904255e-12 -0.1302751 -2.606271e-11 9.630275 NA
## HT15 HT15.5 HT16 HT16.5 HT17
## height 1.808000e+02 1.82200e+02 1.832000e+02 1.840000e+02 1.847000e+02
## residual 4.263256e-12 -1.29603e-11 -3.728928e-11 -5.570655e-12 -4.279173e-10
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## HT17.5 HT18
## height 185.00000000 185.20000000
## residual 0.01642436 -0.03749881

The robust residuals calculated this way are all small except for the two obvious gross errors. The only one
large in absolute value (except for the gross errors) is at the left end of the data, and this is not surprising.
All smoothers have trouble at the ends where there is only data on one side to help.

In the fitting we had to choose the lambda argument to the qss function by hand (because that is what
the help page ?qss says to do), and it did not even tell us whether large lambda means more smooth or
less smooth. But with some help from what lambda does to the residuals, we got a reasonable choice (and
perhaps a lot smaller would also do, but we won’t bother with more experimentation).

So we want to apply this operation to all the data.
resid <- function(y) {

idx <- (! is.na(y))
x <- age[idx]
y <- y[idx]
stopifnot(length(x) == length(y))
qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
r <- y - as.numeric(predict(qout, newdata = data.frame(x = x)))
result <- rep(NA_real_, length(idx))
result[idx] <- r
result

}
bar <- apply(foo, 1, resid)

## Error in cbind(deparse.level, ...): args have differing numbers of rows

Didn’t work. Here we have hit a bizarre bug that I have not been able to isolate. It does occur in R function
rqss. The fact that the error message is incomprehensible means it is not checking its arguments well enough
or that it has an outright bug. But it still may be that the bug is in my code. But if I use a loop instead of
apply
resids <- matrix(NA_real_, nrow = nrow(foo), ncol = ncol(foo))
for (i in 1:nrow(foo)) {

y <- foo[i, ]
idx <- (! is.na(y))
x <- age[idx]
y <- y[idx]
stopifnot(length(x) == length(y))
qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
r <- y - as.numeric(predict(qout, newdata = data.frame(x = x)))
result <- rep(NA_real_, length(idx))
result[idx] <- r
resids[i, ] <- result

}

## Warning in rq.fit.sfnc(x, y, tau = tau, rhs = rhs, control = control, ...): tiny diagonals replaced with Inf when calling blkfct

it works. We do get a different warning (rather than an error), but we also get residuals. The fact that the
very same code works when we don’t use apply and doesn’t work when we do use apply suggests that R
function rqss is buggy. But it does not prove that. (To prove it we would actually have to find the bug and
show that fixing the bug fixes the problem.)

Maybe if we change lambda we can get rid of the warning.
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lambda <- 0.4
resids <- matrix(NA_real_, nrow = nrow(foo), ncol = ncol(foo))
for (i in 1:nrow(foo)) {

y <- foo[i, ]
idx <- (! is.na(y))
x <- age[idx]
y <- y[idx]
stopifnot(length(x) == length(y))
qout <- rqss(y ~ qss(x, constraint = "I", lambda = lambda))
r <- y - as.numeric(predict(qout, newdata = data.frame(x = x)))
result <- rep(NA_real_, length(idx))
result[idx] <- r
resids[i, ] <- result

}

Bingo! That’s enough of that. Let us declare that we have robust residuals.
all(is.na(resids) == is.na(foo))

## [1] TRUE

Now we need to select a cutoff
range(resids, na.rm = TRUE)

## [1] -89.0 539.2
stem(resids)

##
## The decimal point is 2 digit(s) to the right of the |
##
## -0 | 987765555
## -0 | 44444444333321111111111111111111111111111111111111111111111000000000+1284
## 0 | 00000000000000000000000000000000000000000000000000000000000000000000+1327
## 0 | 7899
## 1 | 00000000000000000000000
## 1 | 7888
## 2 |
## 2 | 777
## 3 |
## 3 | 666
## 4 | 4
## 4 | 5555
## 5 | 44

That didn’t show much.
bigresid <- abs(as.vector(resids))
bigresid <- bigresid[bigresid > 1]
stem(log10(bigresid))

