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1 License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http:
//creativecommons.org/licenses/by-sa/4.0/).

2 R
• The version of R used to make this document is 4.2.1.

• The version of the rmarkdown package used to make this document is 2.16.

• The version of the Matrix package used to make this document is 1.5.1.

3 Matrices
The plural of matrix is matrices (it’s Latin originally; this is like the plurals of alumnus and alumna being
alumni and alumnae, respectively, or the plural of datum being data).

R, like MATLAB, can be considered a matrix language. It understands matrices better than most other
computer languages. It has syntax especially for matrices and a lot of functions that understand matrices.
The recommended package Matrix (recommended packages come with every R installation) understands
even more about matrices.

Here is a matrix
fred <- matrix(1:6, nrow = 3, ncol = 2)
fred

## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6

From this example we see one very important thing to know about R. In R matrices, the components are
stored in FORTRAN order (first index goes the fastest, rather than C or C++ order). This is the order R
stuffs a vector into a matrix (as we see above).

If you don’t want that order, there is an optional argument for that.
matrix(1:6, ncol = 2, byrow = TRUE)

## [,1] [,2]
## [1,] 1 2
## [2,] 3 4
## [3,] 5 6
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(we omitted the argument nrow because R can figure out that it must be the length of the first argument
divided by ncol).

Also, as we have seen before, R uses one-origin indexing like FORTRAN rather than zero-origin indexing like
C and C++.

Storage order is important when you want to run a matrix through a function that doesn’t respect matrices.
as.character(fred)

## [1] "1" "2" "3" "4" "5" "6"

Oops! Lost our matrix information.
frank <- matrix(as.character(fred),

nrow = nrow(fred), ncol = ncol(fred))
frank

## [,1] [,2]
## [1,] "1" "4"
## [2,] "2" "5"
## [3,] "3" "6"

But there is actually a better, less obvious way
storage.mode(fred) <- "character"
fred

## [,1] [,2]
## [1,] "1" "4"
## [2,] "2" "5"
## [3,] "3" "6"

4 Matrix Operations
4.1 Multiplication
4.1.1 Matrix times Matrix

Matrix multiplication is different from ordinary multiplication. If A and B are matrices, then C = AB is
only defined if the column dimension of A is the same as the row dimension of B, in which case if we denote
the components of A by aij and similarly for B and C

cij =
∑

j

aijbjk,

where we deliberately leave the bounds of the summation on j unspecified, the intention being that it does
over all possible values, which, since j is the column index of A and the row index of B must be the column
dimension of A and the row dimension of B, which hence must be the same (as we already said above).

4.1.2 Non-Commutative

The commutative law of multiplication says xy = yx for all numbers x and y. It does not apply to matrix
multiplication.

If A and B are matrices, then

• AB is only defined when the column dimension of A is the same as the row dimension of B, and

• BA is only defined when the column dimension of B is the same as the row dimension of A.

2



So it may be that either, both, or neither of AB and BA are defined.

And, even when both are defined, it may be that AB 6= BA.

4.1.3 Matrix times Vector

Vectors are considered as matrices with one column in order that multiplication of matrices and vectors make
sense. This is a stupid mathematician’s trick. Vectors are not really matrices. We only consider them as
one-column matrices (called column vectors to emphasize we are doing this trick) in order to be able to use
our previous definition of matrix multiplication here too.

4.1.4 Linear Functions

Abstractly, matrix multiplication corresponds to vector-to-vector linear functions. If A is a matrix with r
rows and c columns, then the function f defined by

f(x) = Ax, for all vectors x of dimension c,

maps vectors whose dimension is c to vectors whose dimension is r. A function like this is called a linear
function by mathematicians.

4.1.5 Affine Functions

Again suppose A is a matrix with r rows and c columns. And suppose b is a vector of dimension r. The
function g defined by

g(x) = b+Ax, for all vectors x of dimension c,
also maps vectors whose dimension is c to vectors whose dimension is r. A function like this is called an
affine function by mathematicians.

Clearly every linear function is an affine function, but an affine function defined by the displayed equation in
this section is a linear function if and only if b = 0.

4.1.6 Mathematicians versus Everybody Else

Everybody besides mathematicians, and even mathematics teachers teaching courses below the level of the
course called linear algebra (which is not a pre-requisite for this course) use different terminology.

• When mathematicians say affine function everybody else says linear function.

• When mathematicians say linear function everybody else says linear function too.

So everybody else does not distinguish between the two kinds of functions.

If we specialize to scalar-to-scalar functions (so A is a one-by-one matrix and b is a vector of length one) we
get

f(x) = ax

g(x) = b+ ax

and it is the latter that everybody calls linear function with slope a and intercept b. And the former is just
the case when the intercept is zero, and that gets no special terminology.

4.1.7 Linear Models

Except everybody else is sloppy. In the term linear models, the statistical models fit by the R function lm,
the “linear” means the mathematicians linear rather than everybody else’s linear. These are models where
the mean vector of the response vector has the form

µ = Mβ,

where M is the so-called model matrix (a function of predictor data) and β is the so-called coefficients vector.
And this is a linear function in the mathematician’s sense.

3



4.1.8 Composition

Matrix multiplication corresponds to the composition of linear (in the mathematician’s sense) functions.

If
f(x) = Ax

g(x) = Bx

the the composition of f and g, written g ◦ f , is the function h defined by

h(x) = g(f(x)) = BAx,

that is,

• A is the matrix that corresponds to the linear function f ,

• B is the matrix that corresponds to the linear function g, and

• BA is the matrix that corresponds to the linear function h = g ◦ f .

Of course, the composition is only defined when the matrix multiplication is (when the column dimension of
B is the same as the row dimension of A).

4.1.9 R

After that long theoretical digression we can get back to computing. The R operator for matrix multiplication
is %*%.
fred <- matrix(1:6, ncol = 2)
sally <- matrix(1:8, nrow = 2)
fred

## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6

sally

## [,1] [,2] [,3] [,4]
## [1,] 1 3 5 7
## [2,] 2 4 6 8

fred %*% sally

## [,1] [,2] [,3] [,4]
## [1,] 9 19 29 39
## [2,] 12 26 40 54
## [3,] 15 33 51 69

sally %*% fred

## Error in sally %*% fred: non-conformable arguments

If you check it out, you will find that the R results agree with the mathematical definition.

