
Structural pursuit over multiple undirected graphs ∗

Yunzhang Zhu1, Xiaotong Shen1 and Wei Pan2

Summary
Gaussian graphical models are useful to analyze and visualize conditional dependence relationships be-

tween interacting units. Motivated from network analysis under different experimental conditions, such as

gene networks for disparate cancer subtypes, we model structural changes over multiple networks with pos-

sible heterogeneities. In particular, we estimate multiple precision matrices describing dependencies among

interacting units through maximum penalized likelihood. Of particular interest are homogeneous groups of

similar entries across and zero-entries of these matrices, referred to as clustering and sparseness structures,

respectively. A non-convex method is proposed to seek a sparse representation for each matrix and identify

clusters of the entries across the matrices. Computationally, we develop an efficient method on the basis of

difference convex programming, the augmented Lagrangian method and the block-wise coordinate descent

method, which is scalable to hundreds of graphs of thousands nodes through a simple necessary and sufficient

partition rule, which divides nodes into smaller disjoint subproblems excluding zero-coefficients nodes for ar-

bitrary graphs with convex relaxation. Theoretically, a finite-sample error bound is derived for the proposed

method to reconstruct the clustering and sparseness structures. This leads to consistent reconstruction of

these two structures simultaneously, permitting the number of unknown parameters to be exponential in the

sample size, and yielding the optimal performance of the oracle estimator as if the true structures were given

a priori. Simulation studies suggest that the method enjoys the benefit of pursuing these two disparate kinds

of structures, and compares favorably against its convex counterpart in the accuracy of structure pursuit

and parameter estimation.

Key Words: Simultaneous pursuit of sparseness and clustering, multiple networks, non-
convex, prediction, signaling network inference.

1 Introduction

Graphical models are widely used to describe relationships among interacting units. Major

components of the models are nodes that represent random variables, and edges encoding

conditional dependencies between the nodes. Of great current interest is the identification

of certain lower-dimensional structures for undirected graphs. The central topic of this

∗1School of Statistics, 2Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455. This
research was supported in part by the National Science Foundation Grant DMS-1207771 and National
Institutes of Health Grants R01GM081535, HL65462 and R01HL105397. The authors thank the editors, the
associate editor and the reviewers for helpful comments and suggestions.

1

paper is maximum penalized likelihood estimation of multiple Gaussian graphical models for

simultaneously pursuing two disparate kinds of structures–sparseness and clustering.

In the literature on Gaussian graphical models, the current research effort has concen-

trated on reconstruction of a single sparse graph. Methods to exploit matrix sparsity include

[1, 5, 11, 13, 14, 15, 25], among others. For multiple Gaussian graphical models, existing

approaches mainly focus on either exploring temporal smoothing structure [7, 26] or encour-

aging common sparsity across the networks [6, 10]. In this paper, we focus on pursuing both

clustering and sparseness structures over multiple graphs, including temporal clustering as

a special case while allowing for abrupt changes of structures over graphs. For multiple

graphs without a temporal ordering, our method enables to identify possible element-wise

heterogeneity among undirected graphs. This is motivated by heterogeneous gene regulatory

networks corresponding to disparate cancer subtypes [18, 21]. In such a situation, the overall

associations among genes remain similar for each network, whereas specific pathways and

certain critical nodes (genes) may be differentiated under disparate conditions.

For multiple Gaussian graphical models, estimation is challenging due to enormous can-

didate graphs of order 2Lp
2
, where p is the total number of nodes and L is total number of

graphs. To battle the curse of dimensionality, we explore two dissimilar types of structures

simultaneously: (1) sparseness within each graph and (2) element-wise clustering across

graphs. The benefit of this exploration is three-fold. First, it goes beyond sparseness pursuit

alone for each graph, which is usually inadequate given a large number of unknown param-

eters relative to the sample size, as demonstrated in four numerical examples in Section 5.

Second, borrowing information across graphs enables us to detect the changes of sparseness

and clustering structures over the multiple graphs. Third, pursuit of these two structures at

the same time is suited for our problem, which seeks both similarities and differences among

the multiple graphs.

To this end, we propose a regularized/constrained maximum likelihood method for si-

2

multaneous pursuit of sparseness and clustering structures. Computationally, we develop

a strategy to convert the optimization involving matrices to a sequence of much simpler

quadratic problems. Most critically, we derive a necessary and sufficient partition rule to

partition the nodes into disjoint subproblems excluding zero-coefficient nodes for multiple

arbitrary graphs with convex relaxation, where the rule is applied before computation is per-

formed. Such a rule has been used in [12] for convex estimation of a single matrix and in [24]

for multiple matrices with the temporal structure, but has not been available for multiple

arbitrary graphs, to our knowledge. This makes efficient computation possible for multiple

large graphical models, which otherwise is rather difficult if not impossible. Theoretically,

we develop a novel theory for the proposed method, and show that it enables to reconstruct

the oracle estimator as if the true sparseness and element-wise clustering structures were

given a priori, which leads to reconstruction of the two types of structures consistently. This

occurs roughly when the size of L matrices p2L is of order exp(An), where p is the dimension

of the matrices and A is related to the Hessian matrices of the negative log-determinant of

the true precision matrices and the resolution level for simultaneous pursuit of sparseness

and element-wise clustering, c.f., Corollary 2. Moreover, we quantify the improvement due

to structural pursuit beyond that of sparsity.

The rest of this article is organized as follows. Section 2 introduces the proposed method.

Section 3 is devoted to estimation of partial correlations across multiple graphical models,

and develops computational tools for efficient computation. Section 4 presents a theory

concerning the accuracy of structural pursuit and parameter estimation, followed by some

numerical examples in Section 5 and an application to signaling network inference in Section

6. Section 7 discusses various issues in modeling. Finally, the appendix contains proofs.

3

2 Proposed method

Consider the L−sample problem with the l−th sample X
(l)
1 , · · · ,X(l)

nl from N (µl,Σl); l =

1, · · · , L, we estimate Ω = (Ω1, · · · ,ΩL), where Ωl = Σ−1l is the p × p inverse covariance

matrix and positive definite, denoted by Ωl � 0, µl and Σl are the corresponding mean

vector and covariance matrix, and the sample size n =
∑L

l=1 nl.

For maximum likelihood estimation, the profile likelihood for Ω, after µ1, · · · , µL are

maximized out, is proportional to
L∑
l=1

nl
(

log det(Ωl)− tr(SlΩl)
)
, (1)

where X̄l = n−1l
∑nl

i=1X
(l)
i and Sl = n−1l

∑nl
i=1(X

(l)
i −X̄l)(X

(l)
i −X̄l)

T are the corresponding

sample mean and covariance matrix, det and tr denote the determinant and trace. In (1),

the number of unknown parameters in Ω can greatly exceed the sample size n.

2.1 General penalized multiple precision matrices estimation

To avoid non-identifiability in (1) and encourage low dimensional structures, we propose a

regularized maximum likelihood approach through penalty functions Jjk(·):

maximizeΩ�0 S(Ω) =
L∑
l=1

nl
(

log det(Ωl)− tr(SlΩl)
)
−
∑
j 6=k

Jjk(ωjk1, · · · , ωjkL), (2)

where Ω = (Ω1, · · · ,ΩL) and only the off-diagonals {ωjkl} of Ωl are regularized. Note that

Jjk(·) could be any function that penalizes jk-th entries across Ωl’s. This encompasses many

existing penalty-based approaches for multiple Gaussian graphical models [6, 22] as special

cases.

In general, the maximization problem (2) involving L matrices is computationally dif-

ficult. To meet the computational challenges, we develop a general block-wise coordinate

descent strategy to reduce (2) to an iterative procedure involving much easier subproblems.

Before proceeding, we introduce some notations. Let the jth row (or column) of Ωl be ωjl,

let ω−jl = (ωj1l, . . . , ωj(j−1)l, ωj(j+1)l, . . . , ωjpl) be a (p− 1)-dimensional vector, excluding the

4

jth component of ωjl, and Ω−jl be the sub-matrix without the jth row and column of Ωl,

and Ω−1−jl be the inverse of Ω−jl.

Our proposed method maximizes (2) by sweeping each row (or column) of Ω across

l = 1, · · · , L. Using the property that det(Ωl) = det
(
Ω−jl(ωjjl − ωT−jlΩ−1−jlω−jl)

)
with T

indicating the transpose, we rewrite (2), after ignoring constant terms, as a function of each

row (or column) (ωj1, · · · ,ωjl) across l; j = 1, · · · , p,
L∑
l=1

nl
(

log
(
ωjjl − ωT−jlΩ−1−jlω−jl)

)
− sjjlωjjl − 2sT−jlω−jl

)
−
∑
k 6=j

Jjk(ωjk1, · · · , ωjkL). (3)

First, for each fixed row (or column) of Ω across l = 1, · · · , L, we maximize (3) over the

diagonals (ωjj1, · · · , ωjjl) given the corresponding off-diagonals (ω−j1, · · · ,ω−jl). Setting the

partial derivatives of (3) in the diagonals to be zero yields the profile maximizer of (2)

ω̂jjl = 1/sjjl + ωT−jlΩ
−1
−jlω−jl, l = 1, · · · , L. (4)

Second, substituting (4) into (3) yields the negative profile likelihood of (2) for (ω−jl, · · · ,ω−jl)
L∑
l=1

nl
(
sjjlω

T
−jlΩ

−1
−jlω−jl + 2sT−jlω−jl

)
+
∑
k 6=j

Jjk(ωjk1, · · · , ωjkL). (5)

Third, the aforementioned process is repeated for each rows (or columns) of Ω until a certain

stopping criterion is satisfied. By Theorem 1, profiling is equivalent to the original problem

for separable convex penalty functions summarized as follows.

Theorem 1 Iteratively minimizing (5) over the off-diagonals (ω−j1, · · · ,ω−jL) and updating

diagonals ωjjl by (4); j = 1, · · · , p, l = 1, · · · , L converges to a local maximizer of (2).

Moreover, if Jjk(·) are convex, it converges to a global maximizer.

Theorem 1 reduces (2) to iteratively solving (5) which is quadratic in its argument. On

this ground we design efficient methods for solving (2) with a specific choice of Jjk(·) next.

2.2 Pursuit of sparseness and clustering structures

A zero element in Ωl corresponds to conditional independence between two components of

Y (l) given its other components [9]. Thus, within each precision matrix Ωl, estimating its

5

elements reconstructs its graph structure, where a zero-element of Ωl corresponds to no edges

between the two nodes, encoding conditional independence. In addition, the nodes connect-

ing many other nodes are identified, called network hubs. On the other hand, over multiple

precision matrices, estimating element-wise clustering structure can reveal the change of

sparseness and clustering structures.

