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Abstract

Arc is a computer program for the analysis of regression problems. It is de-
scribed in Cook and Weisberg (1999)Applied Regression Including Computing
and Graphics; seewww.stat.umn.edu/arc . This document describes addi-
tions to the program since the publication of the book, and in particular describes
the changes from Version 1.04 to Version 1.05.

TheArc computer package for regression problems is described in Cook and Weis-
berg (1999). A new Version 1.05 was released in summer 2004. Three new features
will be visible to all users:

• Theregression dialogfor linear and generalized linear models has changed.

• A new class ofgeneralized nonlinear modelshave been added to the program.

• A new call ofpartial one-dimensional modelshave been added to the program.

We describe these changes here.

1 The regression dialog

The Graph&Fit menu inArc includes separate menu items for fitting linear LS regres-
sion, or fitting with a binomial, Poisson or Gamma distributed response. All these allow
you to specify the response, weights, and terms to be put in the mean function. By se-
lecting the appropriate item in the Graph&Fit menu, you specify the error distribution
to be used. Buttons at the right of the dialog allow setting thekernel mean function,
or kernel mean function; most often the default kernel mean function is used, so the
buttons at the right can be ignored. It is the buttons at the right that have changed.

For an example of the regression dialog, we will use the data filetransact.lsp .
Figure 1. The new version of the dialog is shown in Figure 2

The only part of the dialog that has changed is the list of options at the right of the
dialog. For fitting “usual” linear models (or generalized linear models with canonical
links) these buttons are not used. They are used for more complicated models.
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Figure 1: The regression dialog from Version 1.04.

1.1 Components of a generalized linear model

We begin with a brief recap of the main features of a generalized linear model. Suppose
we have data(xi, yi), i = 1, . . . , n, wherexi is a p × 1 vector of predictors, andyi

is a univariate response. Using somewhat non-standard notation that is consistent with
Cook and Weisberg (1999, Chapter 23) but not with most other references, the basic
structure of a generalized linear model, orGLM, is as follows:

1. Random componentThe conditional random variablesyi|xi are independent
observations, distributed according to an exponential family distribution. The
common members of this family are the normal, binomial, Poisson, and gamma
distributions. InArc, you select a different fitting method from the Graph&Fit
dialog for each of these distributions.

2. Linear predictor The conditional distributions depend on the value ofxi only
through the linear combinationg(θ, xi) = θ0 + θ′xi for ap× 1 parameterθ, and
an intercept termθ0 (with θ0 = 0 in some applications). The functiong(θ, xi) is
usually called thelinear predictor. In Arc, you specify the linear predictor and
the response by moving items from the left-list to the right-list in the regression
dialog.

3. Kernel mean function The dependence of the distributionsyi|xi on g(θ, xi) is
through the mean. In particular, there is a kernel mean functionm such that

E(yi|xi) = m(g(θ, xi))
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Figure 2: The regression dialog from Version 1.05.

For example, if the conditional distributions are Poisson distributed, a common
choice ofm is the exponential function, so

E(yi|xi) = exp(g(θ, xi))

Taking logarithms of both sides of this equation gives

log(E(yi|xi)) = g(θ, xi)

In the case of generalized linear models, whereg(θ, xi) = θ0 + θ′xi, this last
equation is

θ0 + θ′xi = log(E(yi|xi))

Generalized linear models are usually specified in terms of alink function, which
is just the inverse of the kernel mean function. This comes from the last equa-
tion, where we see that the linear combination of the predictors is related to the
mean via the link function, which in this case is the logarithmic function. InArc,
the kernel mean function is selected from the buttons at the right of the regres-
sion dialog. Thecanonicalkernel mean function, the one most commonly used,
depends on the error distribution, as given in Table 1.

Generalized linear models are briefly introduced in Cook and Weisberg (1999, Chapter
23), and more completely in McCullagh and Nelder (1989). In the latter reference,
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Table 1: Canonical kernel mean functions.

Error distribution Canonical kernel mean function
Normal Identity
Binomial Logistic
Gamma Inverse
Poisson Exponential

the link function is discussed, which is just the inverse of the kernel mean function.
For example, in Poisson models, the link function corresponding to the exponential
kernel mean function is the log-link, while in binomial models the link function cor-
responding to the logistic function, given by E(y|x) = (1 + exp(g))−1 is the logit,
g = log(E(y|x)/(1− E(y|x))).