R vectors are not matrices.
lou <- 1:2
is.matrix(lou)

## [1] FALSE
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but
fred %*% lou

## [,1]
## [1,] 9
## [2,] 12
## [3,] 15

works.

If it bothers you that R is doing something tricky here, guessing that you want lou to be treated as a column
vector (a one-column matrix) even though it really isn’t, you can say
fred %*% cbind(lou)

## lou
## [1,] 9
## [2,] 12
## [3,] 15

instead (more on the R function cbind below).

4.2 Addition
If A and B are matrices having the same dimensions, then A+B is defined by componentwise addition. Here
mathematics and R agree.
herman <- matrix(-(1:6), ncol = 2)
herman

## [,1] [,2]
## [1,] -1 -4
## [2,] -2 -5
## [3,] -3 -6

herman + fred

## [,1] [,2]
## [1,] 0 0
## [2,] 0 0
## [3,] 0 0

But what does R do when the dimensions are not the same?
fred + sally

## Error in fred + sally: non-conformable arrays

Oh! It does the right thing. R and math agree here, as they did for matrix multiplication.

4.3 Scalar Multiplication
This too is defined componentwise.
3 * fred

## [,1] [,2]
## [1,] 3 12
## [2,] 6 15
## [3,] 9 18
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4.4 Matrices are Really Vectors
Mathematically, any thingummies that can be added and multiplied by scalars are vectors (provided that
they satisfy the axioms for vector spaces, which are found near the beginning of any linear algebra book, but
which we don’t need to fuss about here or anywhere in this course).

Of course, matrices are rather special vectors because, unlike other vectors, matrices can also be multiplied
(sometimes, depending on dimensions).

The collection of all square matrices (meaning row and column dimensions are the same) of the same dimension
is called a linear algebra. It is the mathematical structure that gives courses called “linear algebra” their
name. These objects can be added, multiplied by scalars, and also multiplied by each other.

5 Special Binary Operators
We take a break from discussing matrices to discuss “special” binary operators. In R these are kind of like
operator overloading in C++ but much easier to use, much easier to create, and much more powerful.

In C++ you can only overload the operators that C++ already has. This leads to highly unintuitive
overloadings like overloading the shift operators >> and << to mean something in the I/O (input-output)
context.

In R you can define new binary operators: %foo% where foo is replaced by any valid R name, is a new
operator. You define it this way
"%foo%" <- function(x, y) 42 # or whatever
fred %foo% sally

## [1] 42

The quotation marks in the function definition are necessary, because without them R would treat %foo% as
a binary operator (that has already been defined), which would mean that it would have to have arguments
on either side, and it doesn’t. So without quotation marks this would be an error.

There are a bunch of these built into R of which we have already met one: %*% the matrix multiplication
operator. Here are all in the R core.

function package what it does other functions
%/% Primitive integer division
%% Primitive remainder from integer division
%*% Primitive matrix multiplication crossprod and tcrossprod
%in% base set-theoretic element of operator is.element
%o% base outer product of vectors outer
%x% base Kronecker product of matrices kronecker

“Primitive” isn’t an R package, but rather lower level. They are the basic functions on which all other R
functions are built. Their R definitions look like
get("%*%")

## function (x, y) .Primitive("%*%")

“Other functions” refers to other functions that do exactly the same thing or almost the same thing.
c("red", "white", "blue", "chartreuse", "puce", "aqua") %in% colors()

## [1] TRUE TRUE TRUE TRUE FALSE FALSE
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is.element(c("red", "white", "blue", "chartreuse", "puce", "aqua"), colors())

## [1] TRUE TRUE TRUE TRUE FALSE FALSE

Since the other “other functions” involve matrices, we are back to talking about matrices.

6 More on Matrices
6.1 Transpose
The transpose of a matrix having components aij is the matrix having components aji, that is, transposing a
matrix turns rows into columns and vice versa. The R function that does this is called t.
fred

## [,1] [,2]
## [1,] 1 4
## [2,] 2 5
## [3,] 3 6

t(fred)

## [,1] [,2] [,3]
## [1,] 1 2 3
## [2,] 4 5 6

The mathematical notation for the transpose of the matrix A is AT or A′ (some people like one, some the
other).

6.2 Outer Product
Now we can explain the outer product of vectors or matrices. The outer product of x and y is xyT (in math)
or x %*% t(y) (in R). This always is defined for numeric vectors, but may or may not be defined for matrices
(it depends on their dimensions).
1:3 %o% 1:5

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 2 4 6 8 10
## [3,] 3 6 9 12 15

outer(1:3, 1:5)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 2 4 6 8 10
## [3,] 3 6 9 12 15

1:3 %*% t(1:5)

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 2 4 6 8 10
## [3,] 3 6 9 12 15

But, unlike %o% the function outer has an optional argument that allows one to change the arithmetic
operation. The outer product of the vector having components xi and the vector having components yj is
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the matrix having components xiyj . But the R function outer allows you to change the multiplication to
any binary operation.
outer(1:3, 1:5, "+")

## [,1] [,2] [,3] [,4] [,5]
## [1,] 2 3 4 5 6
## [2,] 3 4 5 6 7
## [3,] 4 5 6 7 8

outer(1:3, 1:5, max)

## Error in dim(robj) <- c(dX, dY): dims [product 15] do not match the length of object [1]

Ouch! That is a particularly user-hostile error message. Usually I can understand R error messages, but not
that one. Looking at the examples for the help page for outer shows we need quotation marks.
outer(1:3, 1:5, "max")

## Error in dim(robj) <- c(dX, dY): dims [product 15] do not match the length of object [1]

Oops! That’s not the issue. Try three.
outer(1:3, 1:5, "pmax")

## [,1] [,2] [,3] [,4] [,5]
## [1,] 1 2 3 4 5
## [2,] 2 2 3 4 5
## [3,] 3 3 3 4 5

Oh! The functions have to be vectorizing, so pmax instead of max. (See their help pages for the difference.)