To detect clustering structures, consider element-wise clustering of entries of Ω1, · · · ,ΩL

based on possible prior knowledge. The prior knowledge is specified loosely in an undirected

graph U with each node corresponding to a triplet (j, k, l); 1 ≤ j < k ≤ p, 1 ≤ l ≤ L. That

is, an edge between node (j, k, l) and (j, k, l′) means that the (j, k)th entry of Ωl and the

(j, k)th entry of Ωl′ tend to be similar a priori and thus can be pushed to share the same

value. Specifically, let Ejk denote a set of edges between two distinct nodes (j, k, l) 6= (j, k, l′)

of U , where (l, l′) ∈ Ejk indicates a connection between the two nodes (j, k, l), (j, k, l′). To

identify homogeneous subgroups of off-diagonals {ωjkl} of Ωl across l = 1, · · · , L over U ,

including the group of zero-elements, we propose a non-convex penalty of the form

Jjk(ωjk1, · · · , ωjkL) = λ1

L∑
l=1

Jτ (|ωjkl|) + λ2
∑

(l,l′)∈Ejk

Jτ (|ωjkl − ωjkl′ |), (6)

to regularize (2), where λ1 and λ2 are nonnegative tuning parameters controlling the degrees

of sparseness and clustering, Jτ (z) = min(|z|, τ) is the truncated L1-penalty of [17], called

TLP in what follows, which, after rescaled by 1
τ
, approximates the L0-function when tuning

parameter τ > 0 tends to 0+.

Note that our approach is applicable to a variety of applications by specifying the graph

U . For time varying graphs, our method can be used to detect the change of clustering

structure, where Ejk is a serial graph as in the fused Lasso [19], and a serial temporal relation

is defined only for elements in adjacent matrices. One key difference between our method

and the smoothing method [26, 7] is that it enables to accommodate abrupt changes of

structures over networks. For multiple graphs without a serial ordering, the proposed method

enables to identify possible element-wise heterogeneity among undirected graphs, such as

6

gene regulatory networks corresponding to disparate cancer subtypes [18, 21]. Heterogeneity

of this type can be dealt with by specifying a complete graph for each Ejk.

3 Computation

This section proposes a relaxation method to treat non-convex penalties in (6). For large-

scale problems, a partition rule may be useful, which breaks large matrices into many small

ones to process separately. A novel necessary and sufficient partition rule is derived for our

non-convex penalization method as well as its convex counterpart, generalizing the results

for single precision matrix estimation [12, 22].

3.1 Non-convex optimization

For the non-convex minimization (2) with (6), we develop a relaxation method by solving a

sequence of convex problems. This method integrates difference convex (DC) programming

with block-wise coordinate descent method based on the foregoing strategy.

For DC programming, we first decompose S(Ω) into a difference of two convex functions:

S(Ω) = S1(Ω)− S2(Ω), with

S1(Ω) =
L∑
l=1

nl
(

log det(Ωl)− tr(SlΩl)
)

+ λ1
∑

(j,k,l):j 6=k

|ωjkl|+ λ2
∑

1≤j 6=k≤p

∑
(l,l′)∈Ejk

|ωjkl − ωj′k′l′ |,

S2(Ω) =
∑
j 6=k

λ1

L∑
l=1

max(|ωjkl| − τ, 0) + λ2
∑

1≤j 6=k≤p

∑
(l,l′)∈Ejk

max(|ωjkl − ωj′k′l′ | − τ, 0), (7)

where a DC decomposition of Jτ (|z|) = |z| − max(|z| − τ, 0) is used. Then the trailing

convex function S2(Ω) is iteratively approximated by its minorization, say at iteration m,

λ1
∑L

l=1

∑
j 6=k(I(|ω̂

(m)
jkl | ≤ τ)|ωjkl|+λ2

∑
1≤j 6=k≤p

∑
(l,l′)∈E I(|ω̂

(m)
jkl −ω̂

(m)
jkl′ | ≤ τ)|ωjkl−ωjkl′ |. This

is obtained through minorization |z(m)| + ζ(|z(m)|)(|z| − |z(m)| of max(|z| − τ, 0) at |ω̂(m)
jkl |,

which is the solution at iteration m− 1, where ζ(|z(m)|) is the gradient of max(|z| − τ, 0) at

|z(m)|; see [17] for more discussions about minorization of this type. At iteration m, the cost

7

function to minimize is

−
L∑
l=1

nl

(
log det(Ωl)− tr(SlΩl)

)
+ λ1

∑
(j,k,l)∈E(m)

|ωjkl|+ λ2
∑

{(j,k,l),(j,k,l′)}∈F (m)

|ωjkl − ωjkl′ | (8)

subject to Ωl � 0; l = 1, · · · , L, where E(m) = {(j, k, l) : |ω̂(m)
jkl | ≤ τ, j 6= k}; F (m) =

{{(j, k, l), (j, k, l′)} : (l, l′) ∈ Ejk, |ω̂(m)
jkl − ω̂

(m)
jkl′ | ≤ τ}.

To solve (8), we apply Theorem 1 to iteratively minimize:
L∑
l=1

nl
(
sjjlω

T
−jlΩ

−1
−jlω−jl + 2sT−jlω−jl

)
+ λ1

∑
(j,k,l)∈E(m)

|ωjkl|

+ λ2
∑

{(j,k,l),(j,k,l′)}∈F (m)

|ωjkl − ωjkl′|, (9)

and update diagonal elements using (4). This quadratic problem can then be efficiently

solved using augmented Lagrangian methods as in [27].

Unlike the coordinate descent method updating one component at a time, we update one

component of ζ and two components (ωjkl, ωjjl) for Ωl at the same time.

In (9), computation of Ω−1−jl by directly inverting Ω−jl has a complexity of O(p3) opera-

tions for each (j, l). For efficient computation, we utilize the special property of our sweeping

operator in that the (p− 1)2 elements of Ωl are unchanged except one row and one column

are swept, in addition to the rank one property for updating the formula. In (9), we derive an

analytic formula through block-wise inversion and the Neumann formula of a square matrix,

to compute (Ω−jl)
−1 from (ωjjl,ω−jl,Ω

−1
l) and Ω−1l from (ωjjl,ω−jl, (Ω

−1
−l)−j) for each (j, l).

That is,

(Ω−jl)
−1 = (Ω−1l)−j −

(Ω−1
l)j(Ω

−1
l)Tj

(Ω−1
l)jj

, (10)

Ω−1l =

 (Ω−1l)−j + baaT −ba

−baT b

 ,a = (Ω−1l)−jω−jl, b = (ωjjl − aTω−jl)−1. (11)

This amounts to O(p2) operations.

The foregoing discussion leads to our DC block-wise coordinate descent algorithm through

sweeping operations over p(p−1) off-diagonals of (Ω1, · · · ,ΩL), with each operation involving

8

the L corresponding off-diagonals.

Algorithm 1:

Step 1. (Initialization) Set Ω̂
(0)
l = I; l = 1, · · · , L, E(0) = {(j, k, l) : 1 ≤ j 6= k ≤ p, 1 ≤ l ≤

L}, F (0) = E , m = 0 and precision tolerance ε = 10−5 for Step 2.

Step 2. (Iteration) At current iteration m, initialize Ω = Ω̂(m). Then solve (8) applying

the block-wise coordinate descent algorithm to update Ω to yield Ω̂(m+1). And set E(m+1) =

{(j, k, l) : |ω̂(m+1)
jkl | ≤ τ, j 6= k}; F (m+1) = {{(j, k, l), (j′, k′, l′)} : (l, l′) ∈ Ejk, |ω̂(m+1)

jkl −

ω̂
(m+1)
j′k′l′ | ≤ τ}. Specifically,

a) For each row (column) index j = 1, · · · , p, compute Ω−1−jl using (10); l = 1, · · · , L.

Solve (9) to obtain ω̂
(m)
−jl , and then compute ω̂

(m)
jjl through (4); l = 1, · · · , L. Update Ω

(m)
l

with its jth row replaced by (ω̂
(m)
jjl , ω̂

(m)
−jl) and its jth column by symmetry. Finally update

(Ω
(m)
l)−1 using (11). Go to next iteration j + 1 until all rows of Ω

(m)
l have been swept.

b) Repeat a) until the decrement of the objective function is less than ε. After conver-

gence, update Ω to yield Ω̂(m+1) = Ω based on a).

Step 3. (Stopping criterion) Terminate when E(m+1) = E(m) and F (m+1) = F (m), otherwise,

repeat Step 2 with m = m+ 1.

The overall complexity of Algorithm 1 is of order O(p3L2). And real computational time

of our algorithm depends highly on values of λ1, λ2 and the number of iterations. In Example

1, it takes about 30 seconds for one simulation run with (p, L) = (200, 4) over 100 grids on

a 8-core computer with Intel(R) Core(TM) i7-3770 processors and 16GB of RAM.

3.2 Partition rule for large-scale problems

This section establishes a necessary and sufficient partition rule for our non-convex penal-

ization method and its convex counterpart using the sample covariances, permitting fast

computation for large-scale problems by partitioning nodes into disjoint subsets excluding

the zero-coefficient subset then applying the proposed method to each nonzero subset. Such

9

a result exists only for a single matrix or a special case of multiple matrices, c.f., [12, 22].

In what follows, we only consider the case where Ejk = E are identical. Given this graph

G = (V, E), with (V = {1, · · · , L}, E = Ejk, 1 ≤ j < k ≤ p) denoting the node and edge sets,

we write l ∼ l′ if (l, l′) ∈ E , or two nodes are connected. First consider the convex grouping

penalty over G, followed by a general case, where the penalized log-likelihood is

L∑
l=1

(
nl
(
− log det(Ωl) + tr(ΩlSl)

)
+ λ1‖Ωl,off‖1

)
+ λ2

∑
l∼l′
‖Ωl,off −Ωl′,off‖1, (12)

where Ωl,off denotes the off-diagonal elements of Ωl and Sl = (sjkl)1≤j,k≤p are the sample

covariance matrices, l = 1, · · · , L.

The next theorem derives a necessary and sufficient condition for the jkth element of Ω̂l

Ω̂jkl = 0 across l = 1, · · · , L, for j ∈ J , k ∈ J c, where (Ω̂1, · · · , Ω̂L) is the minimizer of

(12), and J ⊂ {1, · · · , p} is any subset. This partitions the node set into disjoint subsets of

connected nodes, with no connections between these subsets.

Theorem 2 (Partition rule for (12)) Ω̂jkl = 0 for all j ∈ J ; k ∈ J c and l = 1, · · · , L,

if and only if (sjk1, · · · , sjkL) ∈ S, for all j ∈ J , k ∈ J c, where S =
{
s = (s1, · · · , sL) :

|
∑

l∈I nlsl| ≤ λ1|I| + λ2d(I, Ic),∀I ⊆ V
}

with d(I, Ic) =
∑

l∈I,l′∈Ic I
(
l ∼ l′

)
denoting the

number of edges between the nodes in I and the remaining nodes in Ic.