##
## The decimal point is 1 digit(s) to the left of the |
##
## 0 | 0000000012244455666667888899900112233555555
## 2 | 0034666623469
## 4 | 012458117
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## 6 | 2836
## 8 | 258902333444444455555556666666677777777778888888888889999999999999
## 10 | 000000000111111225588
## 12 | 245
## 14 | 223333355567
## 16 | 45555633
## 18 | 0556015569999
## 20 | 0000000000000000000
## 22 | 4666
## 24 | 333666
## 26 | 4555533

That is still confusing. I had hoped there would be an obvious separation between small OK residuals (less
than 1, which is what we have already removed) and the big bad residuals. But it seems to be a continuum.
Let us decide that all of the residuals greater than 0.8 on the log scale, which is 100.8 = 6.3095734 without
logs are bad.
outies <- log10(abs(resids)) > 0.8
outies[is.na(outies)] <- FALSE
foo[outies] <- NA

And now we should redo our whole analysis above and see how big our problems still are.
qux <- NULL
for (i in 1:nrow(foo)) {

x <- foo[i, ]
x <- x[! is.na(x)]
d <- diff(x)
jj <- which(d <= -0.2)
for (j in jj) {

below <- if (j - 1 >= 1) x[j - 1] else NA
above <- if (j + 2 <= length(x)) x[j + 2] else NA
qux <- rbind(qux, c(i, below, x[j], x[j + 1], above))

}
}
qux

## HT4 HT5 HT6 HT7
## [1,] 2 104.1 121.5 119.0 128.0
## [2,] 2 177.3 177.6 177.3 177.0
## [3,] 2 177.6 177.3 177.0 177.0
## [4,] 10 164.2 164.6 163.9 165.0
## [5,] 19 172.2 172.3 171.2 172.5
## [6,] 21 173.8 175.0 174.7 176.1
## [7,] 28 176.1 178.3 177.9 178.2
## [8,] 34 161.9 161.9 161.7 161.9
## [9,] 35 164.4 165.8 164.9 NA
## [10,] 36 163.0 163.4 163.1 163.0
## [11,] 56 134.2 139.6 132.0 138.5
## [12,] 56 163.6 165.3 164.5 164.4
## [13,] 56 164.4 164.3 164.1 164.0
## [14,] 60 171.5 171.4 171.2 NA
## [15,] 62 180.4 180.4 180.2 180.5
## [16,] 63 166.8 168.9 168.2 168.2
## [17,] 68 161.0 161.5 161.0 161.8
## [18,] 68 161.0 161.8 161.6 NA

21



## [19,] 78 156.0 157.1 156.5 NA

Some of these look quite confusing. It is not clear what is going on. Let’s stop here, even though we are not
completely satisfied. This is enough time spent on this one issue on a completely made up example.

3.2.5 Codes

We still have to figure out what SEX == 1 and SEX == 2 mean. And, wary of different sites doing different
things, let us look at this per site. There should be height differences at the largest age recorded.
maxht <- apply(foo, 1, max, na.rm = TRUE)
sitesex <- with(growth, paste(SITE, SEX))
unique(sitesex)

## [1] "A 1" "A 2" "B 1" "B 2" "C 1" "C 2" "D 1" "D 2"
boxplot(split(maxht, sitesex), ylab = "maximum height")

A 1 A 2 B 1 B 2 C 1 C 2 D 1 D 2

20
0

40
0

60
0

80
0

m
ax

im
um

 h
ei

gh
t

So we see another problem. Sites A, B, and C coded the taller sex (male, presumably) as 1, but site D coded
them as 2. So we have to fix that.
growth$SEX[growth$SITE == "D"] <- 3 - growth$SEX[growth$SITE == "D"]
sort(unique(growth$SEX))

## [1] 1 2
sitesex <- with(growth, paste(SITE, SEX))
boxplot(split(maxht, sitesex), ylab = "maximum height")
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Looks OK now.

3.2.6 Summary

Finding errors in data is really, really hard. But it is essential.

Our example was hard, we still aren’t sure we fixed all the errors. And I cheated. I put the errors in the data
in the first place, and then I went and found them (or most of them — it is just impossible to tell whether
some of the data entry errors that result in small changes are errors or not).

This example would have been much harder if I did not know what kinds of errors were in the data.

4 Data Scraping
One source of data is the World Wide Web. In general, it is very hard to read data off of web pages. But
there is a lot of data there, so it is very useful.

The language HTML in which web pages are coded, is not that easy to parse automatically. There is a
CRAN package xml2 that reads and parses XML data including HTML data. But it is so hard to use that it
is beyond the scope of this course. For an example from a more advanced course, see these notes.