So the big difference between %o% and outer is that the latter is a higher-order function, and hence way more
powerful.

6.3 Kronecker Product
We’re not even going to explain this, beyond the scope of this course.

6.4 Dimension
R matrices, like other R objects know what they are
is.matrix(fred)

## [1] TRUE

dim(fred)

## [1] 3 2

nrow(fred)

## [1] 3

ncol(fred)

## [1] 2

So nrow(fred) is short for dim(fred)[1] and ncol(fred) is short for dim(fred)[2].

Rows and columns can also have names.
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rownames(fred) <- c("red", "white", "blue")
colnames(fred) <- c("car", "truck")
fred

## car truck
## red 1 4
## white 2 5
## blue 3 6

6.5 Indexing
6.5.1 Two Indices

The plural of index is indices (it’s Latin originally; this is like matrix and matrices).

Since matrices have two indices they have two slots for subscripts
fred

## car truck
## red 1 4
## white 2 5
## blue 3 6

fred[1, 1]

## [1] 1

fred[1, ]

## car truck
## 1 4

fred[ , 1]

## red white blue
## 1 2 3

fred[ , ]

## car truck
## red 1 4
## white 2 5
## blue 3 6

But of course, all of these vectorize, and can be any of the four types of indexing that R understands (positive
integers, negative integers, logical, or character).
fred[1:2, 1]

## red white
## 1 2

fred[-1, -1]

## white blue
## 5 6

fred[1:nrow(fred) <= 2, 1]

## red white
## 1 2
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fred["red", "car"]

## [1] 1

6.5.2 The Square Brackets Function is a Footgun

The R function named "[" is a footgun when applied to matrices (and arrays, which we haven’t covered yet)
because sometimes it produces a vector and sometimes a matrix (and sometimes an array), and sometimes
you know what it is going to do and sometimes you don’t.

It is almost always always wrong, when fred is a matrix whose dimensions you do not know and i and j are
vectors specifying indices, to say fred[i, j] because you do not know whether it will return a vector or a
matrix.

If it doesn’t matter whether the result is a vector or a matrix, then maybe you’re OK. But how do you know
the result doesn’t matter? How do you know everything you may ever do with the result?

Especially when you are writing functions that others may use, the square brackets function is a footgun.
Two-thirds of the time or more, when I say fred[i, j] inside a function I am writing, it is a source of bugs.
So you can do it if you want, but don’t say I didn’t warn you.

The way to get a result that you can depend on is to say fred[i, j, drop = FALSE] which does not “drop”
the matrixness when the result has one of the dimensions equal to one.
fred[1:2, 1]

## red white
## 1 2

fred[1:2, 1, drop = FALSE]

## car
## red 1
## white 2

(the default value of drop is TRUE).

Summary: Always use drop = FALSE when you are inside a function or whenever you are not sure it makes
no difference in what you are doing.

6.5.3 One Index

You can always use one index with matrices. But it may or may not do what you want.
fred[1:4]

## [1] 1 2 3 4

But sometimes it is useful. The R functions row and col tell us the row and column indices of each position
in a matrix.
row(fred)

## [,1] [,2]
## [1,] 1 1
## [2,] 2 2
## [3,] 3 3

col(fred)

## [,1] [,2]
## [1,] 1 2
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## [2,] 1 2
## [3,] 1 2

and they allow us to do rather complicated things.
alfie <- fred %*% sally
alfie

## [,1] [,2] [,3] [,4]
## red 9 19 29 39
## white 12 26 40 54
## blue 15 33 51 69

Note that we have row names inherited from fred but no column names (they would have been inherited
from sally if it had had any, but it didn’t).
alfie[abs(row(alfie) - col(alfie)) > 1] <- 0
alfie

## [,1] [,2] [,3] [,4]
## red 9 19 0 0
## white 12 26 40 0
## blue 0 33 51 69

Here we use the square brackets function on the left-hand side of an assignment (so this is really using the
function called "[<-") and we are also using logical indexing.

This could also have been done (TIMTOWTDI)
library(Matrix)
alphie <- band(fred %*% sally, -1, 1)
alphie

## 3 x 4 Matrix of class "dgeMatrix"
## [,1] [,2] [,3] [,4]
## red 9 19 0 0
## white 12 26 40 0
## blue 0 33 51 69

But I, being an old fart, who has been using R since long before the Matrix package existed, prefer the
former, even though the former is not functional programming and the latter is. Also they are not quite the
same.
class(alfie)

## [1] "matrix" "array"

class(alphie)

## [1] "dgeMatrix"
## attr(,"package")
## [1] "Matrix"

identical(alfie, as.matrix(alphie))

## [1] TRUE

6.5.4 One-Index Example: Hodges-Lehmann Estimator

A Hodges-Lehmann estimator associated with a procedure for making confidence intervals is the point one
gets by letting the confidence level go to zero.
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Sometimes this is already a well-known estimator. The Hodges-Lehmann estimator associated with t confidence
intervals is the sample mean.

Sometimes it is something new. The Hodges-Lehmann estimator associated with the confidence intervals
associated with the Wilcoxon signed rank test is the median of the Walsh averages, which are the averages of
pairs

Xi +Xj

2 , 1 ≤ i ≤ j ≤ n,

where the data points are Xi, i = 1, . . . , n. Note that i = j is allowed.

We can make these as follows. First we need some data to try it out on
set.seed(42)
x <- rcauchy(50)

and then we can make the Walsh averages as follows
o <- outer(x, x, "+") / 2
w <- o[row(o) <= col(o)]

there is another way (TIMTOWTDI)
w2 <- o[upper.tri(o, diag = TRUE)]
identical(w, w2)

## [1] TRUE

(there is also a function lower.tri to extract lower triangles).

Then the Hodges-Lehmann estimator is
median(w)

## [1] -0.1410889

6.6 Solving Linear Equations
The equation Ax = b, where x and b are vectors (not necessarily of the same dimension) and A is a matrix,
can also be thought of as a set of linear equations∑

j

aijxj = bi, i = 1, . . . , n.

Suppose A and b are known and x is the unknown to be solved for. Then we know from somewhere or other
(high-school?) that if the number of unknowns is the same as the number of equations there is (maybe) a
solution, and we have been taught how to find it by hand.