1.2 New feature of the regression dialog

You can completely ignore the new features in the regression dialog and still fit linear
and generalized linear regression models as in previous versions ofArc. The right-side
of the regression dialog in Figure 2 now hastwo lists, one for selecting a kernel mean
function, and one for selecting a new quantity that we call theinner mean function.
Under the kernel mean function list, all the relevant choices for the kernel mean func-
tion are given. The inner mean function includes four choices. We describe them in the
context of the transactions data with two termsT1 andT2:

Default Fit the specified model with termsη1T1 + η2T2. This is the usual choice.

Full quadratic Fit the model including all main effects, interactions and quadratic
terms, so for the transactions data this will fitη1T1 + η2T2 + η11T

2
1 + η22T

2
2 +

η12T1T2.

1D quadratic Using the linear LS item and the identity kernel mean function, this will
fit a nonlinear model with mean function

η0 + η1T1 + η2T2 + θ2(η1T1 + η2T2)2

For other fitting methods, this is a generalized nonlinear model, Section 2.

POD Fit a partial one-dimensional model. This item is used only if there is a group-
ing variable available. In the transactions data, suppose we had a variableG
which was equal to one for urban bank branches, and zero for suburban or rural
branches. The POD model fits the followingnonlinearcombination of terms:

η0 + η1T1 + η2T2 + G× (θ0 + θ1(η1T1 + η2T2))

These models are described more completely in Section 3.
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2 Generalized nonlinear models

A generalized nonlinear model, or GNM, allows nonlinear combinations of parameters
in a statistical model that would otherwise have the form of a generalized linear model.
The name was used by Lane (1996), although models in this class were considered
earlier (e.g., Baker and Thompson, 1981, for a particular case, and Jorgensen, 1983,
for theoretical properties).

A generalized nonlinear model is of exactly the same structure as a generalized
linear model described in the last section, except that thelinear predictorin the inner
mean function. Rather than requiring the dependence ofyi on xi to be completely
determined by a linear predictorθ′xi, we generalize to allowg = g(θ, xi) to be any
smooth function of the vector valued parameterθ.

2.1 Examples

2.1.1 Logistic regression

Suppose we have a single predictorx and a 0-1 responsey such that the distribution
of y|x is Bernoulli with probabilityPr(y = 1|x) = E(y|x) that is a function ofx.
If the standard logistic regression model were to hold, we would have that (Cook and
Weisberg, 1999, Chapter 21)

E(y|x) =
1

1 + exp(θ0 + θ1x)
(1)

The right side of this equation is the logistic function, with argument given by the linear
predictorθ0 + θ1x. This equation can be rewritten as

log
[

E(y|x)
1− E(y|x)

]
= θ0 + θ1x (2)

showing that the log of the odds is a linear function of the linear predictor. Such a
model would be fit using aGLM, with predictorx, with an intercept, using binomial
errors and the logistic kernel mean function.

Now suppose that we believe that the logistic model is correct, butx must be trans-
formed via an unknown power transformation for the model to hold. We would then
have that:

log
[

E(y|x)
1− E(y|x)

]
= θ0 + θ1x

θ2 (3)

The right side of this equation is no longer linear in the parameters, and so this is not a
GLM. However, it can be treated as aGNM, with binomial errors, logistic kernel mean
function, and nonlinear predictor given by the right side of (3).

In another problem, we might believe that

E(y|x) = θ2 +
1

1 + exp(θ0 + θ1x)
(4)

where perhapsθ2 is a small positive value. This model asserts that there is a minimum
threshold for E(y|x) = Pr(y = 1|x) is θ2 rather than the value zero given by the
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logistic function. Model (4) cannot be viewed as logistic regression, but it can be fit as
aGNM, with binomial errors, the identity kernel mean function, and nonlinear predictor
given by the right side of (4).

2.1.2 Michaelis-Menten formula

Suppose thaty is the speed of a chemical reaction, andx is the concentration of an input
agent in the reaction. The Michaelis-Menten formula for enzyme kinetics suggests that

E(yi|xi) =
θ1xi

xi + θ2
(5)

In (5) we recognize a nonlinear mean function, since (5) is a nonlinear function of the
parameters. Assuming normal errors, we can fit this model using the identity kernel
mean function and nonlinear predictor given by the right side of (5).