Reading data from the web is much easier when the data

• are in an HTML table (surrounded by HTML elements <TABLE> and </TABLE>) and

• the table does not use any stupid tricks for visual look — it is a pure data table. Another way to say
this is that all of the presentation is in CSS; the HTML is pure data structure.
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In the original version of these notes we used R function htmltab in CRAN package htmltab but it got
kicked of of CRAN for “policy violations”. So we are going to switch to using R package rvest which is part
of the tidyverse, so better supported. This package actually uses package xml2 under the hood, but it makes
it easier to use.

We are still going to stick to just extracting data from tables. Here’s how rvest does that.
u <- "https://www.ncaa.com/rankings/volleyball-women/d1/ncaa-womens-volleyball-rpi/"
# all three R functions in the following command require library(rvest)
# unless already done
foo <- read_html(u) |> html_element("table") |> html_table()
class(foo)

## [1] "tbl_df" "tbl" "data.frame"
dim(foo)

## [1] 344 8
head(foo)

## # A tibble: 6 x 8
## Rank School Conference Record Road Neutral Home `Non Div I`
## <int> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
## 1 1 Texas Big 12 17-1 7-1 0-0 10-0 0-0
## 2 2 Louisville ACC 22-2 9-1 2-0 11-1 0-0
## 3 3 Stanford Pac-12 18-4 12-1 0-1 6-2 0-0
## 4 4 Nebraska Big Ten 21-2 9-1 0-0 12-1 0-0
## 5 5 Ohio St. Big Ten 17-5 9-2 2-1 6-2 0-0
## 6 6 Pittsburgh ACC 24-2 11-0 3-1 10-1 0-0

It just grabs the data and puts it in an R dataframe (actually a tibble because it is a tidyverse function, but
there isn’t much difference).

This uses a pipeline discussed in a section below.

The pipeline is a bit more complicated than using R function htmltab (which is no longer available). Now
we need three functions in our pipeline. The first reads the web page, the second finds the table in the web
page, and the third converts it to a data frame.

Because there was only one HTML table in the document, we got one tibble. Otherwise we could have used
a more complicated selection to get the table we wanted (beyond the scope of this course, read about it in
the package vignette for rvest) or we would have gotten an R list containing tibbles for each table in the
document.

5 Web Services
Some web sites have API’s that allow computers to talk to them (not just people look at them).

Here is an example using the GitHub public API. It is copied from the vignette json-apis for the CRAN
package jsonlite (for those who don’t know JSON is the most popular data interchange format (for
computers to talk to computers)).
# R function fromJSON requires library(jsonlite) if not already done
foo <- fromJSON("https://api.github.com/users/cjgeyer/repos")
names(foo)

## [1] "id" "node_id"
## [3] "name" "full_name"
## [5] "private" "owner"
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## [7] "html_url" "description"
## [9] "fork" "url"
## [11] "forks_url" "keys_url"
## [13] "collaborators_url" "teams_url"
## [15] "hooks_url" "issue_events_url"
## [17] "events_url" "assignees_url"
## [19] "branches_url" "tags_url"
## [21] "blobs_url" "git_tags_url"
## [23] "git_refs_url" "trees_url"
## [25] "statuses_url" "languages_url"
## [27] "stargazers_url" "contributors_url"
## [29] "subscribers_url" "subscription_url"
## [31] "commits_url" "git_commits_url"
## [33] "comments_url" "issue_comment_url"
## [35] "contents_url" "compare_url"
## [37] "merges_url" "archive_url"
## [39] "downloads_url" "issues_url"
## [41] "pulls_url" "milestones_url"
## [43] "notifications_url" "labels_url"
## [45] "releases_url" "deployments_url"
## [47] "created_at" "updated_at"
## [49] "pushed_at" "git_url"
## [51] "ssh_url" "clone_url"
## [53] "svn_url" "homepage"
## [55] "size" "stargazers_count"
## [57] "watchers_count" "language"
## [59] "has_issues" "has_projects"
## [61] "has_downloads" "has_wiki"
## [63] "has_pages" "has_discussions"
## [65] "forks_count" "mirror_url"
## [67] "archived" "disabled"
## [69] "open_issues_count" "license"
## [71] "allow_forking" "is_template"
## [73] "web_commit_signoff_required" "topics"
## [75] "visibility" "forks"
## [77] "open_issues" "watchers"
## [79] "default_branch"

Hmmmmm. An incredible amount of stuff there, most of which I don’t understand even though I am a long
time github user.