R can do that faster.
barbie <- matrix(1:9, 3)
ken <- 10:12
solve(barbie, ken)

## Error in solve.default(barbie, ken): Lapack routine dgesv: system is exactly singular: U[3,3] = 0

eigen(barbie)

## eigen() decomposition
## $values
## [1] 1.611684e+01 -1.116844e+00 -5.700691e-16
##
## $vectors
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## [,1] [,2] [,3]
## [1,] -0.4645473 -0.8829060 0.4082483
## [2,] -0.5707955 -0.2395204 -0.8164966
## [3,] -0.6770438 0.4038651 0.4082483

Hmmmm. That example didn’t show what we wanted it to show, but it does show that R is smart enough to
detect when the equations do not have a solution.

We don’t want to explain eigenvalues and eigenvectors here (more beyond the scope of this course), but they
do show the reason that the equations have no solution is because
barbie[1, ] + barbie[3, ] - 2 * barbie[2, ]

## [1] 0 0 0

is zero, so some of the equations are linear combinations of the others.

Try again.
barbie[3, 3] <- 20
barbie

## [,1] [,2] [,3]
## [1,] 1 4 7
## [2,] 2 5 8
## [3,] 3 6 20

ken

## [1] 10 11 12

solve(barbie, ken)

## [1] -2 3 0

and this is indeed the solution
x <- solve(barbie, ken)
identical(barbie %*% x, ken)

## [1] FALSE

Oops! That didn’t work because the attributes are different. barbie %*% x is a matrix and ken is a vector.
identical(as.vector(barbie %*% x), ken)

## [1] FALSE

It still didn’t work. Why?
as.vector(barbie %*% x) - ken

## [1] 0 0 0

typeof(barbie %*% x)

## [1] "double"

typeof(ken)

## [1] "integer"

Oh! They don’t compare equal because the attributes don’t match.
identical(as.numeric(barbie %*% x), as.numeric(ken))
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## [1] TRUE

Warning! Never compare numeric variables for equality and expect that you have to get the answer you
expect. It would have been much safer to say
all.equal(as.numeric(barbie %*% x), as.numeric(ken))

## [1] TRUE

The R function identical insists on exact bit-for-bit equality. This is unlikely to be the case when the
objects are the results of complicated calculations. The R function all.equal compares with a tolerance. It
says they are equal if they are almost equal. More on this later when we cover computer arithmetic.

6.6.1 Matrix inverse

Division of matrices is not defined, but some square matrices do have inverses. The inverse of the matrix A
(if it exists) is written A−1. and when it exists we have Ax = b if and only if x = A−1b.

The R function solve also calculates matrix inverses, when the second argument is missing. (So here is
another example, where R could not do this unless the R function named missing existed. It is also an
example of R’s rather bizarre use of what C++ would call method overloading. Why not just use a different
name for the function that calculates inverses?)
barbie.inverse <- solve(barbie)
barbie.inverse

## [,1] [,2] [,3]
## [1,] -1.57575758 1.15151515 0.09090909
## [2,] 0.48484848 0.03030303 -0.18181818
## [3,] 0.09090909 -0.18181818 0.09090909

barbie.inverse %*% ken

## [,1]
## [1,] -2.000000e+00
## [2,] 3.000000e+00
## [3,] -2.220446e-16

solve(barbie, ken)

## [1] -2 3 0

You should rarely, if ever, calculate a matrix inverse. If you want to solve linear equations, use the R function
solve with two arguments rather than solve with one argument followed by a matrix multiplication. The
former is

1. more accurate (as we see above), and

2. faster.

Summary: don’t use matrix inverse; use solution of linear equations instead.

6.6.2 Identity Matrix

The matrix that “does nothing” in matrix multiplication, like zero “does nothing” in addition of scalars and
one “does nothing” in multiplication of scalars is called the identity matrix.

If A is a square matrix and I is the identity matrix of the same dimension, then AI = IA = A. And B is the
matrix inverse of A if and only if AB = BA = I.

The identity matrix is created by the R function diag.
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diag(3)

## [,1] [,2] [,3]
## [1,] 1 0 0
## [2,] 0 1 0
## [3,] 0 0 1

This is a highly unusual usage of this function. Usually it is used to extract or assign to the diagonal of a
matrix (see the help page). (This is also an example where perhaps two different function names should have
been used, but it’s too late to fix that now. This remark is here because Ansu Chatterjee said this in casual
conversation.)

6.7 R Package Matrix
This is a “recommended package” meaning it comes with every R installation. It is especially useful in dealing
with sparse matrices (those with most components equal to zero). It can be vastly more efficient dealing with
sparse matrices than the rest of R is.

But all of that is beyond the scope of this course.

6.8 More Higher-Order Functions: apply and sweep

6.8.1 Applying Functions that Return Scalars

The R function apply is a higher-order function that applies another function to the rows or columns of a
matrix (or array, more on that later).
fred

## car truck
## red 1 4
## white 2 5
## blue 3 6

apply(fred, 1, mean)

## red white blue
## 2.5 3.5 4.5

apply(fred, 2, mean)

## car truck
## 2 5

rowMeans(fred)

## red white blue
## 2.5 3.5 4.5

colMeans(fred)

## car truck
## 2 5

Since there are the convenience functions rowMeans and colMeans, we don’t need to use apply with mean as
its third argument. There are also the convenience functions rowSums and colSums, so we don’t need to use
apply with sum as its third argument. But that’s it for the convenience functions. For every other function
we want to apply we need apply.
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fred

## car truck
## red 1 4
## white 2 5
## blue 3 6

apply(fred, 1, max)

## red white blue
## 4 5 6

apply(fred, 2, max)

## car truck
## 3 6

And
apply(fred, 1, function(x) quantile(x, 0.75))

## red white blue
## 3.25 4.25 5.25

apply(fred, 2, function(x) quantile(x, 0.75))

## car truck
## 2.5 5.5

apply(fred, 1, quantile, probs = 0.75)

## red white blue
## 3.25 4.25 5.25

apply(fred, 2, quantile, probs = 0.75)

## car truck
## 2.5 5.5

For those who have not seen the term quantile before, we explain that it is the same as a percentile except
without the percent. The 0.75 quantile of a numeric vector is the same as the 75th percentile of a vector. In
statistics and probability theory we never use percents because they yield much more confusion than clarity.
Most of the public cannot do arithmetic on percentages correctly. So we always insist that probabilities are
numbers between zero and one and never percentages. Similarly in probability and statistics we always use
quantiles and never percentiles. Even the term 95% confidence interval has a competing term that does not
use percents: a confidence interval with 0.95 coverage probability.