Equation (5) can be rewritten by dividing both the top and the bottom of the right
hand side byθ1xi:

E(yi|xi) =
1

1/θ1 + θ2/(θ1xi)
(6)

Fitting either mean function (5) or (6) is equivalent, as they are simply restatements of
the same function. In (6), we can usefully think of the mean function as the inverse
kernel mean function applied to the nonlinear predictor1/θ1 + θ2/(θ1xi), so we can
fit this model using normal errors, the inverse kernel mean function, and nonlinear
predictor1/θ1 + θ2/(θ1xi).

We could also fit (6) with normal errors, the identity kernel mean function, and
using the right side of (6) as the nonlinear predictor. This will once again give the same
solution, and this illustrates that there is not a unique way of defining the nonlinear
predictor and the kernel mean function.

Carrying this further, defineθ1 = 1/θ1, θ2 = θ2/θ1 andui = 1/xi. Then (6) can
be rewritten as

E(yi|xi) =
1

θ1 + θ2ui
(7)

This is once again the same as model (5), except for the reparameterization from theθs
to theθs. Estimates of theθs can be obtained by substituting estimates for theθs in the
equations that relate the two sets of parameters. Model (7) can be fit using using aGNM

with normal errors, the inverse kernel mean function, and the linear predictorsθ0 +
θ1xi. However, we recognize (7) as a generalizedlinear model because the predictor is
linear in the parameters, soGLM software can be used. The advantage ofGLM software
is that choosing starting values for the iterative procedure is not required, and selecting
starting values is required forGNMs.

2.2 UsingArc for generalized nonlinear models

With Version 1.05, generalized nonlinear models are a standard part ofArc. As an
example of the methodology, we use the filepur.lsp that is included with theArc
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Figure 3: The first dialog for generalized nonlinear models.

ddistribution. This is a small data set for which the Michaelis-Menten model is appro-
priate. To use theGNM methods, you need to have the following bits of information
available to you:

1. The error distribution, which for these data is the assumption of normal errors.

2. The kernel mean function and the nonlinear predictor.

3. Starting values for the parameters to be estimated in the nonlinear function.

One of the reasons that generalized linear models have proven to be so popular is
that reliable computing algorithms are available that do not require the user to provide
starting values for parameter estimates. InGNMs, however, starting values are generally
required, and good starting values are needed for the computing method to converge
to the correct estimates.Arc provides numerous tools to help find starting values for
normal nonlinear models, and these same tools can be used forGNMs as well. In
addition, theGNM code provides a graphical tool for finding starting values when there
is only one variable (but an arbitrary number of parameters).

To fit model (5), we notice that for very large values ofx, E(y|x) → θ1, and so
θ1 is the asymptote or maximum value of the expected response. From a graph ofy
versusx, we can read this value to be about 210. Getting a starting value forθ2, which
is a rate parameter, is harder. We will use the graphical interface to help us choose a
starting value.

From the Graph&Fit menu, select the item “Generalized nonlinear.” This will pro-
duce the dialog shown in Figure 3. This complicated dialog requires that you select an
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Figure 4: The second dialog for generalized nonlinear models.

error distribution from the left column, a kernel mean function from the right column,
and a mathematical expression for the nonlinear predictor from the bottom of the di-
alog. If you have previously entered expressions for nonlinear predictors for this data
set, or you have included expressions for nonlinear predictors on the data file, they will
appear in a list at the bottom of the dialog, and you only need to select the one you
want to use. If you want to use a new expression for the nonlinear predictor, type it in
the text area. The expression should be in standard mathematical format, and needs to
be an expression that could be read by the language C. The expression for a nonlinear
predictor can consist of constants or numbers, parameters, and variables. Parameters
are given be a prefix, optionally followed by a number. For example, for the prefix
Th, names of parameters could be Th, Th1, Th2 or Th01. The allowable prefixes for
parameters are Th, Theta, Gam, Gamma, Eta, A, Alpha, B, Beta, Del, Delta, Lam and
Lambda. Variable names are also of the form of a prefix possibly followed by a letter,
such as X, X1 or X01. The prefixes for variables are X, Z and U. In a later dialog, you
will make a connection between the generic names of variables in this dialog and the
names of variables in your dataset.