But
foo$name

## [1] "AsterPhilo" "AsterTheory" "bar"
## [4] "bernor" "CatDataAnalysis" "Evolution-correction"
## [7] "foo" "gdor" "glmbb"
## [10] "glmdr" "grape" "linkingTo"
## [13] "mat" "mcmc" "nice"
## [16] "Orientation2018" "polyapost" "pooh"
## [19] "potts" "qux" "rcdd"
## [22] "sped" "Test" "trust"
## [25] "TSHRC" "ump"

are the names of my github public repos.

25



Of course, to do anything nontrivial you have to understand the web service. Read up on their API, and so
forth.

The only point we are making here is that CRAN has the packages to support this stuff.

6 Searching CRAN
There used to be a JSON API for searching CRAN. This course covered it the last time it was taught, but it
is now defunct. It says it has been replaced by R function advanced_search in R package pkgsearch. So
we illustrate that.
# function advanced_search requires library(pkgsearch) unless already done
foo <- advanced_search("Geyer", size = 100)
class(foo)

## [1] "pkg_search_result" "tbl" "data.frame"
dim(foo)

## [1] 21 14
names(foo)

## [1] "score" "package" "version"
## [4] "title" "description" "date"
## [7] "maintainer_name" "maintainer_email" "revdeps"
## [10] "downloads_last_month" "license" "url"
## [13] "bugreports" "package_data"

Woof! 21 CRAN packages, but maybe not all of them are by me.
foo

## - "advanced search" ---------------------------- 21 packages in 0.007 seconds -
## # package version by @ title
## 1 100 glmm 1.4.4 Christina Knudson 1M Generalized Lin...
## 2 93 fuzzyRankTests 0.4 Charles J. Geyer 1y Fuzzy Rank Test...
## 3 93 trust 0.1.8 Charles J. Geyer 3y Trust Region Op...
## 4 93 aster 1.1.2 Charles J. Geyer 1y Aster Models
## 5 80 aster2 0.3 Charles J. Geyer 6y Aster Models
## 6 80 nice 0.4.1 Charles J. Geyer 6y Get or Set UNIX...
## 7 79 spark.sas7bdat 1.4 Jan Wijffels 2y Read in 'SAS' D...
## 8 76 pooh 0.3.2 Charles J. Geyer 6y Partial Orders ...
## 9 76 glmbb 0.5.1 Charles J. Geyer 2y All Hierarchica...
## 10 73 ump 0.5.8 Charles J. Geyer 6y Uniformly Most ...
## 11 72 partitionComparison 0.2.5 Fabian Ball 4y Implements Meas...
## 12 70 polyapost 1.7 Glen Meeden 1y Simulating from...
## 13 69 mcmc 0.9.7 Charles J. Geyer 3y Markov Chain Mo...
## 14 68 potts 0.5.11 Charles J. Geyer 3M Markov Chain Mo...
## 15 61 TSHRC 0.1.6 Charles J. Geyer 4y Two Stage Hazar...
## 16 61 audit 0.1.2 Glen Meeden 1y Bounds for Acco...
## 17 60 rcdd 1.5 Charles J. Geyer 1y Computational G...
## 18 60 CatDataAnalysis 0.1.5 Charles J. Geyer 5M Datasets for Ca...
## 19 60 krm 2022.10.17 Youyi Fong 26d Kernel Based Re...
## 20 26 sfsmisc 1.1.13 Martin Maechler 7M Utilities from ...
## 21 23 glmmTMB 1.1.4 Mollie Brooks 4M Generalized Lin...