This example shows us two ways to apply a function that has more than one argument. We can use an
anonymous function, or we can use the ... argument of apply to pass other arguments to the function being
applied.

6.8.2 Applying Functions that Return Vectors

Apply can also be used when the result of the function being applied is not a scalar.
apply(fred, 1, quantile, probs = (1:3)/4)

## red white blue
## 25% 1.75 2.75 3.75
## 50% 2.50 3.50 4.50
## 75% 3.25 4.25 5.25
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apply(fred, 2, quantile, probs = (1:3)/4)

## car truck
## 25% 1.5 4.5
## 50% 2.0 5.0
## 75% 2.5 5.5

Sometimes this doesn’t do what you think it should. The help for apply says

If each call to FUN returns a vector of length n, then apply returns an array of dimension c(n,
dim(X)[MARGIN]) if n > 1. If n equals 1, apply returns a vector if MARGIN has length 1 and
an array of dimension dim(X)[MARGIN] otherwise. If n is 0, the result has length 0 but not
necessarily the correct dimension.

So the dimension of the result that has length n is alway the first one (the row dimension if the result is a
matrix). Sometimes this is the transpose of you think it ought to do. But it is what it is documented to do.

6.8.3 Sweep Following Apply

The R function sweep can be used with apply to further process a matrix. Suppose we want to subtract
means to make rows of a matrix have mean zero. That is done by
moo <- apply(fred, 1, mean)
fred.mean.free.rows <- sweep(fred, 1, moo)
rowMeans(fred.mean.free.rows)

## red white blue
## 0 0 0

But sweep is a higher-order function because its fourth optional argument is the function to be used instead
of subtraction (see the help page).

6.9 More on Quantiles
The qth quantile of a continuous random vector X is any number x (which need not be unique) such that

Pr(X ≤ x) = q

The qth quantile of a discrete random vector X is any number x (which need not be unique) such that

Pr(X ≤ x) ≥ q
Pr(X ≥ x) ≥ 1− q

But the R function quantile doesn’t use this definition (or doesn’t only use this definition) because it is
thinking of the vector whose quantiles it is calculating as a random sample from a population and it is trying
to estimate the quantile of the population. And it has nine (!?) different ways to do that. The theoretically
correct definition given above corresponds to type = 1 or type = 2. More TIMTOWTDI. The default is
(currently) type = 7.

6.10 What is a Matrix Really?
A matrix is just an atomic vector that has certain attributes.
mode(fred)

## [1] "numeric"
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class(fred)

## [1] "matrix" "array"

is.atomic(fred)

## [1] TRUE

is.vector(fred)

## [1] FALSE

is.matrix(fred)

## [1] TRUE

attributes(fred)

## $dim
## [1] 3 2
##
## $dimnames
## $dimnames[[1]]
## [1] "red" "white" "blue"
##
## $dimnames[[2]]
## [1] "car" "truck"

I’m surprised. I thought is.vector(fred) was going to say TRUE. Shows what I know.

We can make a matrix without using any of the matrix-oriented functions.
fred.too <- 1:6
attributes(fred.too) <- list(dim = 3:2,

dimnames = list(c("red", "white", "blue"), c("car", "truck")))
identical(fred, fred.too)

## [1] TRUE

TIMTOWTDI. But you shouldn’t do the latter in real life. Too tricky. It might confuse people looking at
your code.

7 Arrays
Arrays are just like matrices but with more dimensions.
alice <- array(1:24, dim = 2:4)
alice

## , , 1
##
## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] 7 9 11
## [2,] 8 10 12
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##
## , , 3
##
## [,1] [,2] [,3]
## [1,] 13 15 17
## [2,] 14 16 18
##
## , , 4
##
## [,1] [,2] [,3]
## [1,] 19 21 23
## [2,] 20 22 24

This is a little hard to read, and it gets even harder when there are more dimensions.

You can think of this array as being a three-dimensional table, and what R has printed as being four “slices”
of the table, each of which is two-dimensional, hence a matrix. The printout is trying to say the same thing as
alice[ , , 1]

## [,1] [,2] [,3]
## [1,] 1 3 5
## [2,] 2 4 6

alice[ , , 2]

## [,1] [,2] [,3]
## [1,] 7 9 11
## [2,] 8 10 12

alice[ , , 3]

## [,1] [,2] [,3]
## [1,] 13 15 17
## [2,] 14 16 18

alice[ , , 4]

## [,1] [,2] [,3]
## [1,] 19 21 23
## [2,] 20 22 24

As was the case with matrices, R stuffs vectors into an array in FORTRAN order (first index changes the
fastest, second index next fastest, and so forth) rather than C/C++ order.

According to their help pages, apply, sweep, and outer work on arrays. But I can never remember exactly
how they work and always have to look up in the help or try little experiments to figure out what they do.
apply(alice, 1, mean)

## [1] 12 13

apply(alice, 1:2, mean)

## [,1] [,2] [,3]
## [1,] 10 12 14
## [2,] 11 13 15

So the second argument of apply, which is named MARGIN, gives the indices of the array which are to be
indices of the result.
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In our first example (MARGIN = 1) the result is the average over the components of the array having specified
values of the first index. It is the same as
mean(alice[1, , ])

## [1] 12

mean(alice[2, , ])

## [1] 13

In our second example (MARGIN = 1:2) the result is the average over the components of the array having
specified values of the first and second indices. It is the same as
mean(alice[1, 1, ])

## [1] 10

mean(alice[2, 1, ])

## [1] 11

mean(alice[1, 2, ])

## [1] 12

mean(alice[2, 2, ])

## [1] 13

mean(alice[1, 3, ])

## [1] 14

mean(alice[2, 3, ])

## [1] 15

except that it stuffs these six numbers into a two by three matrix corresponding to the dimensions for these
indices in the original matrix.