In Figure 3 the nonlinear predictor on the right side of (5) has been typed in the text
area. This was not strictly necessary because this expression is given on the data file,
and so appears as a choice in the dialog.

When you press the OK button in this dialog, you will get a second dialog shown
in Figure 4. In this dialog you specify the variables in the dataset that correspond to
the variables in the nonlinear predictor, and you specify starting values. There are two
additional items at the bottom of the dialog. By default,Arc uses symbolic differ-
entiation in computations, but you can use numerical derivatives by un-checking the

8



Figure 5: The third dialog for generalized nonlinear models.

box. Most users will not find this option particularly interesting. The other check-box
appears only when exactly one variable appears in the nonlinear predictor. If the box
is checked, then a graph is produced to help select starting values. If the box is not
checked, then the starting values you provide are used to estimate parameters. With
this example, the starting values were given in the data file, and are displayed automat-
ically if available in the boxes for the parameters; we will ignore these for this example,
and use the features of the program to choose starting values.

Leave the “graphical interface” button selected, and push the OK button. This
produces a third dialog shown in Figure 5 to select ranges for the parameters to search
over for starting values. This dialog appears only if the graphical interface button
is selected. If you provided values for starting values in the second dialog, then the
default ranges are centered on the values you provided; otherwise the range(0, 1) is
given. You can set a range here, or you can change the range later on the graph. Pushing
the OK button will (finally) produce the graph shown in Figure 6. The deviance for the
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Figure 6: Figure to help select starting values. Use the sliders to change the value of
the parameters.
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current fit is shown at the top of the plot; the best estimates have the smallest deviance.
The sliders can be used to vary the fit to the data, as shown on the graph. The pop-up
menus for the sliders and for More controls can be used to work with this graph; all
the items are self-explanatory. When you think you have good starting values, the “Fit
model” item in the More controls pop-up can be used to fit the model.

2.3 The fitted model

The model is fit by default using the Newton-Raphson algorithm, similar to the fitting
for nonlinear models inArc (which is, unfortunately, not documented yet). At conver-
gence, the fitted model is displayed. For the data inpur.lsp , the output is given in
Table 2.

Table 2:GNM output.

Iteration 0, deviance = 1207.87467264
Iteration 1, deviance = 1195.60378495
Iteration 2, deviance = 1195.45030243
Iteration 3, deviance = 1195.44882830
Iteration 4, deviance = 1195.44881457
Reason for termination: Converged normally.

Data set = Pur1, Name of Fit = GNM4
Gnm-Normal Regression
Kernel mean function = Identity
Nonlinear mean function: y = (x*th0)/(x+th1)
Fit using symbolic derivatives.
Response = y
Terms = (x)
Coefficient Estimates
Label Estimate Std. Error Est/SE p-value
TH0 212.684 6.94715 30.615 0.0000
TH1 0.0641210 0.00828092 7.743 0.0000

Scale factor: 10.9337
Number of cases: 12
Degrees of freedom: 10
Pearson X2: 1195.449
Deviance: 1195.449
Reason for termination: Converged normally.

Fitting aGNM will also produce a model menu that has the same items as the model
menu for nonlinear models.
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2.4 Computations

The basic computations are similar to those in generalized linear models, and we will
follow in part the derivation of the Fisher scoring algorithm from these models given by
Agresti (1990, Sec. 13.1.1). Some of the details are omitted, but can be obtained from
this reference. Be warned, however, that the Greek letters used in this development do
not correspond exactly to those that Agresti uses.

2.4.1 Likelihood

We first assume that the probability function foryi|xi is of the exponential family form

f(yi;ψi, φ) = exp {[yiψ − b(ψi)]/ai(φ) + c(yi, φ)} (8)

The parameterψ is called thenatural parameter. The functionai(φ) is a dispersion
function, and in all the cases we consider it is of the formai(φ) = φ/wi for known
prior weightswi. This development includes the normal, gamma, Poisson and binomial
distributions as special cases, depending on the choice of the functionsb() andc(). The
specification of the error distribution given here is the same as for generalized linear
models.