Some of these are false positives (authored by other people named Geyer). Let’s eliminate those.
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class(foo$package_data)

## [1] "AsIs"
is.list(foo$package_data)

## [1] TRUE
length(foo$package_data)

## [1] 21
names(foo$package_data[[1]])

## [1] "Package" "Type" "Maintainer" "Date"
## [5] "Title" "Imports" "Version" "License"
## [9] "Enhances" "Depends" "Date/Publication" "VignetteBuilder"
## [13] "RoxygenNote" "crandb_file_date" "MD5sum" "Author"
## [17] "LinkingTo" "NeedsCompilation" "Description" "Authors@R"
## [21] "Repository" "ByteCompile" "revdeps" "downloads"
## [25] "date" "Packaged" "Suggests"
is.maintainer <- sapply(foo$package_data,

function(x) grepl("Charles J. Geyer", x$Maintainer))
is.author <- sapply(foo$package_data,

function(x) grepl("Charles J. Geyer|Charles Geyer", x$Author))
bar <- subset(foo, is.maintainer | is.author)
class(bar)

## [1] "tbl" "data.frame"
bar$package

## [1] "glmm" "fuzzyRankTests" "trust" "aster"
## [5] "aster2" "nice" "pooh" "glmbb"
## [9] "ump" "polyapost" "mcmc" "potts"
## [13] "TSHRC" "rcdd" "CatDataAnalysis" "sfsmisc"
## [17] "glmmTMB"

7 Databases
7.1 History
I am not an expert on the history of databases, but at least know there are phases to this history. Most of
this relies on the Wikipedia article but has some different emphases.

The history is divided into four eras, or generations, which overlap:

• the dinosaur era (1960’s) where there were large databases but they were clumsy to use and relied on
highly complicated and usually buggy code written by highly trained programmers,

• the relational and SQL database era (1970’s through 1990’s) had the following features (not all of which
arrived at the same time in the same products):

– relational databases (Wikipedia article), which to users look like real math: stored tables act like
mathematical relations that are “programmed” using mathematical logic via

– SQL (acronym for Structured Query Language but pronounced like the English word “sequel”;
Wikipedia article), a standardized computer language for relational database operations, a language
just like R or C++ except just for database operations,
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– ACID (acronym for Atomicity, Consistency, Isolation, Durability, pronounced like the English
word “acid”; Wikipedia article) which describes the highly reliable transactions that are found in
modern so-called SQL databases, like Oracle (and many other products),

• the noSQL era (2000’s) in which all of the great ideas of the relational database era were dropped,
putting programmers back in the dinosaur era or worse, all in the name of scaling to internet scale
(Wikipedia article), leading examples of which are Amazon’s Dynamo, Apache Cassandra, CouchDB,
MongoDB, Redis, HBase, and MemcacheDB,

• the newSQL era (now, Wikipedia article) has the best of both worlds, relational, SQL, ACID, and
highly scalable, a leading example is Google Spanner.

So while in the 2000’s it looked like SQL was old hat and all “data scientists” needed to learn about noSQL
that is now looking dated, although a lot of web services run on noSQL databases.

A word about pronunciation: sometimes SQL is “sequel” and sometimes S-Q-L (sounding the letters). In
“Microsoft SQL server”, the SQL is always “sequel”. In Oracle MySQL server, the SQL is always S-Q-L so
this is pronounced “my-S-Q-L”. This was originally open source software before acquired by Oracle; its free
software successor (fork) is MariaDB.

7.2 SQLite
For learning SQL the greatest thing since sliced bread is SQLite, a relational database with full SQL support
that runs as a user application. It is just a software library backed by a file on disk. So you can do little
database applications with no expensive database. And you can learn on it.

The author of SQLite pronounces it S-Q-L-ite “like a mineral” but does not object to other pronunciations.

7.3 R and SQL and SQLite
The R package that talks to all SQL databases is CRAN package DBI (for database interface). The R package
that makes SQLite available to R is CRAN package RSQLite.

7.4 Dplyr
R package dplyr (which is part of the “tidyverse”) does the amazing trick of making it unnecessary (almost)
to use SQL to talk to SQL databases. The best introduction to this package is the main package vignette or
the chapter on it in the book R for Data Science.

In particular, the main functions in the package and all the jobs they do are summarized in the list in the
section Single Table Verbs in the vignette. We are not going to illustrate all of those functions, so if you want
to do more with dplyr you need to read the vignette.

This is a package for data munging. Originally, it worked on data in R data frames and did not do anything
that base R cannot do but did it in different ways that were considered by the package author, Hadley
Wickham, to be simpler, more elegant, and easier to use than the base R methods.

But over time R package dplyr got a lot more sophisticated. Now it can do all of its operations not only on
R data frames but also on tables in SQL databases! It can write SQL so you don’t have to!

Moreover, when it is working with SQL databases, it actually does all of the work in the database so R does
not have to deal with big data, only with the final results. This is really quite tricky, so we won’t even try to
explain it, just leave this by saying it is really cool.