I hope it is clear from this example that

• apply is really powerful, and

• apply is tricky (use with care).

When you use sweep and apply together, you generally want their MARGIN arguments to agree.
foo <- sweep(alice, 1:2, apply(alice, 1:2, mean))
foo

## , , 1
##
## [,1] [,2] [,3]
## [1,] -9 -9 -9
## [2,] -9 -9 -9
##
## , , 2
##
## [,1] [,2] [,3]
## [1,] -3 -3 -3
## [2,] -3 -3 -3
##

20



## , , 3
##
## [,1] [,2] [,3]
## [1,] 3 3 3
## [2,] 3 3 3
##
## , , 4
##
## [,1] [,2] [,3]
## [1,] 9 9 9
## [2,] 9 9 9

apply(foo, 1:2, mean)

## [,1] [,2] [,3]
## [1,] 0 0 0
## [2,] 0 0 0

That is all I have to tell you about apply, sweep, and outer applied to arrays. They are not easy to use.
They are just at the edge of the level of expertise we want you to develop in this course. In thirty years of
using R and its predecessor S, I have used apply on arrays a lot, sweep on arrays rarely (less than once a
year), and outer on arrays never (but now that I know it works on arrays, I may try to use it in the future).

Unlike matrices, arrays do not have a counterpart in mathematics but do have counterparts in FORTRAN,
C, C++, and other computer languages. Every computer language I have ever heard of has arrays. They are
a basic storage structure. But they are not used anywhere near as much in R as in other languages, because
they don’t work well with R models (which is another handout).

Like matrices, arrays are really just atomic vectors with a dim attribute that says what their dimensions
are. They may also have a dimnames attribute that gives labels for their whatevers (I don’t know what to
call them; a matrix has rows and columns; an array has rows, columns, and whatever comes after rows and
columns, but I don’t think there is a word for that).

8 Tables
An R object of class "table" is just an array that is intended to be treated as a contingency table, suitable
data for Stat 5421 (Categorical Data Analysis).
library(CatDataAnalysis)
data(exercise_8.18)
foo <- xtabs(counts ~ ., data = exercise_8.18)
class(foo)

## [1] "xtabs" "table"

foo

## , , Operation = A
##
## Hospital
## Dumping_severity 1 2 3 4
## M 2 1 3 1
## N 23 18 8 12
## S 7 6 6 9
##
## , , Operation = B
##
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## Hospital
## Dumping_severity 1 2 3 4
## M 5 2 4 2
## N 23 18 12 15
## S 10 6 4 3
##
## , , Operation = C
##
## Hospital
## Dumping_severity 1 2 3 4
## M 5 2 2 3
## N 20 13 11 14
## S 13 13 6 8
##
## , , Operation = D
##
## Hospital
## Dumping_severity 1 2 3 4
## M 6 2 4 4
## N 24 9 7 13
## S 10 15 7 6

Note that tables use the slick trick of the dimnames having names so the dimensions have names as well as
the cells of the table along each dimension.
dimnames(foo)

## $Dumping_severity
## [1] "M" "N" "S"
##
## $Hospital
## [1] "1" "2" "3" "4"
##
## $Operation
## [1] "A" "B" "C" "D"

Also there is the function ftable so simplify printing of tables.
ftable(foo)

## Operation A B C D
## Dumping_severity Hospital
## M 1 2 5 5 6
## 2 1 2 2 2
## 3 3 4 2 4
## 4 1 2 3 4
## N 1 23 23 20 24
## 2 18 18 13 9
## 3 8 12 11 7
## 4 12 15 14 13
## S 1 7 10 13 10
## 2 6 6 13 15
## 3 6 4 6 7
## 4 9 3 8 6
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9 Data Frames
9.1 Introduction
A data frame is something that prints out like a matrix, but it isn’t a matrix. It is best thought of as a
collection of named vectors all of the same length. It was originally designed for data for R models (which is
another handout). Typically the response and predictor vectors for a model must be the same length. Data
frames are designed to hold such vectors.

9.2 Package datasets

There are many data frames that come with R and are used for examples.
foo <- eapply(as.environment("package:datasets"), is.data.frame)
foo <- unlist(foo)
length(foo)

## [1] 104

sum(foo)

## [1] 44

This says there are 104 datasets in the R package named datasets, which is always already attached when
R starts (so there is no need to say library(datasets) before trying to access one), and 44 of these are
objects of class "data.frame".

The R function eapply used here applies R functions, here is.data.frame to all the objects stored in an R
environment, which we haven’t covered yet, so we shall say no more here about that.

9.3 Toy Data Frame
Here is an example data frame.
nam <- c("alice", "bob", "clara", "dan", "eve", "fred")
dat <- data.frame(name = nam, gpa = pmin(4.0, rnorm(length(nam), 3.0, 0.5)),

class = sample(c("freshman", "sophomore", "junior", "senior"),
length(nam), replace = TRUE))

dat

## name gpa class
## 1 alice 2.784765 sophomore
## 2 bob 2.871365 sophomore
## 3 clara 2.118418 sophomore
## 4 dan 3.230049 sophomore
## 5 eve 2.680003 senior
## 6 fred 3.227725 junior

As we already said, data frames are especially designed to work with R functions that fit models and many
such have an argument, usually named data that takes a data frame in which to find data. For example
summary(aov(gpa ~ class, data = dat))

## Df Sum Sq Mean Sq F value Pr(>F)
## class 2 0.2048 0.1024 0.476 0.661
## Residuals 3 0.6453 0.2151

This does the analog of a two-sample, independent sample, t-test assuming equality of variances for the
difference of means of two populations, when two is replaced by four (because there are four classes, except
that how many classes we have in these data is random, so sometimes three classes).
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But modeling is the subject of another handout, so back to data frames.