Similar results hold for the proposed non-convex regularized estimators.

Theorem 3 (Partition rule for non-convex regularization) Denote by Ω̂dc the solution ob-

tained from Algorithm 1 for (2). Similarly, given any J , Ω̂dc
jkl = 0 for all j ∈ J ; k ∈ J c;

l = 1, · · · , L, if and only if (sjk1, · · · , sjkL) ∈ S, where S =
{
s = (s1, · · · , sL) : |

∑
l∈I nlsl| ≤

λ1|I|+ λ2d(I, Ic),∀I ⊆ V
}

.

Corollary 1 simplifies the expression of S for specific graphs.

Corollary 1 In the cases of the fused graph and the complete graph, we have

10

S =

{
s :
∣∣∣ l∑
i=1

nisi

∣∣∣ ≤ lλ1 + λ2,
∣∣∣ L∑
i=L−l+1

nisi

∣∣∣ ≤ lλ1 + λ2, l = 1, · · · , L− 1,

∣∣∣ l2∑
i=l1+1

nisi

∣∣∣ ≤ (l2 − l1)λ1 + 2λ2, 1 ≤ l1 < l2 < L;
∣∣∣ L∑
i=1

nisi

∣∣∣ ≤ Lλ1

}
,

S =

{
s :
∣∣∣ l∑
i=1

nkiski

∣∣∣ ≤ lλ1 + l(L− l)λ2,
∣∣∣ L∑
i=L−l+1

nkiski

∣∣∣ ≤ lλ1 + l(L− l)λ2,

l = 1, · · · , L, sk1 ≥ · · · ≥ skL

}
.

The partition rule is useful for efficient computation, as it may reduce computation cost

substantially. It can be used in several ways. First, the rule partitions nodes into disjoint con-

nected subsets through the sample covariances sjkl’s. This breaks the original large problem

into smaller subproblems, owing to this necessary and sufficient rule. Second, Algorithm 1

can be applied to each subproblem independently, permitting parallel computation.

Algorithm 2 integrates the partition rule in Theorem 3 with Algorithm 1 to make the

proposed method applicable to large-scale problems.

Algorithm 2 (A partition version of Algorithm 1):

Step 1. (Screening) Compute the sample-covariance matrix Sl; l = 1, · · · , L. Construct a

p × p symmetric matrix T = (tjk)1≤j,k≤p, with tjk = 0 if (sjk1, · · · , sjkL) ∈ S and tjk = 1

otherwise. Treating T as an adjacency matrix of an undirected graph, we compute its

maximum connected components to form a partition of nodes {J1, · · · ,Jq} using breadth-

first search or depth-first search algorithm, c.f., [3]

Step 2. (Subproblems) For i = 1, · · · , q, solve (2) for each subproblem consisting of nodes

in Ji, by applying Algorithm 1 to obtain the solution Ω̂(i) =
(
Ω̂

(i)
1 , · · · , Ω̂

(i)
L

)
; i = 1, · · · , q.

Step 3. (Combining results) The final solution Ω̂l = Diag
(
Ω̂

(1)
l , · · · , Ω̂(q)

l

)
; l = 1, · · · , L.

11

4 Theory

This section investigates theoretical aspects of the proposed method. First we develop a gen-

eral theory on maximum penalized likelihood estimation involving two types of L0-constraints

for pursuit of sparseness and clustering. Then we specialize the theory for estimation of mul-

tiple precision matrices in Section 4.3. Now consider a constrained L0-version of (2):

max
θ=(β,η)

L(θ), subject to
d∑
j=1

I(|βj| 6= 0) ≤ C1,
∑

(jj′)∈E

I
(
|βj − βj′| 6= 0

)
≤ C2. (13)

as well as its computational surrogate

max
θ=(β,η)

L(θ), subject to
d∑
j=1

Jτ (|βj|) ≤ C1,
∑

(jj′)∈E

Jτ
(∣∣βj − βj′∣∣) ≤ C2, (14)

where θ = (β,η) with β ∈ Rd and η representing the off-diagonals and diagonals of Ω, and

three non-negative tuning parameters (C1, C2, τ). Note that Algorithm 1 yields a local

minimizer of (14), relaxing it by solving a sequence of convex problems.

In what follows, we will prove that global minimizers of (13) and (14) reconstruct the

ideal oracle estimator as if the true sparseness and clustering structures of the precision

matrices were known in advance. As a result of the reconstruction, key properties of the

oracle estimator are simultaneously achieved by the proposed method.

4.1 The oracle estimator and consistent graph

To define the oracle estimator, let G(β) denote a partition of I ≡ {1, · · · , d} by the parameter

β, i.e. G(β) = (I0(β), · · · , IK(β)(β)), with I0(β) = I \A(β) and Ik(β) satisfying βj = βj′ ;

j, j′ ∈ Ik(β); k = 1, · · · , K(β), where K(β) is the number of nonzero clusters and A(β) ≡

{i : βi 6= 0} is the support of β. Let G0 = G(β0) be the true partition induced by β0, with

θ0 = (β0,η0) the true parameter value and β0 ∈ Rd.

Definition 1 (Oracle estimator) Given G0, the oracle estimator is defined as: θ̂o =

(β̂o, η̂o) = argmaxβ:G(β)=G0 L(θ), the corresponding maximum likelihood estimator.

12

In (13) and (14), the edge set E of U is important for clustering. In order for simultaneous

pursuit of sparseness and clustering structures to be possible, we may need U to be consistent

with the clustering structure of the true precision matrices. In other words, a consistent graph

is a minimal requirement for reconstruction of the oracle estimator, where there must exist

a path connecting any nodes within the same true cluster.

Definition 2 (Consistent graph U) An undirected graph U =
(
I, E

)
is consistent with

the true cluster G0 = {I00 , · · · , I0K0
}, if the subgraph restricting nodes on I0j is connected;

j = 1, · · · , K0.

4.2 Non-asymptotic probability error bounds

This section derives a non-asymptotic probability error bound for simultaneous sparseness

and clustering pursuit, based on which we prove that (13) and (14) reconstruct the oracle

estimator. This implies consistent identification of the sparseness and clustering structures

of multiple graphical models, under one simple assumption, called the degree-of-separation

condition.

Before proceeding, we introduce some notations. Given a graph U = (I, E), let S ={
θ = (β,η) : |A(β)| ≤ d0, C(β, E) ≤ c0,G(β) 6= G(β0)

}
be a constrained set with C(β, E) =∑

(jj′)∈E I
(
|βj − βj′ | 6= 0

)
, where d0 = |A0| with A0 = A(β0) as defined above. Given a

partition G, let SG =
{
θ ∈ S : G(β) = G

}
. Given an index set A ⊆ I, let SA =

{
θ ∈

S : A(β) = A
}

. Let Si = ∪A:|A0\A|=iSA, S?i = maxA:|A0\A|=i
∣∣{G(β) : θ = (β,η) ∈ SA}

∣∣;
i = 0, · · · , d0, and S∗ = exp

(
max0≤i≤d0

logS∗i
max(i,1)

)
. Roughly, S? quantifies complexity of the

space of candidate precision matrices scaled by the number of nonzero entries.

The degree-of-separation condition will be used to ensure consistent reconstruction of the

oracle estimator: For some constant c1 > 0,

Cmin(θ0) ≥ c1
log d+ logS∗

n
, (15)

13

where Cmin(θ0) ≡ inf{θ=(β,η)∈S}
− log(1−h2(θ,θ0))
max(|A0\A(β)|,1) with | · | and \ denoting the size of a set and

that of set difference, respectively, h(θ,θ0) =
(
1
2

∫
(g1/2(θ, y) − g1/2(θ0, y))2dµ(y)

)1/2
is the

Hellinger-distance for densities with respect to a dominating measure µ.

We now define the bracketing Hellinger metric entropy of space F , denoted by the func-

tion H(·,F), which is the logarithm of the cardinality of the u-bracketing (of F) of the

smallest size. That is, for a bracket covering S(ε,m) = {f l1, fu1 , · · · , f lm, fum} ⊂ L2 satisfying

max1≤j≤m ‖fuj − f lj‖2 ≤ ε and for any f ∈ F , there exists a j such that f lj ≤ f ≤ fuj , a.e.

P , then H(u,F) is log(min{m : S(u,m)}), where ‖f‖2 =
∫
f 2(z)dµ. For more discussions

about metric entropy of this type, see [8].

Assumption A: (Complexity of the parameter space) For some constant c0 > 0 and

any 0 < t < ε ≤ 1, H(t,BG) ≤ c0(log p)2, 1)|A| log(2ε/t), where BG = FG ∩ {h(θ,θ0) ≤ 2ε}

is a local parameter space, and FG = {g1/2(θ, y) : θ = (β,η) : G(β) = G} be a collection of

square-root densities indexed by any subset G ∈ {G(β) : θ = (β,η) ∈ S}.

Next we present our non-asymptotic probability error bounds for reconstruction of the

oracle estimator θ̂0 by global minimizers of (13) and (14) in terms of Cmin(θ0), n, d and

d0, where d0 and d can depend on n. Consistency is established for reconstruction of θ̂0

as well as structure recovery. Note that θ̂0 is asymptotically optimal, hence the optimality

translates into the global minimizers of (13) and (14).

Theorem 4 (Global minimizer of (13)) Under Assumption A, if U is consistent with G0,

then for a global minimizer of (13) θ̂l0 with estimated grouping Ĝl0 = G(β̂l0) at (C1, C2) =

(d0, c0) with c0 = C(β0, E),

P
(
Ĝl0 6= G0

)
= P

(
θ̂l0 6= θ̂o

)
≤ exp

(
− c2nCmin(θ0) + 2 log d+ logS?

)
. (16)

Under (15), P
(
Ĝl0 = G0

)
= P

(
θ̂l0 = θ̂o

)
→ 1 as n, d→∞.

For the constrained truncated L1-likelihood, one additional condition–Assumption B

is necessary. We requires the Hellinger-distance to be smooth so that the approximation of

14

the truncated L1-function to the L0-function becomes adequate by tuning τ .

Assumption B: For some constants d1-d3 > 0,

− log(1− h2(θ,θ0)) ≥ −d1 log(1− h2(θτ ,θ0))− d3τ d2d, (17)

where θτ = (βτ , η) with βτ = (βτ1 , · · · , βτp), and βτj =
∑
j′∈Ik

β′j
|Ik|

for j ∈ Ik(β); k =

0, 1, · · · , K(β).