The next step in setting up the model is to connectyi to xi, through the mean
function. First, the log-likelihood for a single observation is

`(ψi, φ; yi) = [yiψ − b(ψi)]/ai(φ) + c(yi, φ) (9)

The usual likelihood results

E

(
∂`

∂ψ

)
= 0 and E

(
∂2`

∂ψ2

)
= −E

(
∂`

∂ψ

)2

imply that the mean function and the variance function are

E(yi|xi) = µi = b′(ψ)
Var(yi|xi) = b′′(ψ)a(φ)

where the primes denote differentiation. As with a generalized linear model, the con-
nection betweenyi andxi is through the mean function, which we write as

µi = E(yi|xi) = m(g(θ, xi)) (10)

where as beforem is the kernel mean function andg is a nonlinear function of the
parametersθ. In a generalized linear model, the functiong(θ, xi) = θ0 +θ′xi, is linear
in the parameters, but we make so such a restriction here. The role of the kernel mean
function in (10) is the same in generalized linear and nonlinear models.

2.4.2 Derivatives

Computational methods are based on derivatives of the likelihood and the information
matrix. As with generalized linear models, derivatives are found using the chain rule,

∂`i

∂θj
=

∂`i

∂ψi

∂ψi

∂µi

∂µi

∂gi

∂gi

∂θj
(11)
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where bygi we mean the expressiong(θ, xi). We compute each of the four terms on
the right of (11) separately. First,∂`i/∂ψj = [yi − b′(ψ)]/ai(φ) = [yi − µi]/ai(φ).
This depends on the exponential family given in (8) through the mean function. Next,
∂ψi/∂µi = (∂µi/∂ψi)−1 = (b′′(ψi))−1 = [Var(yi|xi)/ai(φ)]−1, which depends on
the particular exponential family through the variance function.

For the third partial derivative, we use the representation derived by inverting (10),

g(θ, xi) = m−1(µi)

The functionm−1 is called thelink function. The derivative∂gi/∂µi is therefore the
partial derivative of the link function with respect to its argument, evaluated atµi. For
example, in Poisson regression with the log-link, we havegi = log(µi), and the deriva-
tive ∂gi/∂µi = 1/µi. Everything so far is a standard computation with generalized
linear models. The remaining term is different.

The final partial derivative is just the first derivative of the mean function with
respect to the parameter. This is a standard calculation with nonlinear models, and de-
pends on the nonlinear functiong, but not on the error distribution or the link function.
Combining the four components, we get

∂`i

∂θj
=

yi − µi

Var(yi|xi)

(
∂gi

∂µi

)−1 (
∂gi

∂θj

)
(12)

The maximum likelihood estimates solve∂L(θ)/∂θ =
∑

∂`i/∂θ = 0.
We will need to have a matrix expression for the derivativesq = ∂(L(θ))/∂θ. This

will be a p × 1 vector. Letθ̂ be the current estimate ofθ, and letV be the matrix
whose elements are given by∂gi/∂θj evaluated at̂θ. This is a standard component
of nonlinear regression. Lete be a vector of residuals whosei-th element is given by
yi − µi, with µi evaluated at̂θ. Next, defineA to be a diagonal matrix with entries
(∂gi/∂µi)−1, and letW be a diagonal matrix with entries1/Var(yi|xi). Both of these
matrices have elements evaluated atθ̂. Thenq is given by are then given by

q = V ′AWe (13)

2.4.3 Information

We need to compute an information matrix, both for the computing algorithm, and
for asymptotic standard errors. It is easiest to use expected information, although a
similar development with observed information, using second derivatives is possible
and potentially useful. An element of the expected information for a single observation
is

−E

(
∂`

∂θh

)(
∂`

∂θj

)

= −E

[
yi−b′(ψi)

Var(yi|xi)

(
∂gi

∂µi

)−1 (
∂gi

∂θh

)] [
yi−b′(ψi)

Var(yi|xi)

(
∂gi

∂µi

)−1 (
∂gi

∂θj

)]

= −
(

∂gi

∂θh

)(
∂gi

∂θj

)
1

Var(yi|xi)

(
∂gi

∂µi

)−2
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Given this last result, we can get a matrix form for the information matrix based on all
n data points. LetL(θ) be the log-likelihood for the whole sample. LetV , A andW
be as defined in the last section. The expected information matrixI is then

I = V ′AWAV

The expected information has exactly the same form for generalized linear models,
except that the matrixV is replaced by then× p matrix of predictors.