9.4 Indexing (Extracting, Subscripting)
Data frames are as we have already said, and will say some more, are really lists. But they look like matrices
when printed. The reason is that data frames are not just lists.
class(dat)

## [1] "data.frame"

They know they are data frames, and R generic functions like print and the extractor functions ("[", "[[",
"[<-", "[[<-", "$") know how to deal especially with data frames. So the list extractors work on data
frames as if they were lists and the matrix extractors work on data frames as if they were matrices.
dat$name

## [1] "alice" "bob" "clara" "dan" "eve" "fred"

dat[["name"]]

## [1] "alice" "bob" "clara" "dan" "eve" "fred"

dat[[1]]

## [1] "alice" "bob" "clara" "dan" "eve" "fred"

dat[1, 1]

## [1] "alice"

dat[1, -1]

## gpa class
## 1 2.784765 sophomore

dat[dat$gpa > 3, ]

## name gpa class
## 4 dan 3.230049 sophomore
## 6 fred 3.227725 junior

Great! But what was that nonsense about “levels”.

9.5 Factors
For a bit we stop talking about data frames and start talking about factors, which is R’s name for the kind
of object it uses for categorical data. Where other people say “categorical data” (as in the title of STAT 5421
here at U of M) R says factor.

Factors are somewhat obsolete. If you have a variable in a model that has class "character", then this will
be treated like a factor in regression. Here is a logistic regression example.
n <- 30
y <- sample(0:1, n, replace = TRUE)
x <- sample(c("red", "white", "blue"), n, replace = TRUE)
x

## [1] "white" "white" "white" "red" "white" "red" "white" "blue" "red"
## [10] "red" "blue" "white" "white" "blue" "red" "red" "white" "blue"
## [19] "white" "red" "red" "red" "red" "red" "white" "blue" "red"
## [28] "white" "red" "blue"
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out1 <- glm(y ~ x, family = binomial)
summary(out1)

##
## Call:
## glm(formula = y ~ x, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.48230 -0.85758 0.02147 0.95077 1.53535
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.6931 0.8660 0.800 0.423
## xred -1.5041 1.0541 -1.427 0.154
## xwhite -0.1335 1.0690 -0.125 0.901
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 41.589 on 29 degrees of freedom
## Residual deviance: 38.107 on 27 degrees of freedom
## AIC: 44.107
##
## Number of Fisher Scoring iterations: 4

(No surprise nothing is significant. We simulated y to be independent of x.)

But this idiom does not work if the categorical variable has numeric values.
n <- 30
x <- match(x, c("red", "white", "blue"))
x

## [1] 2 2 2 1 2 1 2 3 1 1 3 2 2 3 1 1 2 3 2 1 1 1 1 1 2 3 1 2 1 3

out <- glm(y ~ x, family = binomial)
summary(out)

##
## Call:
## glm(formula = y ~ x, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.65064 -0.91718 -0.07401 1.09002 1.46219
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.5058 0.9921 -1.518 0.129
## x 0.8574 0.5268 1.628 0.104
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 41.589 on 29 degrees of freedom
## Residual deviance: 38.681 on 28 degrees of freedom
## AIC: 42.681
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##
## Number of Fisher Scoring iterations: 4

Oops! R function glm treated x like a quantitative variable rather than a categorical one (should have been
three regression coefficients, rather than two). R function factor tells R to treat x correctly.
n <- 30
x <- factor(x)
x

## [1] 2 2 2 1 2 1 2 3 1 1 3 2 2 3 1 1 2 3 2 1 1 1 1 1 2 3 1 2 1 3
## Levels: 1 2 3

out2 <- glm(y ~ x, family = binomial)
summary(out2)

##
## Call:
## glm(formula = y ~ x, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.48230 -0.85758 0.02147 0.95077 1.53535
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8109 0.6009 -1.349 0.177
## x2 1.3705 0.8683 1.578 0.114
## x3 1.5041 1.0541 1.427 0.154
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 41.589 on 29 degrees of freedom
## Residual deviance: 38.107 on 27 degrees of freedom
## AIC: 44.107
##
## Number of Fisher Scoring iterations: 4

And, despite the regression coefficients being different. We have fit the same model as we did initially.
all.equal(out1$fitted, out2$fitted)

## [1] TRUE

If we look up ??factor we find that R has the following functions all documented on one help page

factor
ordered
is.factor
is.ordered
as.factor
as.ordered
addNA

that deal with factors. The categories of the categorical variable are called the “levels” of the factor in
R-speak. Although the See Also section of ?factor doesn’t tell you this, the R functions

levels
nlevels
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tell you what the levels of a factor are and how many of them there are. The See Also section of ?levels
tells us that there are also functions

relevel
reorder

(which I have never heard of before) that are useful in futzing with the levels of a factor.

The R function ordered makes ordered factors, which is R-speak for what other people call ordered categorical
data. They are also beyond the scope of this course (should be mentioned at least briefly in STAT 5421).

We can use R function levels to put back the original levels (values) of x.
levels(x) <- c("red", "white", "blue")
x

## [1] white white white red white red white blue red red blue white
## [13] white blue red red white blue white red red red red red
## [25] white blue red white red blue
## Levels: red white blue

out3 <- glm(y ~ x, family = binomial)
summary(out3)

##
## Call:
## glm(formula = y ~ x, family = binomial)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.48230 -0.85758 0.02147 0.95077 1.53535
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.8109 0.6009 -1.349 0.177
## xwhite 1.3705 0.8683 1.578 0.114
## xblue 1.5041 1.0541 1.427 0.154
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 41.589 on 29 degrees of freedom
## Residual deviance: 38.107 on 27 degrees of freedom
## AIC: 44.107
##
## Number of Fisher Scoring iterations: 4

all.equal(out1$fitted, out3$fitted)

## [1] TRUE

9.5.1 What is a Factor Really?

attributes(x)

## $levels
## [1] "red" "white" "blue"
##
## $class
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## [1] "factor"

x.strip <- x
attributes(x.strip) <- NULL
x.strip

## [1] 2 2 2 1 2 1 2 3 1 1 3 2 2 3 1 1 2 3 2 1 1 1 1 1 2 3 1 2 1 3

So an R factor object is really an integer vector. All the rest of the information is in the attributes

The way one gets a class whose levels are character strings back to its original form is to run it through
as.character or as.vector.
as.character(x)

## [1] "white" "white" "white" "red" "white" "red" "white" "blue" "red"
## [10] "red" "blue" "white" "white" "blue" "red" "red" "white" "blue"
## [19] "white" "red" "red" "red" "red" "red" "white" "blue" "red"
## [28] "white" "red" "blue"

as.vector(x)

## [1] "white" "white" "white" "red" "white" "red" "white" "blue" "red"
## [10] "red" "blue" "white" "white" "blue" "red" "red" "white" "blue"
## [19] "white" "red" "red" "red" "red" "red" "white" "blue" "red"
## [28] "white" "red" "blue"

You can never be really sure what a factor is going to be treated as (the integer vector it really is or the
character vector you think it is) So running a factor through as.character is a good idea whenever you want
the character vector that is how you think of the factor. (R might do this by some sort of default coercion,
but it also might not.)