Theorem 5 (Global minimizer of (14)) Assume that Assumption A with FG replaced by

F τG = {g1/2(θ, y) : θ = (β,η) : Gτ (β) = G} and Assumption B are met. If U is consistent

with G0, then for a global minimizer of (14) θ̂g with estimated grouping Ĝg = G(β̂g) at

(C1, C2) = (d0, c0) with c0 = C(β0, E) and τ ≤
((d1−c3)Cmin(θ

0)
d3d

)1/d2,

P
(
Ĝg 6= G0

)
= P

(
θ̂g 6= θ̂o

)
≤ exp

(
− c3nCmin(θ0) + 2 log d+ logS?

)
. (18)

Under (15), P
(
Ĝg = G0

)
= P

(
θ̂g = θ̂o

)
→ 1 as n, d→∞.

4.3 An illustrative example

We now apply the general theory in Theorems 2 and 3 to the estimation of multiple precision

matrices, in which the true precision matrices in each cluster are the same, with g0 ≡∑L−1
l=1

∑
j>k I

(
ω0
jkl 6= ω0

jk(l+1)

)
the number of break points among these clusters. In this case,

a serial graph U is considered for clustering.

Denote by p and L0 the dimension of the precision matrix and the number of distinctive

clusters, respectively. Let Hl =
(
∂2(− log det(Ωl))

∂2Ω

)∣∣∣
Ωl=Ω0

l

be the p2 × p2 Hessian matrix of

− log det(Ωl), whose (jk, j′k′) element is tr(Σl∆jkΣl∆j′k′), c.f., [2]. Define

ηmin = min
(

min
(j,k,l):ω0

jkl 6=0

∣∣ω0
jkl

∣∣, 1√
2

min
(j,k,l):ω0

jkl 6=ω
0
jk(l+1)

∣∣ω0
jkl − ω0

jk(l+1)

∣∣)
to be the resolution level for simultaneous sparseness and clustering pursuit.

An application of Theorems 2 and 3 with β and η being off-diagonals and diagonals of

Ω leads to the following result.

Corollary 2 (Multiple precision matrices with a serial graph) When U is a serial graph, all

15

the results in Theorems 2 and 3 for simultaneous pursuit of sparseness and clustering hold

under two simple conditions:

Cmin(θ0) ≥ c4 min
1≤l≤L

cmin
(
Hl

)
η2min, and logS? ≤ 2g0 max(log(d0/g0), 1), (19)

for some constant c4 > 0. Sufficiently, if

min
1≤l≤L

cmin
(
Hl

)
η2min ≥ c0

log
(
Lp(p− 1)/2

)
− g0 max

(
log(d0/g0), 1

)
n

, (20)

holds for some constant c0 > 0, then P
(
Ω̂`0 6= Ω̂o

)
and P

(
Ω̂g 6= Ω̂o

)
→ 0 as n, d→ +∞.

Corollary 2 suggests that the amount of reconstruction improvement would be of the

order of 1/L if the L precision matrices are identical. In general, the amount of im-

provement of joint estimation over separate estimation is L/ log(L) when g0 is small, i.e.

g0 max
(

log(d0/g0), 1
)
. log

(
Lp(p − 1)/2

)
, by contrasting the sufficient condition in (20)

with that for a separate estimation approach in [17], where . denotes inequality ignoring

constant terms. Here g0 describes similarity among L precision matrices with a small value

corresponding to a high-degree of similarity shared among precision matrices.

5 Numerical examples

This section studies operational characteristics of the proposed method via simulation in

sparse and nonsparse situations with different types of graphs in both low- and high-dimensional

settings. In each simulated example, we compare our method against its convex counterpart

for seeking the sparseness structure for each graphical model and identifying the grouping

structure among multiple graphical models, and contrast the method against its counter-

part seeking the sparseness structure alone. In addition, we also compare against a kernel

smoothing method for time-varying networks [7, 26] in Examples 1-3, whenever appropri-

ate. The smoothing method defines a weighted average over sample covariance matrices

at time points as S̃l(h) =
∑L
l′=1 wll′ (h)S

′
l∑L

l′=1 wll′ (h)
, with wll′(h) = K(h−1|l − l′|); l = 1, · · · , L, where

K(x) = (1− |x|)I(|x| < 1) is a triangular kernel, h is a bandwidth, and l = 1, · · · , L denotes

16

clusters. Then within each cluster l, the precision matrix estimate Ω̂l(h, λ) is obtained by

solving

Ω̂l(h, λ) = argmin
Ωl�0

(
− log det

(
Ωl

)
+ tr(ΩS̃l(h)) + λ

∑
j<j′

|ωjj′l|
)
, l = 1, · · · , L (21)

using the glasso algorithm [5], and the final estimate is obtained through tuning over (h, λ)-

grids. Two performance metrics are used to measure the accuracy of parameter estimation

as well as that of correct identification of the sparseness and grouping structures.

In Examples 1-3, temporal clustering pursuit is performed over Ω1, · · · ,ΩL through a

serial graph E =
{
{(j, k, l), (j′, k′, l′)} : j = j′, k = k′, |l − l′| = 1

}
. That is, only adjacent

matrices may be possibly clustered. In Example 4, general clustering pursuit is conducted

through a complete graph E =
{
{(j, k, l), (j′, k′, l′)} : j = j′, k = k′, l < l′

}
.

For the accuracy of parameter estimation, the average entropy loss (EL) and average

quadratic loss (QL) are considered, defined as

EL =
1

L

L∑
l=1

(
tr
(
Ω−1l Ω̂l

)
− log det

(
Ω−1l Ω̂l

))
, QL =

1

L

L∑
l=1

tr
((

Ω−1l Ω̂l − I
)2)

.

For the accuracy of identification, average false positive (FPV) and false negative (FNV)

rates for sparseness pursuit, as well as those (FPG) and (FNG) for grouping are used:

FPV =
1

L

L∑
l=1

∑
1≤j<j′≤p I(ωjj′l = 0, ω̂jj′l 6= 0)∑

1≤j<j′≤p I(ωjj′l = 0)

(
1− I

(
Ωl,off 6= 0

))
FNV =

1

L

L∑
l=1

∑
1≤j<j′≤p I(ωjj′l 6= 0, ω̂jj′l = 0)∑

1≤j<j′≤p I(ωjj′l 6= 0)
I
(
Ωl,off 6= 0

)
,

FPG =
1

|E|
∑
l∼l′

∑
1≤j<j′≤p I(ωjj′l = ωjj′l′ , ω̂jj′l 6= ω̂jj′l′)∑

1≤j<j′≤p I(ωjj′l = ωjj′l′)

(
1− I

(
Ωl,off 6= Ωl′,off

))
,

FNG =
1

|E|
∑
l∼l′

∑
1≤j<j′≤p I(ωjj′l 6= ωjj′l′ , ω̂jj′l = ω̂jj′l′)∑

1≤j<j′≤p I(ωjj′l 6= ωjj′l′)
I
(
Ωl,off 6= Ωl′,off

)
,

where Ωl,off denotes the off-diagonal elements of Ωl. Note that FPV and FNG as well as

FNV and FNG are not comparable due to normalization with and without the zero-group,

respectively.

17

For tuning, we minimize a prediction criterion with respect to the tuning parameter(s) on an

independent test set with the same sample size as the training set. The prediction criterion

is CV (λ) = 1
L

∑L
l=1

(
− log det

(
Ω̂l(λ)

)
+ tr

(
Stune
l Ω̂l(λ)

))
, where Stune

l is the sample

covariance matrix for the tuning data; l = 1, · · · , L. Then the estimated tuning parameter

is obtained: λ? = argminλCV (λ), which is used in the estimated precision matrices. Here

minimization of CV (λ) is performed through a simple grid search over the domain of the

tuning parameter(s).

All simulations are performed based on 100 simulation replications. Three different types

of networks are considered. Specifically, Example 1 concerns a chain network with small

p and L but large n, where each Ωl is relatively sparse and a temporal change occurs

at two different l values. Example 2 deals with a nearest neighbor networks for each Ωl

and the same temporal structure as in Example 2. Examples 3 and 4 study exponentially

decaying networks in nonsparse precision matrices in high and low-dimensional situations

with large and small L, respectively. In Examples 1-3 and Example 4, Algorithms 1 and 2

are respectively applied.

Example 1: Chain networks: This example estimates tridiagonal precision matrices as

in [4]. Specifically, Ω−1l = Σl is AR(1)-structured with its ij-element being σijl = exp(−|sil−

sjl|/2), and s1l < s2l < · · · < spl are randomly chosen: sil−s(i−1)l ∼ Unif(0.5, 1); i = 2, · · · , p,

l = 1, · · · , L. The following situations are considered: (I) (n, p, L) = (120, 30, 4), (n, p, L) =

(120, 200, 4), with Ω1 = Ω2, Ω3 = Ω4; (II) (n, p, L) = (120, 20, 30), (n, p, L) = (120, 10, 90),

with Ω1 = · · · = ΩL/3, Ω(1+L/3) = · · · = Ω2L/3, Ω1+2L/3 = · · · = ΩL. Then, we study the

proposed method’s performance as a function of the number of graphs and the number of

nodes.

Example 2: Nearest neighbor networks. This example concerns networks described

in [11]. In particular, we generate p points randomly on a unit square, and compute the k

nearest neighbors of each point based on the Euclidean distance. In the case of k = 3, three

18

points are connected to each point. For each ”edge” in the graph, the corresponding off-

diagonal in a precision matrix is sampled independently according to the uniform distribution

over [−1,−0.5] ∪ [0.5, 1], and the ith diagonal is set to be the sum of the absolute values of

the ith row off-diagonals. Given the previous cluster, the matrices in the current cluster are

obtained by randomly adding or deleting a small fraction of nonzero elements in the matrices

from previous cluster. Finally, each row of a precision matrix is divided by the square root

of the product of corresponding diagonals (ωij ← ωij√
ωiiωjj

) so that diagonals of the final

precision matrices are one. The following scenarios are considered: (I) (n, p, L) = (300, 30, 4)

and (n, p, L) = (300, 200, 4), where Ω1 = Ω2, Ω3 = Ω4, and (II) (n, p, L) = (300, 20, 30) and

(n, p, L) = (300, 10, 90), where Ω1 = · · · = ΩL/3,Ω1+L/3 = · · · = Ω2L/3,Ω1+2L/3 = · · · = Ωl.

In (I), the first cluster of matrices (Ω1,Ω2) are generated using the above mechanism, with

the second cluster of matrices (Ω3,Ω4) obtained by deleting one edge for each node in the

network. In (II), the generating mechanism remains except that the third cluster of matrices

(Ω1+2L/3, · · · ,ΩL) are generated by adding an edge for each node in its previous adjacent

network.