Nevertheless. R package dplyr does not know everything there is to know about SQL. This web page says

As well as working with local in-memory data stored in data frames, dplyr also works with remote
on-disk data stored in databases. This is particularly useful in two scenarios:

• Your data is already in a database.
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• You have so much data that it does not all fit into memory simultaneously and you need to
use some external storage engine.

(If your data fits in memory, there is no advantage to putting it in a database; it will only be
slower and more frustrating.)

and also says

To interact with a database you usually use SQL, the Structured Query Language. SQL is over
40 years old, and is used by pretty much every database in existence. The goal of dbplyr is to
automatically generate SQL for you so that you’re not forced to use it. However, SQL is a very
large language, and dbplyr doesn’t do everything.

and

However, in the long run, I highly recommend you at least learn the basics of SQL. It’s a valuable
skill for any data scientist, and it will help you debug problems if you run into problems with
dplyr’s automatic translation.

But we won’t try to teach SQL here (there are lots of books and videos and whatnot that do this). We will
just show you some dplyr working on a database.

7.5 SQL Database Example
7.5.1 The SQLite Database

First we go get a SQLite database.
fs <- "https:/www.stat.umn.edu/geyer/8054/data/cran-info.sqlite"
ft <- "cran-info.sqlite"
if (! file.exists(ft)) download.file(fs, ft)

Then we start up a connection to this database.
# the following R command requires that R packages DBI and RSQLite be
# installed but because we use the :: syntax they do not need to be loaded,
# that is, we do not need library(DBI) or library(RSQLite)
mydb <- DBI::dbConnect(RSQLite::SQLite(), dbname = ft)

This database has four tables
DBI::dbListTables(mydb)

## [1] "depends" "imports" "linking" "suggests"

7.5.2 Starting to Use Dplyr in the Example

We turn tables in the database into dplyr thingummies as follows.
# R function tbl requires library(dplyr) unless already done
# many of the R functions in this section are also in this library
depends <- tbl(mydb, "depends")
imports <- tbl(mydb, "imports")
linking <- tbl(mydb, "linking")
suggest <- tbl(mydb, "suggests")
depends

## # Source: table<depends> [?? x 2]
## # Database: sqlite 3.39.4 [/home/geyer/ClassNotes/3701/Handouts/data/cran-info.sqlite]
## packfrom packto
## <chr> <chr>
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## 1 A3 xtable
## 2 A3 pbapply
## 3 abc abc.data
## 4 abc quantreg
## 5 abc locfit
## 6 abcdeFBA Rglpk
## 7 abcdeFBA rgl
## 8 abcdeFBA corrplot
## 9 abctools abc
## 10 abctools abind
## # ... with more rows

And all four tables look the same. Each has two columns named packfrom and packto both of which are
CRAN packages, one of which needs the other (the packfrom needs the packto). The reason for the four
separate tables is that these dependencies are of four different types, listed in four different fields of the
DESCRIPTION file of the packfrom package. These are

• The Depends gives packages that will be attached before the current package (the packfrom) when R
function library or R function require is called.

• The Imports gives packages whose namespaces are imported from (as specified in the NAMESPACE
file) but which do not need to be attached — that is, R functions in the packto package are called by
R functions in the packfrom package, but the packfrom package is not attached.

• The LinkingTo gives R packages that have header files needed to compile its C/C++ code (this is very
specialized, few CRAN packages do this).

• The Suggests gives R packages that are not necessarily needed but rather are used only in examples,
tests, or vignettes (not in normal usage of the package).

Since these are all different, we should perhaps treat them all differently, but for this example we are going to
treat them all the same. The problem we want to do is count all references to a package (all appearances of a
package in the packto column of any of the four tables).

A reasonable question is why are the data in this form? The reason is that SQL databases have only one
data structure: tables, which are equivalent to what R calls data frames. If we had these data in R, we could
think of a lot of other ways to structure the data. In an SQL database, we cannot. (Well there is one obvious
other structure: just one table with an extra column that says which type of dependence.)