2.4.4 Fisher scoring algorithm

Given a current estimateθ(k), we can compute the matricesV , W andA evaluated at
the current estimate. By evaluating the mean function atθ(k), we can also compute the
residualse. The Fisher scoring algorithm is then given by:

θ(k+1) = θ(k) + (I)−1q

= θ(k) + (V ′AWAV )−1V ′AWe (14)

The only difference between (14) and the equivalent formulation for generalized linear
models is thatV is replaced by the data matrix. The generalized linear model computa-
tions are usually done using an iteratively reweighted least squares algorithm. Rewrite
(14) as

θ(k+1) = (V ′AWAV )−1V ′AW (AV θ(k) + e)
= (V ′AWAV )−1V ′AWA(V θ(k) + A−1e)

The usual algorithm used for generalized linear models is based on this last equation.
We recognize that the next iterate can be obtained using weighted least squares with
“working weights” given by the diagonals ofAWA and “working response” given by
V θ(k) + A−1e.

A somewhat different iteratively reweighted least squares algorithm is available
directly from (14), and has been implemented inArc. We view (14) as the new estimate
is equal to the old estimate plus an increment. This is the form of the algorithm that
Arc uses for nonlinear models. We redefine the first derivative method to returnAV
rather than justV . The increment for the next iterate is obtained by the weighted least
squares ofe onAV with weights given by the diagonals ofW .

2.4.5 Illustrative example

Suppose we are fitting a Poisson regression with

E(y|x) = exp(θ0 + θ1x1/(1 + θ2x2))

We can view this mean function has having the exponential kernel mean function,
m(g) = exp(g), or equivalently as having the logarithmic link. Suppose we have a
current estimateθ(k) of θ. We then perform the following steps to get the next estimate
of θ:
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1. Obtain fitted values, given byµi = exp(θ(k)
0 + θ

(k)
1 x1/(1 + θ

(k)
2 x2)).

2. Compute the matrixV . A typical row of this matrix is given by(1, x1/(1 +
θ2x2,−θ1x1x2/(1 + θ2x2)2), to be evaluated atθ(k).

3. Compute the diagonal elements ofA. For the log-link, the elements are(1/µi)−1 =
µi.

4. Compute the elements ofW , given by1/Var(yi|xi). For the Poisson model,
Var(yi|xi) = µi, again evaluated atθ(k).

Once these are computed, use (14) to get the updated estimate ofθ. A convergence
criterion is then checked, either based on the size of the increment, or based on the
change in the deviance.

3 Partial one-dimensional models

Partial one-dimensional regression models were introduced by Cook and Weisberg
(2004) as a simple way to describe regression mean functions that may depend on a
grouping variable. For example, consider the data fileais.txt , which includes the
lean body massLBM, heightHt, weightWtand red blood cell countRCCfor 202 elite
athletes we trained at the Australian Institute of Sport. Approximately half the athletes
were male and have female. To include aSexeffect in a mean function could require
including a term forSexand terms for the interactions ofSexwith each of the other
predictors. Such a mean function complex, and difficult to interpret.

A POD model for this problem is given by:

E(LBM|Ht,, Wt, RCC, Sex = η0 + η1Ht + η2Wt+ η3RCC+
Sex× (θ01 + θ11(η1Ht + η2Wt+ η3RCC))

This mean function specifies that: (1) there is one linear combination of the terms that is
relevant for both sexes, and (2) in the plot of the response versusη1Ht+η2Wt+η3RCC,
each sex can have its own slope and intercept.

Fitting this model inArc is very easy. Start with the regression dialog shown in
Figure 7. Select the response and terms as usual,except that the grouping variable Sex
is excluded. Select POD from the list at the right and push OK. You will then get the
dialog in Figure 8. In this dialog, selectSexas the grouping variable, and push OK.
The program will then fit the POD model, which requires a nonlinear fit (generalized
nonlinear for other than normal errors with the identity kernel mean function). The
output is shown in Table 3.

In the output, we see that bothθ-parameters have smallp-values, suggesting that
both a separate slope and intercept are needed for eachSex; details of testing are dis-
cussed by Cook and Weisberg (2004). A POD model is a nonlinear model, and for the
model’s menu is the same as for a nonlinear model. In particular, an item “Fit subset
model” allows refitting the POD model by, for example, settingθ01 = 0, forcing the
two sexes to agree at the origin.
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Table 3: POD fit for the Australian athletes data.