Example 3: Exponentially decaying networks. This example examines a nonsparse

situation in which elements of precision matrices are nonzero, and decay exponentially with

respect to their Euclidean distances to the corresponding diagonals. In particular, the (i, j)th

entry of the lth precision matrix ωijl is exp
(
al|i−j|

)
with al sampled uniformly over [1, 2]. In

this case, it is sensible to report the results for parameter estimation as opposed to identifying

nonzeros As in Examples 1 and 2, several scenarios are considered: (I) (p, L) = (30, 4),

(p, L) = (200, 4), and the sample size n = 120 or 300 with Ω1 = Ω2, Ω3 = Ω4, and (II)

(p, L) = (20, 30), (p, L) = (10, 90), and the sample size n = 120 or 300 with Ω1 = · · · =

ΩL/3,Ω1+L/3 = · · · = Ω2L/3,Ω1+2L/3 = · · · = ΩL.

Example 4: Large precision matrices. This example utilizes the partition rule to

treat large-scale simulations. First, we examine two cases (n, p, L) = (120, 1000, 4) and

19

(n, p, L) = (500, 2000, 4) with Ω1 = Ω2 and Ω3 = Ω4, where four precision matrices are

considered with size 1000 × 1000 and 2000 × 2000 for pairwise clustering, where U is the

complete graph. Here each precision matrix is set to be a block-diagonal matrix: Ωl =

Diag(Ωl1, · · · ,Ωlq); l = 1, · · · , L, where Ω1j = Ω2j,Ω3j = Ω4j are 20×20 matrices generated

in the same fashion as that in Examples 1. Finally, the complete graph is used as opposed

to the fused graph. Overall, the complexity is much higher than the previous examples.

Tables 1-4 and Figure 1 about here

As suggested by Tables 1-4, the proposed method performs well against its competitors

in parameter estimation and correct identification of the sparseness and grouping structures

across all the situations. With regard to accuracy of identification of the sparseness and

clustering structures, the proposed method has the smallest false positives in terms of FPV

and FPG, yielding sharper parameter estimation than the competitors. This says that

shrinkage towards common elements is advantageous for parameter estimation in a low-or

high-dimensional situation. Note that the largest improvement occurs for the most difficult

situation in Example 4.

Compared with pursuit of sparseness alone–TLP, the amount of of improvement of our

method is from 143% to 244% and 118% % to 236% in terms of the EL and QL when n = 120,

and from 80.5% to 228% and 96.5% to 240% in terms of the EL and QL when n = 300,

as indicated in Table 3. This comparison suggests that exploring the sparseness structure

alone is inadequate for multiple graphical models. Pursuit of two types of structures appears

advantageous in terms of performance, especially for large matrices.

Compared with its convex counterpart “our-con”, our method leads to between a 19.9%

and a 106% improvement, and between a 4.2% improvement and a 75.5% improvement in

terms of the EL and QL when n = 120, and between a 18.3% improvement and a 120%

improvement, and a 90.3% improvement and a 151% improvement in terms of the EL and

20

QL when n = 300; see Table 3. This is expected because more accurate identification of

structures tends to yield better parameter estimation.

In contrast to the smoothing method [7, 26] for time-varying network analysis, across all

cases except one low-dimensional case of L = 4 and p = 30 in Table 3, our method yields a

54.5% improvement and a 20.3% improvement in terms of the EL and QL when n = 120, and

a 51.9% improvement and a 25.8% improvement in terms of the EL and QL when n = 300

when L is not too small, c.f. Tables 1-4.

To understand how the proposed method performs relative to (n, p, L), we examine Table

3 and Figure 1 in further detail. Overall, the proposed method performs better as n, L

increases and worse as p increases. Interestingly, as suggested by Figure 1, the method

performs better as L increases, which confirms with our theoretical analysis.

In summary, the proposed method achieves the desired objective of pursuing simultaneous

both sparseness and clustering structures to battle the curse of dimensionality in a high-

dimensional situation.

6 Signaling network inference

This section applies the proposed method to the multivariate single cell flow cytometry data

in [16] to infer a signaling network or pathway; a consensus version of the network with eleven

proteins is described in Figure 3. In this study, a multiparameter flow cytometry recorded

the quantitative amounts of the eleven proteins in a single cell as an observation. To infer

the network, experimental perturbations on various aspects of the network were imposed

before the amounts of the eleven proteins were measured under each condition. The idea

was that, if a chemical was applied to stimulate or inhibit the activity of a protein, then both

the abundance of the protein and those of its downstream proteins in the network would be

expected to increase or decrease, while those of non-related proteins would barely change.

There were ten types of experimental perturbations on different targets: 1) activating a

21

target (CD3) in the upstream of the network so that the whole network was expected to

be perturbed; 2) activating a target (CD28) in the upsteam of the network; 3) activating a

target (ICAM2) in the upsteam of the network; 4) activating PKC; 5) activating PKA; 6)

inhibiting PKC; 7) inhibiting Akt; 8) inhibiting PIP2; 9) inhibiting Mek; 10) inhibiting a

target (PI3K) in the upstream of the network. In [16], data were collected under nine exper-

imental conditions and then used to infer a directed network; each of the nine experimental

conditions was either a single type of perturbation or a combination of two or three types of

perturbations. Interestingly, data were also collected under another five conditions, each of

which was a combination of two of the previous nine conditions. Hence, the data offered an

opportunity to infer the two networks under the two sets of the conditions: since the two sets

of conditions largely overlapped, we would expect the two networks to be largely similar to

each other; on the other hand, due to the difference between the two sets of the conditions,

some deviations between the two networks were also anticipate. There were n1 = 7466 and

n2 = 4206 observations under the two sets of the conditions respectively.

We apply the proposed method to the normalized data under the two sets of the conditions

respectively. Due to the expected similarities between the two networks, we consider grouping

to encourage common structure defined by connecting edges between the two networks. The

tuning parameters are estimated by a three-fold cross-validation. The reconstructed two

undirected networks are now displayed in Figure 2, with 9 and 8 estimated (undirected)

links for the two groups of conditions, being a subset of the 20 (directed) links in the gold

standard signaling network as displayed in Figure 3, which is a consensus network that has

been verified biologically, c.f. [16]. The reconstructed undirected graphs miss some edges

as compared to the gold standard network, for instance, the links from protein “PKC” to

“Raf” and “Mek”. The three edges missed by [16], “PIP3” to “Akt”, “Plcg” to “PKC”, and

“PIP2” to “PKC”, are also missed by our method, possibly reflecting lack of information in

the data due to no direct interventions imposed on “PIP3” and ”Plcg”.

22

Overall, the proposed method appears to work well in that the network inferred from the

first set of conditions recovers one more dependence relationships than that from the second

set of conditions, which is expected given that the second set of interventional conditions is

less specific than the first one.

Here we analyze the data by contrasting the network constructed under the nine condi-

tions with n1 = 7466 against that under the five conditions with n2 = 4206. Of particular

interest is the detection of network structural changes between the two sets of conditions.

Figures 2 and 3 about here

7 Discussion

This article proposes a novel method to pursue two disparate types of structures—sparseness

and clustering for multiple Gaussian graphical models. The proposed method is equipped

with an efficient algorithm for large graphs, which is integrated with a partition rule to

break down a large problem into many separate small problems to solve. For data analysis,

we have considered signaling network inference in a low-dimensional situation. Worthy of

note is that the proposed method can be equally applied to high-dimensional data, such as

reconstructing and comparing gene regulatory networks across four subtypes of glioblastoma

multiforme based on gene expression data [21].

To make the proposed method useful in practice, inferential tools need to be further

developed. A Monte Carlo method may be considered given the level of complexity of

the underlying problems. Moreover, the general approach developed here can be expanded

to other types of graphical models, for instance, dynamic network models or time-varying

graphical models [7]. This enables us to build time dependency into a model through, for

example, a Markov property. Further investigation is necessary.

23

8 Appendix

Proof of Theorem 1: The equivalence follows directly from Theorem 4.1 in [20]. 2

Next we present two lemmas to be used in the proof of Theorem 2.

Lemma 1 For any x0,x1, · · · ,xm ∈ RL, (22) and (23) are equivalent:

∃ |b1|, · · · , |bm| ≤ 1 s.t. x0 + b1x1 + · · ·+ bmxm = 0, (22)

for ∀ c ∈ RL, |cTx0| ≤ |cTx1|+ · · ·+ |cTxm|. (23)

Proof: If (22) holds, then for any c ∈ RL, |cTx0| = |b1cTx1 + · · ·+ bmc
Txm| ≤ |b1||cTx1|+

· · · + |bm||cTxm|, which is no greater than |cTx1| + · · · + |cTxm|, implying (23). For the

converse, assume that for any c ∈ RL, |cTx0| ≤ |cTx1| + · · · + |cTxm|. Consider the

following convex minimization:

min{b1,··· ,bm}

m∑
i=1

B(bi) subject to x0 + b1x1 + · · ·+ bmxm = 0, (24)

where B(x) is an indicator function with B(x) = 0 when |x| ≤ 1 and B(x) = +∞ otherwise.

First, we need to show that the constraint set in (24) is nonempty. Suppose that it is

empty. Let c0 = (I−P(x1,··· ,xm))x0, where P(x1,··· ,xm) is the projection matrix onto the linear

space spanned by x1, · · · ,xm. Since x0,x1, · · · ,xm are linearly independent, we have that

‖c0‖2 > 0. Therefore |cT0 x0| = ‖c0‖22 > 0 = |cT0 x1| + · · · + |cT0 xm|, contracting to that

|cTx0| ≤ |cTx1|+ · · ·+ |cTxm|. Hence the constraint set of (24) is nonempty and we denote

its optimal value by p? . Next we convert (24) to its dual by introducing dual variable ν ∈ RL

for the equality constraints in (24) through Lagrange multipliers:

max{ν∈RL} ν
Tx0 − |νTx1| − · · · − |νTxm|. (25)

By the assumption that |cTx0| ≤ |cTx1|+· · ·+|cTxm| for any c, the maximal of (25) d? must

satisfy d? ≤ 0. Hence d? = 0 because it is attained by ν = 0. Moreover, Slater’s condition

holds because constraint set of (24) is nonempty. By the strong duality principle, the duality

gap is zero, and hence that p? = d? = 0. Consequently, a minimizer of (24) (b1, · · · , bm)

exists with |b1| ≤ 1, · · · , |bm| ≤ 1, satisfying the constraints x0 + b1x1 + · · · + bmxm = 0.

This implies (23). This completes the proof. 2

24

Lemma 2 For s = (s1, · · · , sL) and a connected graph G = (V, E), there exist |gl| ≤ 1,

|gll′ | ≤ 1, gll′ = −gl′l; 1 ≤ l, l′ ≤ L such that
n1s1 + λ1g1 + λ2

∑
l′∼1 g1l′ = 0

...
...

nLsL + λ1gL + λ2
∑

l′∼L gLl′ = 0,

(26)

is equivalent to |
∑

l∈I nlsl| ≤ λ1|I|+λ2d(I, Ic) for any I ⊆ V with d(I, Ic) =
∑

l∈I,l′∈Ic I
(
l ∼

l′
)
.