Here goes
foo <- union_all(depends, imports) |>

union_all(linking) |>
union_all(suggest) |>
count(packto, sort = TRUE)

foo

## # Source: SQL [?? x 2]
## # Database: sqlite 3.39.4 [/home/geyer/ClassNotes/3701/Handouts/data/cran-info.sqlite]
## # Ordered by: desc(n)
## packto n
## <chr> <int>
## 1 knitr 6735
## 2 testthat 6487
## 3 rmarkdown 6113
## 4 Rcpp 4858
## 5 ggplot2 3802
## 6 dplyr 3125
## 7 magrittr 1877

30



## 8 covr 1807
## 9 rlang 1491
## 10 stringr 1489
## # ... with more rows

R functions union_all and count here are from R package dplyr. The former works just like R function
cbind in base R, but it works on the tables in the database (pasting them together in the database not in R).
The latter issues a lot of complicated SQL that also works in the database to do what we want.

Unlike R function cbind R function union_all only takes two arguments. Hence the complicated syntax
above.

Unlike R function union, R function union_all does not remove duplicates. It is not clear (this being a toy
problem) whether we should use union_all or union. The tables depends, imports, and suggests are not
supposed to have any duplicates (and I think CRAN enforces this). But linking is radically different and
could have rows duplicating rows in any of the others. So union_all says we are counting the duplicate rows.

When we check whether CRAN actually enforces this, we see they don’t.
intersect(depends, imports)

## # Source: SQL [6 x 2]
## # Database: sqlite 3.39.4 [/home/geyer/ClassNotes/3701/Handouts/data/cran-info.sqlite]
## packfrom packto
## <chr> <chr>
## 1 FitAR leaps
## 2 FitAR ltsa
## 3 cvTools robustbase
## 4 filehashSQLite DBI
## 5 filehashSQLite filehash
## 6 psychometric multilevel

So we should switch to union rather than union_all for the first three. Perhaps we still want union_all
for linking.

7.5.3 The R Pipe Operator

The R operator |> is the pipe operator. It does function composition.
quote(x |> f() |> g() |> h(y))

## h(g(f(x)), y)

Each left-hand side of |> is made the hidden first argument of the function call on the right-hand side of the
pipe.

• so x |> f() gets turned into f(x)

• and when that gets piped into g() it gets turned into g(f(x))

• and when that gets piped into h(y) it gets turned into h(g(f(x)), y)

R package dplyr is especially written to make maximal use of pipelines. Almost every function in the package
has first argument that is a dataframe or the equivalent (here tables in the database) and returns an object
of the same kind, so we just move these objects through the pipeline transforming them as they go.

Pipelines are considered easier to read because they read left to right rather than inside out. You do not
have to use them, but all of the dplyr literature does use them. (A lot of dplyr examples use the older pipe
operator %>% from R package magrittr which has the coolest name of any R package ever but has been
made mostly obsolete by the addition of a pipe operator to base R.)
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Pipelines in computer languages do the same thing as the notion of composition of mathematical functions
The mathematical composition operator is ◦. The only difference is that it goes in the other direction of the
pipeline notation. In our toy example, the math notation for this function is

h(g(f( · )), y)

or — when we use composition notation —

h( · , y) ◦ g ◦ f

(so the order of processing is right to left). The point isn’t that you want to switch back and forth between R
notation and mathematics notation. The point is that this is real math.

We should note that the pipe operator does not have to stuff the left-hand side into the first argument of
the right-hand side function call. This allows use of functions not designed for pipelining in pipelines. For
example, copied from the examples in help("|>")
mtcars |> subset(cyl == 4) |> lm(mpg ~ disp, data = _)

##
## Call:
## lm(formula = mpg ~ disp, data = subset(mtcars, cyl == 4))
##
## Coefficients:
## (Intercept) disp
## 40.8720 -0.1351

The underscore is the placeholder, the left-hand side is piped into there.

Of course, this example is silly because it is more easily and more clearly done without pipelines.
lm(mpg ~ disp, data = mtcars, subset = cyl == 4)

##
## Call:
## lm(formula = mpg ~ disp, data = mtcars, subset = cyl == 4)
##
## Coefficients:
## (Intercept) disp
## 40.8720 -0.1351

But there are real applications where we have done something complicated to data in a pipeline and then we
want to pipe it into a function but not into the first argument of a function. That’s what the placeholder is
for.