Data set = AIS, Name of Fit = L1
Gnm-Normal Regression
Kernel mean function = Identity
Nonlinear mean function: y = eta0+eta1*x1+eta2*x2+eta3*x3+

G1*(th01+th11*(eta1*x1+eta2*x2+eta3*x3))
Fit using symbolic derivatives.
Response = LBM
Terms = (Ht Wt RCC)
Grouping var. = Sex
Coefficient Estimates
Label Estimate Std. Error Est/SE p-value
Eta0 -14.6565 6.46448 -2.267 0.0234
Eta1 0.146264 0.0342436 4.271 0.0000
Eta2 0.709342 0.0241639 29.355 0.0000
Eta3 0.724766 0.585402 1.238 0.2157
Th01 12.8473 3.76340 3.414 0.0006
Th11 -0.258750 0.0344636 -7.508 0.0000

Scale factor: 2.45979
Number of cases: 202
Degrees of freedom: 196
Pearson X2: 1185.911
Deviance: 1185.911
Reason for termination: Converged normally.
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Figure 7: The regression dialog to select a POD model

You can get a graph of the fitted POD model by selecting “Plot of” from the
Graph&Fit menu, and then selecting the “Linear part” of the fitted model for the hor-
izontal axis, the response on the vertical axis, and usingSexas a marking variable,
the “Fit by groups–general” item in the parametric smoother slidebar shows the fitted
response for each sex, as shown in Figure 9.

4tbh

4 Other changes

Page numbers below refer to the book.

1. The slicing mouse mode (pages 32 and 47) displays the within-slice sample size,
mean and SD as the mouse is moved across a plot. If you change the setting
*boxplot-show-5-num-sumry* to t , then on boxplots only the displayed
summary statistics include the minimum, maximum, quartiles, median and sam-
ple size. If you want this to the the default on your system, change the setting
*boxplot-show-5-num-sumry* to t , and select the item “Make change and
save new setting file.”

2. (Revised December 20, 1999) Several features have been added to make com-
munication betweenArc and other statistical packages and spreadsheets eas-

16



Figure 8: Select the grouping variable dialog

ier. We define aninterchange fileto be a plain file with headers (as described
in Section A.5.2, page 555). Such a file can be read by many standard pro-
grams, including MS Excel, Minitab, JMP, SPSS and Splus. To create an in-
terchange file, select “Display data” from the data set menu, then at the bottom
of the resulting dialog select “Save data in an interchange file.” The variables
you select will be saved in the file you name in a subsequent dialog. There are
four settings in the Settings menu to make this file easier to use. The setting
*interchange-header* if set tonil will leave the variable labels off the file
for use with programs that cannot read the first row as variable labels. The setting
*interchange-missing-indicator* gives the missing value code. The de-
fault is ?, as used inArc, but this can be changed, for example, toNA for Splus,
or to “.” for SAS or JMP (SAS can use? for numeric variables but not for text
variables).However, an interchange file that uses “.” for the missing value code
cannot be read intoArc unless you use an editor to replace all the periods by
something else, like?.

The remaining two settings help with text variables. For example, suppose you
have a text variableCity, with values like “Los Angeles.” By default, ifCity
is written in an interchange file, the value for “Los Angeles” will appear as
Los_Angeles , with the underline character_ substituted for any blanks, and
without quotation marks around the name. If this file is read back intoArc,
the value for Los Angeles will becomeLOS_ANGELES, sinceArc translates all
strings without quotation marks into all upper-case. Although not the best format
for reading data back intoArc, this format is the default because it is suitable for
most computer programs.

If you want the text-strings to be quoted (soArc can correctly retain upper and
lower case), set*interchange-quotes* to t . If you do not want blanks
translated to_, set*interchange-delete-blanks* to nil .

3. (August 8, 2001) If you use bothArc and either Splus or R, here is how you can
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Figure 9: POD model for the Australian athletes data.

write a matrix (or a data frame) in either of these programs to a file that can be
read directly byArc. If you have a matrix called X, then the command in R or
Splus

write.table(data.frame(X),"x.dat",quote=F,row.names=F,na="?")

will write a file calledx.dat based on the matrix x. Strings will not be quoted,
row names will not be included in the file, and the missing value character will
be?. If X is already a data frame, then

write.table(X,"x.dat",quote=F,row.names=F,na="?")

will work.