Proof: First, for some |gl| ≤ 1, |gll′| ≤ 1, gll′ = −gl′l; 1 ≤ l, l′ ≤ L, if (26) holds then,

|
∑
l∈I

nlsl| = λ1

∣∣∣∑
l=1

gl

∣∣∣+ λ2

∣∣∣∑
l∈I

∑
l′∼l

gll′
∣∣∣ = λ1

∣∣∣∑
l=1

gl

∣∣∣+ λ2

∣∣∣∑
l∈I

∑
l′∈Ic

I(l ∼ l′)gll′
∣∣∣,

which is no greater than λ1|I| + λ2d(I, Ic) for any I ⊆ V . Conversely, by Lemma 1, it

suffices to show that for any c ∈ RL,

|
L∑
l=1

clnlsl| ≤ λ1

L∑
l=1

|cl|+ λ2
∑
l∼l′
|cl − cl′| (27)

provided that |
∑

l∈I nlsl| ≤ λ1|I| + λ2d(I, Ic) for any I ⊆ V . To this end, for any per-

mutation (k1, · · · , kL) ∈ σ(1, · · · , L) and l = 1, · · · , L, define convex region Clk1···kL = {c =

(c1, · · · , cL) : ck1 ≥ · · · ≥ ckl ≥ 0 ≥ · · · ≥ ckL}, where σ(1, · · · , L) denotes the set of all possi-

ble permutation of (1, · · · , L). It’s easy to see that ∪Ll=1∪(k1,··· ,kL)∈σ(1,··· ,L)Clk1···kL = RL Then,

consider function g(c) = |
∑L

l=1 clnlsl| −λ1
∑L

l=1 |cl| −λ2
∑

l∼l′ |cl− cl′ |. Note that, g(c) over

each region Clk1···kL is a convex function. By the maximal principle, its maximum (over each

region) can be attained at the extreme points of Clk1···kL . It is easy to show that the extreme

points must be of the form c = (t1I ,0Ic) for some I ⊆ V and t 6= 0, that is the non-zero

components must to equal to each other. Hence, g(c) evaluated at the extreme points of

Clk1···kL reduces to |
∑

l∈I nlsl| − λ1|I| − λ2d(I, Ic) for some I ⊆ V, which, by assumption, is

always nonpositive. This completes the proof. 2

Proof of Theorem 2: We shall use the KKT condition of (12), or local optimality, which

is in the form of

25

nlΩ̂
−1
l + nlSl + λ1∂‖Ω̂l‖1,off + λ2

∑
l′:l∼l′

∂‖Ω̂l − Ω̂l′‖1,off = 0, l = 1, · · · , L, (28)

where Ω̂−1l is the inversion of matrices Ω̂l and ∂‖·‖1 denotes the subgradient of the `1 function.

If ω̂jkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L, then
(
Ω̂−1l

)
jk

= 0 for any j ∈ J , k ∈ J c, 1 ≤

l ≤ L. By Lemma 2, we must have (sjk1, · · · , sjkL) ∈ S for any j ∈ J , k ∈ J c. Conversely,

if (sjk1, · · · , sjkL) ∈ S for any j ∈ J , k ∈ J c, again by Lemma 2, the KKT condition in

(28) holds at ω̂jkl = 0, l = 1, · · · , L for jkth components for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L.

Hence, ω̂jkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L. This completes the proof. 2

Proof of Theorem 3: Let (Ω̂
(m)
1 , · · · , Ω̂(m)

L) be the DC solution at iteration m. If the

diagonal matrix is initialized as in Algorithm 1, then an application of Theorem 2 on

(Ω̂
(1)
1 , · · · , Ω̂(1)

L) yields that (sjk1, · · · , sjkL) ∈ S for any j ∈ J , k ∈ J c, implying that ω̂
(1)
jkl =

0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L. Next, we prove by induction that if (sjk1, · · · , sjkL) ∈ S

for any j ∈ J , k ∈ J c, then ω̂
(m)
jkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L holds for any

m ≥ 1. Suppose that ω̂
(m−1)
jkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L holds for some m ≥ 2,

then at DC iteration m, |ω̂(m−1)
jkl | = 0 ≤ τ, |ω̂(m−1)

jkl − ω̂(m−1)
jkl′ | = 0 ≤ τ . This, together with

Theorem 2, again implies that ω̂
(m)
jkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L. Using the finite

convergence of the DC algorithm, c.f., Theorem 1, we have (sjk1, · · · , sjkL) ∈ S for any

j ∈ J , k ∈ J c, implying that ω̂dcjkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L. Conversely, if for

some J ω̂dcjkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L, consider the next DC iteration, we have

ω̂m∗+1
jkl = 0 for any j ∈ J , k ∈ J c, 1 ≤ l ≤ L. Using the same argument as above with the

converse part of Theorem 2, we obtain that (sjk1, · · · , sjkL) ∈ S for any j ∈ J , k ∈ J c.

This completes the proof. 2

Proof of Corollary 1: For the fused graph, let I = {1, · · · , l}, {L− l + 1, · · · , L}, {l1 +

1, · · · , l2} and {1, · · · , L}, then if |
∑

l∈I nlsl| ≤ λ1|I|+λ2d(I, Ic) then
∣∣∣∑l

i=1 nisi

∣∣∣ ≤ lλ1+λ2,∣∣∣∑L
i=L−l+1 nisi

∣∣∣ ≤ lλ1+λ2,
∣∣∣∑l2

i=l1+1 nisi

∣∣∣ ≤ (l2−l1)λ1+2λ2,
∣∣∣∑L

i=1 nisi

∣∣∣ ≤ Lλ1. Conversely,

if I = {1, · · · , L}, then
∣∣∣∑i∈I nisi

∣∣∣ ≤ λ1|I| + λ2d(I, Ic) = Lλ1. Next, assume that I 6=

{1, · · · , L}, and write I = ∪qk=1{ik, ik + 1, · · · , ik + lk} with i1 ≤ i1 + l1 < i2 < i2 + l2 < · · · <

26

iq < iq + lq. Then∣∣∣∑
i∈I

nisi

∣∣∣ ≤ q∑
k=1

∣∣∣ ik+lk∑
i=ik

nisi

∣∣∣ ≤ λ1

q∑
k=1

lk + 2(q − 2)λ2 +
(
I(i1 6= 1) + I(iq + lq 6= L) + 2

)
λ2

= |I|λ1 + 2(q − 1)λ2 +
(
I(i1 6= 1) + I(iq + lq 6= L)

)
λ2 = |I|λ1 + d(I, Ic)λ2.

In the case of the complete graph, set I = {k1, · · · , kl}, {kL−l+1, · · · , kL}, given sk1 ≤ · · · ≤

skL , then we have
∣∣∣∑l

i=1 nkiski

∣∣∣ ≤ lλ1 + l(L − l)λ2,
∣∣∣∑L

i=L−l+1 nkiski

∣∣∣ ≤ lλ1 + l(L − l)λ2.

Conversely, for any I,
∣∣∣∑i∈I nisi

∣∣∣ ≤ max
(∣∣∣∑|I|i=1 nkiski

∣∣∣, ∣∣∣∑L
i=L−|I|+1 nkiski

∣∣∣) ≤ lλ1 + l(L−

l)λ2. This completes the proof. 2.

Proof of Theorem 4: The proof uses a large deviation probability inequality of [23] to

treat one-sided log-likelihood ratios with constraints. This enables us to obtain sharp results

without a moment condition on both tails of the log-likelihood ratios.

Recall that S =
{
θ = (β,η) : |A(β)| ≤ d0, C(β, E) ≤ c0,G(β) 6= G(β0)

}
and SA =

{
θ ∈

S : A(β) = A
}

. Let a class of candidate subsets be A ≡ {A 6= A0 : |A| ≤ d0} for sparseness

pursuit. Note that any A ⊂ {1, · · · , d} can be partitioned into (A \ A0) ∪ (A ∩ A0). Then

we partition S accordingly with S = ∪d0i=0 ∪A∈Bi SA, where Bi = A ∩ {A : |A0 \ A| = i},

with |Bi| =
(
d0
d0−i

)∑i
j=0

(
d−d0
j

)
, i = 0, · · · , d0. Moreover, SA = ∪G∈{G(β):θ=(β,η)∈SA}SG, where

SG =
{
θ = (β,η) ∈ S : G(β) = G

}
. So S = ∪d0i=0 ∪A∈Bi ∪G∈{G(β):θ=(β,η)∈SA}SG.

To bound the error probability, note that if Ĝl0 = G0 then θ̂`0 = θ̂o then θ̂`0 = θ̂o, by

Definition 1. Conversely, if θ̂`0 = θ̂o or β̂`0 = β̂o, then Ĝl0 = G0. Thus {Ĝl0 = G0}{θ̂`0 = θ̂o}.

So {θ̂`0 6= θ̂o} ⊆ {L(θ̂`0) − L(θ̂o) ≥ 0} ⊆ {l(θ̂`0) − l(θ0) ≥ 0}. This together with {θ̂`0 6=

θ̂o} ⊆ {θ̂`0 ∈ S} implies that {θ̂`0 6= θ̂o} ⊆ {l(θ̂`0)− l(θ0) ≥ 0} ∩ {θ̂`0 ∈ S}. Consequently,

I ≡ P
(
θ̂`0 6= θ̂o

)
≤ P

(
L(θ̂`0)− L(θ0) ≥ 0; θ̂`0 ∈ S

)
is upper bounded by

d0∑
i=0

∑
A∈Bi

∑
G∈{G(β):θ∈SA}

P∗
(

sup
θ∈SG

(
L(θ)− L(θ0)

)
≥ 0
)

≤
d0∑
i=0

∑
A∈Bi

∑
G∈{G(β):θ∈SA}

P∗
(

sup{
−log(1−h2(θ,θ0))≥max(i,1)Cmin(θ0), θ∈SG

} (L(θ)− L(θ0)
)
≥ 0
)
,

where P∗ is the outer measure and the last two inequalities use the fact that S = ∪d0i=0 ∪A∈Bi

27

∪G∈{G(β):θ=(β,η)∈SA}SG and SG ⊆ {θ : max(|A0 \ A|, 1)Cmin(θ0) ≤ − log(1 − h2(θ,θ0))} for

G ∈ {G(β) : θ = (β,η) ∈ SA}.