7.5.4 Looking at the SQL

Let’s redo this and look at the SQL (even though you are not supposed to understand this)
union(depends, imports) |> union(suggest) |> union_all(linking) |>

count(packto, sort = TRUE) |>
show_query()

## <SQL>
## SELECT `packto`, COUNT(*) AS `n`
## FROM (
## SELECT *
## FROM `depends`
## UNION
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## SELECT *
## FROM `imports`
## UNION
## SELECT *
## FROM `suggests`
## UNION ALL
## SELECT *
## FROM `linking`
## )
## GROUP BY `packto`
## ORDER BY `n` DESC

If we knew enough SQL to write all of that, we wouldn’t need dplyr to work with the database. But we
usually don’t work with databases. If the data fits in the computer we are using, we just use R. R package
dplyr makes it easy to use the same code for both cases, so long as we use all dplyr (not other function
from other packages, not even functions from core R) in our pipelines.

7.5.5 Moving from the Database to R

Now we can get a reasonable amount of data. Let’s get the packages that have 100 or more other packages
depending on them.
filter(foo, n >= 100)

## Warning: ORDER BY is ignored in subqueries without LIMIT
## i Do you need to move arrange() later in the pipeline or use window_order() instead?

## # Source: SQL [?? x 2]
## # Database: sqlite 3.39.4 [/home/geyer/ClassNotes/3701/Handouts/data/cran-info.sqlite]
## # Ordered by: desc(n)
## packto n
## <chr> <int>
## 1 BH 278
## 2 DBI 243
## 3 DT 301
## 4 Formula 172
## 5 GGally 103
## 6 Hmisc 301
## 7 R.rsp 308
## 8 R.utils 158
## 9 R6 403
## 10 RColorBrewer 559
## # ... with more rows

Humpf! We already had it in order, but let’s try what it suggests: move the sort from earlier in the pipeline
(in the count) to latter (in an arrange)
bar <- union(depends, imports) |>

union(suggest) |>
union_all(linking) |>
count(packto) |>
filter(n >= 100) |>
arrange(desc(n))

bar

## # Source: SQL [?? x 2]
## # Database: sqlite 3.39.4 [/home/geyer/ClassNotes/3701/Handouts/data/cran-info.sqlite]
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## # Ordered by: desc(n)
## packto n
## <chr> <int>
## 1 knitr 6735
## 2 testthat 6487
## 3 rmarkdown 6113
## 4 Rcpp 4858
## 5 ggplot2 3801
## 6 dplyr 3125
## 7 magrittr 1877
## 8 covr 1807
## 9 rlang 1491
## 10 stringr 1489
## # ... with more rows

Now no warning. But everything is still in the database. We cannot do anything with it in R (except via R
packages DBI and dplyr). At some point we want to move it to R (when our results are small enough).
qux <- collect(bar)
qux

## # A tibble: 149 x 2
## packto n
## <chr> <int>
## 1 knitr 6735
## 2 testthat 6487
## 3 rmarkdown 6113
## 4 Rcpp 4858
## 5 ggplot2 3801
## 6 dplyr 3125
## 7 magrittr 1877
## 8 covr 1807
## 9 rlang 1491
## 10 stringr 1489
## # ... with 139 more rows

Now R object qux is a tibble, which is a tidyverse modification of base R data frames. One difference we
notice is that it prints differently. It doesn’t show all the rows by default (R function print.data.frame
does show all of the rows; we would have to combine it with R function head to behave like R function
print.tibble).

But tibble or whatever, qux is a regular old R object (not something in the database) so we can use any R
functions to operate on it.

Of course, we did not have to do the collect in a separate statement. We could have put it in the pipeline
too.
qux <- union(depends, imports) |>

union(suggest) |>
union_all(linking) |>
count(packto) |>
filter(n >= 100) |>
arrange(desc(n)) |>
collect()
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7.5.6 Disconnecting from the Database

It may not matter with SQLite, but if one were working with a database on another computer, like Oracle or
MySQL or PostgreSQL, one would need to disconnect (in order not to use up the connections allowed).
DBI::dbDisconnect(mydb)

Now that we have disconnected, nothing in the database is any longer available. But R object qux still works,
since that was taken out of the database.
bar

## Error: Invalid or closed connection
qux

## # A tibble: 149 x 2
## packto n
## <chr> <int>
## 1 knitr 6735
## 2 testthat 6487
## 3 rmarkdown 6113
## 4 Rcpp 4858
## 5 ggplot2 3801
## 6 dplyr 3125
## 7 magrittr 1877
## 8 covr 1807
## 9 rlang 1491
## 10 stringr 1489
## # ... with 139 more rows
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