4. The coordinates of the points in any graph can be saved in an interchange file, so
the graph can then be redrawn, for example in a dedicated graphics package. If
the graph is calledplot1 , simply type the command

(send plot1 :points-to-file)

You can avoid the typed command by adding an item to the plot’s menu to
save the data in the plot automatically. This can be done changing the setting
*graph-to-transport-file* to t .

5. (Oct 1, 1999) A menu item on model menus allows saving some statistics like
residuals and fitted values as variables. The names of the saved variables have
been slightly changed so they no longer contain dashes, and can therefore be
used in defining new variables.
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6. (October 22, 1999) Theadd-data-directory function defined on page 548
now has an optional keywordrelative-to . On Windows, suppose that you
startArc from the directoryc:\MyArc and the library files (that is, all the files
created by the installer) are in the directoryc:\Arc . Most users will have the
same name for these two directories. The following adds directories to the search
path:

(add-data-directory "Mydata\" :relative-to ’home)
adds c:\MyArc\Mydata\

(add-data-directory "Mydata\" :relative-to ’library)
adds c:\Arc\MyData\

(add-data-directory "c:\" :relative-to nil)
adds c:\

7. (November 10, 1999) An item called “Display regression summary” on the para-
metric smoother slidebar on scatterplots displays the regression summary for the
graph in the text window. By default, LS fitting is used, but if a fitting method is
selected on the slidebar along with a power of a polynomial, the summary for the
model and method selected will be displayed. This method does not work with
separate lines fit to marked groups. Only visible points are used in the fitting.

8. (May 26, 2000) An item has been added to the Case deletions plot control on
each plot. This item is called “Create indicator for selected cases.” When this
item is chosen, a group indicator variable (equal to 1 for each selected case and 0
for all others) is added to the data set. A setting called*indicator-prefix*
can be set to choose the name of the new indicators.

9. (June 1, 2000) When using power curves (pages 319–320; 373–375), you can
now have the power selected for you to be the least squares estimate by selecting
the item “Estimate power via OLS” from the parametric smoother slide bar.

10. (August 1, 2000) A setting has been added to the Settings menu that will allow
automatic saving of allfuture Arc text to a file. To use this option, change the
setting as described below, select “Make change and save new settings file” from
the settings dialog, and then restart the program. Setting this option effects future
runs of the program, not the current run.

The setting is called*auto-save* . If *auto-save* is t , a file called
transcript.txt is saved in the Arc directory. If*auto-save* is set to
savefile.txt , then the file of this name will be created and saved.If you
use either of these options, the current saved file will overwrite any existing
file of the same name without warning! If you want to be more careful, set
*auto-save* to ask , in which case you will get a dialog at the beginning of
your Arc run to name the transcript file; you will be prompted if you are over-
writing an existing file. Finally, if the setting is equal toprompt , you will get a
prompt before selecting a file name. This last setting is recommended for novice
users, since getting a dialog without explanation at startup can be intimidating.

This option is the same as the Dribble item in the Arc menu. Selecting Dribble
from the file will stop saving the transcript file; see page 554.
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11. (July, 2000)p-values for coefficient estimates are now reported along with the
estimates and their standard errors in the Display estimates output. These are
two-tailedp-values, computed from thet-distribution for linear models and from
the normal distribution for all other models. Thep-values can be removed by
changing the setting*display-coef-pvalues* to nil .

All remaining items require downloading the file updates.lsp and putting it
in your extras directory.

12. (November 29, 2000) When using the “Display data” menu item in the dataset
menu, a checkbox has been added to allow sorting the data before display. You
can sort on any (or all) of the variables in the data. This effects only the display
of the data, but does not permanently reorder the cases in the dataset.

13. (January 4, 2001) The functionclt-demo can be used to reproduce the graphs
in Figure 1.9 on page 19. For example, the command

(clt-demo length 16 1000)

will reproduce Figure 1.9c (you need to use the plot control to add the kernel
density estimate). This function is available with updates.lsp dated January 4,
2001 or later.
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