For I, we apply Theorem 1 of [23] to bound each term. Towards this end, we verify their

entropy condition (3.1) for the local entropy over SG for G ∈ {G(β) : θ = (β,η) ∈ SA}, A ∈

Bi and i = 0, · · · , d0. Under Assumption A ε = εn,p0,p = (2c0)
1/2c−14 log(21/2/c3) log p(p0

n
)1/2

satisfies there with respect to ε > 0, that is,

sup
{0≤|A|≤p0}

∫ 21/2ε

2−8ε2
H1/2(t/c3,BA)dt ≤ p

1/2
0 21/2ε log(2/21/2c3) ≤ c4n

1/2ε2. (29)

for some constant c3 > 0 and c4, say c3 = 10 and c4 = (2/3)5/2

512
. By Assumption A,

Cmin(θ0) ≥ ε2n,p0,p implies (29), provided that d0 ≥ (2c0)
1/2c−14 log(21/2/c3).

Now, let S?i = maxA∈Bi #{G : Ic0 = A} and log(S?) = max1≤i≤p0 log(S?i)/i. Us-

ing inequalities for binomial coefficients:
∑i

j=0

(
d−d0
j

)
≤ (d − d0)

i and
(
d0
i

)
≤ di0, |Bi| =(

d0
d0−i

)∑i
j=0

(
d−d0
j

)
≤
(
d(d − d0)

)i ≤ (d2/4)i, we have, by Theorem 1 of [23], that for a

constant c2 > 0, say c2 = 4
27

1
1926

,

I ≤
d0∑
i=0

|Bi|S?i exp
(
− c2niCmin(θ0)

)
≤

d0∑
i=0

(d2
4

)i
S?i exp

(
− c2niCmin(θ0)

)
≤ exp

(
− c2nCmin(θ0) + 2 log d+ log(S?)

)
.

This completes the proof. 2

Proof of Theorem 5: The proof is similar to that of Theorem 4 with some minor modifi-

cations. Given τ and β ∈ Rd, a partition Gτ (β) = (I0(β), · · · , IK(β)(β)) associated with β

is defined to satisfy the following (i) maxj∈I0(β) |βj| ≤ τ ; (ii)
∣∣βj1 − βj2∣∣ ≤ τ for any j1, j2 in

different groups. Let Aτ (β) = I \ I0(β).

The rest of the proof is basically the same as that in Theorem 2 with a modification

that G(β) and A(β) are replaced by Gτ (β) and Aτ (β) respectively. Here, S =
{
θ = (β,η) :∑p

j=1 Jτ (|βj|) ≤ d0,
∑

(jj′)∈E Jτ
(∣∣βj−βj′∣∣) ≤ c0,Gτ (β) 6= G(β0)

}
, Cτ (β, E) =

∑
(jj′)∈E I(|βj−

βj′ | 6= 0), SA =
{
θ ∈ S : Aτ (β) = A

}
and SG =

{
θ = (β,η) ∈ S : Gτ (β) = G

}
.

Next, we show that θ̂g = θ̂o if and only if Ĝg = G0, where Ĝg ≡ Gτ (β̂g). Now d1 ≡

28

|I \ Î00 | = d0. By (14), 1
τ

∑
j∈Î0 |β̂

g
j | + d1 ≤ d0, with d0 = d1, yields that β̂gj = 0; j ∈ I10 .

In addition, the second constraint of (14) implies
∑K

i=1

∑
jj′∈Ii,(jj′)∈E

|β̂gj−β̂
g

j′ |
τ

≤ 0, yielding

that β̂gj1 = β̂gj1 for any j1, j2 ∈ Îi, (j1, j2) ∈ E , i = 1, · · · , K. By graph consistency of U , U

is connected over Îi, implying that β̂gj1 = β̂gj1 for any j1, j2 ∈ Îi, i = 1, · · · , K. This further

implies that β̂g = β̂o and θ̂g = θ̂o , meaning that that {Ĝg = G0} ⊆ {θ̂g = θ̂o}. On the other

hand, it is obvious that if θ̂g = θ̂o then {Ĝg = G0}. Hence, {Ĝg = G0} = {θ̂g = θ̂o} from

which we conclude that {θ̂g 6= θ̂o} ⊆ {θ̂g ∈ S}. This together with {θ̂g 6= θ̂o} ⊆ {L(θ̂g) −

L(θo) ≥ 0} ⊆ {L(θ̂g)−L(θ0) ≥ 0} implies that P
(
θ̂g 6= θ̂o

)
≤ P

(
L(θ̂g)−L(θ0) ≥ 0; θ̂g ∈ S

)
is bounded by

d0∑
i=0

∑
A∈Bi

∑
G∈{Gτ (β):θ=(β,η)∈SA}

P∗
(

sup
θ∈SG

(
L(θ)− L(θ0)

)
≥ 0
)

≤
d0∑
i=0

∑
A∈Bi

∑
G∈{Gτ (β):θ∈SA}

P∗
(

sup{
−log(1−h2(θ,θ0))≥d1 max(i,1)Cmin(θ0)−d3τd2d,θ∈SG

}
(
L(θ)− L(θ0)

)
≥ 0
)
,

where the last step uses the fact that {θ ∈ SG} ⊆ {− log(1−h2(θτ ,θ0)) ≥ max(i, 1)Cmin(θ0)}

⊆ {− log(1− h2(θ,θ0)) ≥ d1 max(i, 1)Cmin(θ0)− d3τ d2d}, under Assumption B. Then, for

some constant c3, P
(
θ̂g 6= θ̂o

)
is upper bounded by

d0∑
i=0

|Bi|S?i exp
(
− c3niCmin(θ0)

)
≤

d0∑
i=0

(d2
4

)i
S?i exp

(
− c3niCmin(θ0)

)
≤ exp

(
− c3nCmin(θ0) + 2 log d+ log(S?)

)
,

provided that τ ≤
((d1−c3)Cmin(θ

0)
d3d

)1/d2 . This completes the proof. 2

Proof of Corollary 2: First we derive an upper bound of S∗. Let p0l the number of nonzero

elements of the precision matrix in the sth cluster for l = 1, · · · , L. Let p0 = d0/L =
p01+···+p0L

L

be the average number of nonzero elements. For any θ ∈ SA with |A0 \ A| = i, let Q =

{(j, k) : j > k, ∃l, xjul 6= 0} and |Q| = q0. Let ajk = #{l : xjkl 6= 0} for (j, k) ∈ Q. Note that

q0 ≤ p0 and
∑

(j,k)∈Q ajk ≤ d0 since |A| ≤ d0. By the definition of S∗i , we have

29

S∗i ≤
∑

∑
(j,k)∈Q rjk≤g0

∏
(j,k)∈Q

(
ajk − 1

rjk

)
=

g0∑
g=0

(∑
(j,k)∈Q ajk − q0

g

)

≤
g0∑
g=0

(
d0 − p0
g

)
≤ (g0 + 1)

(
e
d0 − p0
g0

)g0 . (30)

This together with log(1 + g0) ≤ g0 implies logS∗ ≤ 2g0 max(log(d0/g0), 1). To lower bound

Cmin(θ0), we proceed similarly with the proof of Proposition 2 in [17]. Specifically, note

that h2(θ,θ0) = 1−
∏L

l=1

(
1− h2(Ωl,Ω

0
l)
)
. Thus,

− log(1− h2(θ,θ0)) =
L∑
l=1

(
− log

(
1− h2(Ωl,Ω

0
l)
))
. (31)

An application of Proposition 2 of [17] yields that each term in (31) is lower bounded by

c?‖Ωl−Ω0
l ‖22. Therefore, − log(1−h2(θ,θ0)) ≥ c? min1≤l≤L cmin

(
Hl

)∑L
l=1 ‖Ωl−Ω0

l ‖22. Now

if A0 \A 6= ∅, we have
∑L

l=1 ‖Ωl−Ω0
l ‖22 ≥ |A0 \A|min(j,k,l):ωjkl 6=0 ω

2
jkl. If A0 \A = ∅, then by

definition of S, there must exist (j, k, l) such that ωjkl = ωjk(l+1) and ω0
jkl 6= ω0

jk(l+1). Here
L∑
l=1

‖Ωl −Ω0
l ‖22 ≥ (ωjkl − ω0

jkl)
2 + (ωjk(l+1) − ω0

jk(l+1))
2 ≥ 1

2
(ω0

jkl − ω0
jk(l+1))

2

≥ 1

2
min{

(j,k,l): ω0
jkl 6=ω

0
jk(l+1)

} (ω0
jkl − ω0

jk(l+1)

)2
.

A combination of both the cases yield that

− log(1− h2(θ,θ0))/max
(
|A0 \ A|, 1

)
≥ c? min

1≤l≤L
cmin

(
Hl

)
η2min.

which, after taking infimum over S, leads to Cmin(θ0) ≥ c?cmin
(
Hl

)
η2min. This, together with,

the upper bound on logS? in Theorems 4 and 5, gives a sufficient condition for simultaneous

pursuit of sparseness and clustering: min1≤l≤L cmin
(
Hl

)
η2min ≥ c0

log(p2L)−g0 max(log(d0/g0),1)
n

, for

some c0 > 0. Moreover, under this condition, P
(
Ω̂`0 6= Ω̂o

)
and P

(
Ω̂g 6= Ω̂o

)
→ 0 as

n, d→ +∞. This completes the proof. 2

References

[1] O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse maxi-

mum likelihood estimation for multivariate gaussian or binary data. Journal of Machine

30

Learning Research, 9:485–516, 2008.

[2] S.P. Boyd and L. Vandenberghe. Convex optimization. Cambridge Univ Pr, 2004.

[3] T.H. Cormen. Introduction to algorithms. The MIT press, 2001.

[4] J. Fan, Y. Feng, and Y. Wu. Network exploration via the adaptive lasso and scad

penalties. The annals of applied statistics, 3(2):521–541, 2009.

[5] J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation with

the graphical lasso. Biostatistics, 9(3):432, 2008.

[6] J. Guo, E. Levina, G. Michailidis, and J. Zhu. Joint estimation of multiple graphical

models. Biometrika, 98(1):1, 2011.

[7] M. Kolar and E.P. Xing. On time varying undirected graphs. In Proceedings of the 14th

International Conference on Artificial Intelligence and Statistics, 2011.

[8] A.N. Kolmogorov and V.M. Tikhomirov. ε-entropy and ε-capacity of sets in function

spaces. Uspekhi Matematicheskikh Nauk, 14(2):3–86, 1959.

[9] Steffen L Lauritzen. Graphical models. Oxford University Press, 1996.

[10] B. Li, H. Chun, and H. Zhao. Sparse estimation of conditional graphical models with

application to gene networks. Journal of the American Statistical Association, 107:152–

167, 2012.

[11] H. Li and J. Gui. Gradient directed regularization for sparse gaussian concentration

graphs, with applications to inference of genetic networks. Biostatistics, 7(2):302, 2006.

[12] R. Mazumder and T. Hastie. Exact covariance thresholding into connected components

for large-scale graphical lasso. The Journal of Machine Learning Research, 13:781–794,

2012.