9.5.2 Avoiding Factors

Factors are much less essential than they used to be. If a variable of type character is used as a predictor
variable in an R model, then it is treated as if it had been converted to a factor variable. Moreover, R has
had this behavior with a warning since version 2.4.0 (released October 2006) and the warning was removed in
R 3.0.0 (released April 2013). Also character vectors used to take up a lot more space than the corresponding
factors, but since version 2.6.0 (released October 2007) R has only one copy of every unique character string in
any character vectors. All character vectors containing that string just point to it (in the C code implementing
R).

Since version 2.4.0 (released October 2006) the R functions

as.data.frame
data.frame
expand.grid
rbind
read.table
read.csv
read.csv2
read.delim
read.delim2

have an argument stringsAsFactors which says whether the default behavior of converting character vectors
to factors should be done when producing a data frame. The default for this is
args(data.frame)

## function (..., row.names = NULL, check.rows = FALSE, check.names = TRUE,
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## fix.empty.names = TRUE, stringsAsFactors = FALSE)
## NULL

and the documentation ?data.frame and ?options explains that to never have default conversion of strings
to factors one does
options(stringsAsFactors = FALSE)

(except we did not actually do this for this document, that is, the preceding code chunk had eval=FALSE as
an option). And if you want to have that whenever you start up R, you can put it in your .Rprofile file
(?Rprofile explains that).

If this seems an incredible mess, it is. This shows the consequences of bad design decisions. They are very
hard to partially undo and and impossible to completely undo (while maintaining backward compatibility so
you do not break working code and have users hate you). Lest anyone think your humble author is being
snooty here, I admit to having made bad design decisions myself.

As of R version 4.0.0 the default for
options("stringsAsFactors")

## $stringsAsFactors
## [1] FALSE

changes from TRUE to FALSE. As explained above, for the most part this is unnoticed by users but can be a
pain. I spent two days debugging a problem that arose because I was using R-4.0.0 and a user I had given
my code to was using an earlier version of R so we had different defaults of stringsAsFactors. But now
that almost every R user is using R version 4.0.0 or later, this is less of an issue.

9.5.3 Needing Factors

But the whole notion of factors is not completely unnecessary. If someone insists on factor levels that are
numeric or logical, then data.frame and friends cannot know that this variable is intended to be a factor.
And one has to tell it that explicitly. If fred is a data frame containing a variable named sally, then there
are a number of ways (TIMTOWTDI)
fred <- fred.save <- fred2 <- data.frame(sally = 1:10, herman = 11:20)
fred2$sally <- as.factor(fred2$sally)
fred3 <- transform(fred, sally = factor(sally))
fred4 <- within(fred, sally <- factor(sally))
identical(fred, fred.save) # have not clobbered original

## [1] TRUE

identical(fred, fred2) # supposed to be FALSE

## [1] FALSE

identical(fred2, fred3) # supposed to be TRUE

## [1] TRUE

identical(fred3, fred4) # supposed to be TRUE

## [1] TRUE

9.6 What is a Data Frame, Really?
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dat.strip <- dat
attributes(dat.strip) <- NULL
dat.strip

## [[1]]
## [1] "alice" "bob" "clara" "dan" "eve" "fred"
##
## [[2]]
## [1] 2.784765 2.871365 2.118418 3.230049 2.680003 3.227725
##
## [[3]]
## [1] "sophomore" "sophomore" "sophomore" "sophomore" "senior" "junior"

typeof(dat.strip)

## [1] "list"

attributes(dat)

## $names
## [1] "name" "gpa" "class"
##
## $class
## [1] "data.frame"
##
## $row.names
## [1] 1 2 3 4 5 6

A data frame is really just a list having certain attributes and certain properties that are enforced by the
function data.frame and friends.

9.7 Reading a Data Frame
By “reading” we mean doing I/O, getting stuff from outside of R into R and in this case, specifically as a
data frame.

The standard methods for doing this are

read.DIF
read.fortran
read.fwf
read.table
read.csv
read.csv2
read.delim
read.delim2

which were mentioned above. There are even more methods in the recommended package foreign for reading
even crazier formats (such as those from proprietary statistical packages).

These read from a file or from a “readable text-mode connection” which may be a URL (internet address).
We saw the latter in action during the first quiz.

Here’s another example
foo <- read.table("http://www.stat.umn.edu/geyer/3701/data/array-ex1.txt",

header = TRUE)
head(foo)
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## x color y
## 1 1 red 24.894
## 2 1 blue 12.323
## 3 1 green 16.645
## 4 2 red 25.231
## 5 2 blue 12.119
## 6 2 green 16.654

Looking at that URL shows what the data format is. It is a whitespace-separated plain text file with variable
names in the first row and elements of the variables in the rest of the rows, each column being one variable
(name and data).

Many users are in the (bad IMHO) habit of using spreadsheets (Microsoft Excel, for example) as data editors.
So then how does one get the data out of the spreadsheet and into R? Spreadsheets can write CSV (comma
separated values) format, and R can read that. (To make a CSV file, select “Save As” on the File menu, and
then choose the output format to be CSV.)
foo.too <- read.csv("http://www.stat.umn.edu/geyer/3701/data/array-ex1.csv")
identical(foo, foo.too)

## [1] TRUE
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