31

[13] N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with

the lasso. The Annals of Statistics, 34(3):1436–1462, 2006.

[14] G.V. Rocha, P. Zhao, and B. Yu. A path following algorithm for sparse pseudo-likelihood

inverse covariance estimation (splice). Arxiv preprint arXiv:0807.3734, 2008.

[15] A.J. Rothman, P.J. Bickel, E. Levina, and J. Zhu. Sparse permutation invariant covari-

ance estimation. Electronic Journal of Statistics, 2:494–515, 2008.

[16] K. Sachs, O. Perez, D. Pe’er, D.A. Lauffenburger, and G.P. Nolan. Causal protein-

signaling networks derived from multiparameter single-cell data. Science, 308(5721):523,

2005.

[17] X. Shen, W. Pan, and Y. Zhu. Likelihood-based selection and sharp parameter estima-

tion. Journal of American Statistical Association, 107:223–232, 2012.

[18] Teppei Shimamura, Seiya Imoto, Rui Yamaguchi, Masao Nagasaki, and Satoru Miyano.

Inferring dynamic gene networks under varying conditions for transcriptomic network

comparison. Bioinformatics, 26(8):1064–1072, 2010.

[19] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness

via the fused lasso. Journal of the Royal Statistical Society: Series B, 67:91–108, 2005.

[20] P. Tseng. Convergence of a block coordinate descent method for nondifferentiable min-

imization. Journal of optimization theory and applications, 109(3):475–494, 2001.

[21] R. Verhaak, K.A Hoadley, E. Purdom, V. Wang, Y. Qi, M. D Wilkerson, C. R. Miller,

L. Ding, T. Golub, J.P. Mesirov, et al. An integrated genomic analysis identifies clinically

relevant subtypes of glioblastoma characterized by abnormalities in pdgfra, idh1, egfr

and nf1. Cancer cell, 17(1):98, 2010.

32

[22] D. M. Witten, J. H. Friedman, and N. Simon. New insights and faster computations

for the graphical lasso. Journal of Computational and Graphical Statistics, 20:892–900,

2011.

[23] W.H. Wong and X. Shen. Probability inequalities for likelihood ratios and convergence

rates of sieve mles. The Annals of Statistics, pages 339–362, 1995.

[24] S. Yang, Z. Lu, X. Shen, P. Wonka, and J. Ye. Fused multiple graphical lasso. Arxiv

preprint arXiv:1209.2139v2, 2012.

[25] M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical model.

Biometrika, 94(1):19, 2007.

[26] S. Zhou, J. Lafferty, and L. Wasserman. Time varying undirected graphs. Machine

Learning, 80(2):295–319, 2010.

[27] Y. Zhu, X. Shen, and W. Pan. Simultaneous grouping pursuit and feature selection

over an undirected graph. Journal of the American Statistical Association, 108:713–

725, 2013.

33

Table 1: Average entropy loss, denoted by EL, (SD in parentheses) and average quadratic loss,
denoted by QL, (SD in parentheses), average false positive for sparseness pursuit, denote by FPV,
(SD in parentheses), average false negative for sparseness pursuit, denoted as FNV, (SD in paren-
theses), average false positive for grouping, denoted by FPG, (SD in parentheses), and average
false negative for grouping, denoted by FNG, (SD in parentheses), based on 100 simulations, for
estimating precision matrices in Example 1 with n = 120. Here “Smooth”, “Lasso”, “TLP”, “Our-
con” and “Ours” denote estimation of individual matrices with kernel smoothing method proposed
in [26], the L1 sparseness penalty, that with non-convex TLP penalty, the convex counterpart of
our method with the L1-penalty for sparseness and clustering, and our non-convex estimates by
solving (2) with penalty (6). The best performer is bold-faced.

(p, L) Method EL QL FPV FNV FPG FNG
(30, 4) Smooth 0.570(.005) 2.617(.266) .312(.016) .000(.000) .392(.020) .000(.000)

Lasso 1.547(.074) 5.416(.393) .200(.009) .000(.000) .377(.015) .000(.000)
TLP 0.746(.084) 4.688(.617) .043(.006) .001(.002) .108(.008) .000(.000)
Our-con 1.288(.064) 3.700(.270) .129(.016) .000(.000) .045(.020) .251(.032)
Ours 0.525(.055) 3.494(.418) .040(.009) .000(.000) .009(.007) .267(.043)

(200, 4) Smooth 7.118(.173) 22.45(2.61) .087(.017) .000(.000) .106(.018) .000(.000)
Lasso 36.48(.426) 69.21(1.97) .013(.001) .000(.000) .027(.001) .000(.000)
TLP 5.305(.351) 33.67(2.22) .004(.000) .005(.003) .014(.000) .000(.000)
Our-con 36.28(.422) 66.53(1.87) .010(.001) .000(.000) .012(.001) .122(.021)
Ours 3.500(.164) 23.71(1.33) .003(.000) .000(.000) .001(.000) .280(.007)

(20, 30) Smooth 1.122(.023) 1.983(.056) .131(.006) .000(.000) .223(.006) .000(.000)
Lasso 1.685(.028) 3.770(.113) .152(.005) .000(.000) .314(.008) .000(.000)
TLP 0.507(.023) 3.081(.180) .077(.004) .000(.000) .198(.005) .000(.000)
Ours-con 1.593(.028) 3.256(.097) .136(.007) .000(.000) .055(.003) .024(.004)
Ours 0.236(.015) 1.812(.130) .068(.016) .000(.000) .020(.002) .032(.004)

(10, 90) Smooth 0.339(.007) 0.603(.017) .271(.014) .000(.000) .420(.012) .000(.000)
Lasso 0.575(.010) 1.439(.038) .273(.007) .000(.000) .541(.009) .000(.000)
TLP 0.250(.009) 1.404(.061) .196(.006) .000(.000) .434(.008) .000(.000)
Our-con 0.519(.009) 1.190(.032) .284(.018) .000(.000) .071(.005) .008(.002)
Ours 0.100(.005) 0.748(.043) .017(.020) .000(.000) .028(.004) .012(.002)

34

Table 2: Average entropy loss, denoted by EL, (SD in parentheses) and average quadratic loss,
denoted by QL, (SD in parentheses), average false positive for sparseness pursuit, denote by FPV,
(SD in parentheses), average false negative for sparseness pursuit, denoted as FNV, (SD in paren-
theses), average false positive for grouping, denoted by FPG, (SD in parentheses), and average
false negative for grouping, denoted by FNG, (SD in parentheses), based on 100 simulations, for
estimating precision matrices in Example 2 with n = 300. Here “Smooth”, “Lasso”, “TLP”, “Our-
con” and “Ours” denote estimation of individual matrices with kernel smoothing method proposed
in [26], the L1 sparseness penalty, that with non-convex TLP penalty, the convex counterpart of
our method with the L1-penalty for sparseness and clustering, and our non-convex estimates by
solving (2) with penalty (6). The best performer is bold-faced.

(p, L) Method EL QL FPV FNV FPG FNG
(30, 4) Smooth 0.418(.025) 1.081(.072) .387(.054) .009(.008) .543(.060) .002(.002)

Lasso 0.732(.041) 1.840(.122) .229(.011) .061(.013) .466(.016) .006(.005)
TLP 0.772(.055) 2.290(.192) .038(.005) .184(.020) .162(.010) .037(.014)
Our-con 0.591(.039) 1.373(.104) .081(.019) .033(.013) .056(.035) .146(.021)
Ours 0.359(.036) 1.012(.111) .044(.009) .031(.015) .004(.002) .233(.012)

(200, 4) Smooth 3.198(.069) 7.823(.187) .129(.010) .030(.006) .161(.010) .013(.002)
Lasso 6.902(.140) 17.91(.435) .049(.001) .234(.010) .110(.002) .039(.004)
TLP 8.350(.215) 23.71(.710) .003(.001) .493(.015) .017(.001) .116(.010)
Our-con 6.151(.148) 15.58(.439) .014(.005) .198(.013) .030(.010) .142(.046)
Ours 2.977(.135) 8.108(.399) .001(.000) .191(.010) .001(.000) .284(.012)

(20,30) Smooth 0.409(.011) 0.839(.006) .063(.007) .024(.004) .290(.007) .005(.001)
Lasso 0.470(.011) 1.157(.034) .290(.006) .034(.004) .611(.008) .001(.001)
TLP 0.491(.017) 1.421(.057) .081(.004) .118(.007) .341(.006) .004(.001)
Our-con 0.303(.010) 0.682(.025) .071(.013) .008(.002) .044(.014) .023(.002)
Ours 0.111(.006) 0.317(.019) .012(.005) .006(.003) .011(.002) .032(.003)

(10, 90) Smooth 0.123(.003) 0.248(.007) .132(.013) .008(.002) .518(.008) .001(.000)
Lasso 0.170(.003) 0.419(.010) .405(.010) .007(.002) .798(.008) .000(.000)
TLP 0.155(.005) 0.439(.014) .175(.007) .020(.003) .609(.007) .000(.000)
Our-con 0.099(.008) 0.230(.007) .135(.024) .000(.000) .043(.015) .001(.001)
Ours 0.040(.002) 0.117(.005) .015(.014) .000(.000) .009(.001) .001(.001)

35

Table 3: Average entropy loss, denoted by EL, (SD in parentheses) and average quadratic loss,
denoted by QL, (SD in parentheses), based on 100 simulations, for estimating multiple precision
matrices in Example 3. Here “Smooth”, “Lasso”, “TLP”, “Our-con” and “Ours” denote estimation
of individual matrices with kernel smoothing method proposed in [26], the L1 sparseness penalty,
that with non-convex TLP penalty, the convex counterpart of our method with the L1-penalty for
sparseness and clustering, and our non-convex estimates by solving (2) with penalty (6). The best
performer is bold-faced.

Set-up Method n = 120 n = 300

(p,L) EL QL EL QL
(30 , 4) Smooth 0.468(.042) 0.941(.097) 0.231(.056) 0.476(.034)

Lasso 1.158(.062) 2.534(.175) 0.736(.036) 1.434(.086)
TLP 1.546(.100) 3.625(.262) 0.575(.045) 1.301(.121)
Our-con 0.897(.066) 1.823(.166) 0.699(.038) 1.317(.085)
Ours 0.501(.063) 1.143(.160) 0.247(.017) 0.524(.042)

(200, 4) Smooth 6.882(.220) 13.26(.535) 2.578(.066) 4.843(.130)
Lasso 10.37(.173) 21.92(.498) 5.449(.094) 10.84(.211)
TLP 12.34(.202) 25.87(.560) 5.523(.153) 12.08(.365)
Our-con 6.091(.199) 12.34(.484) 4.625(.098) 8.625(.209)
Ours 5.079(.265) 11.84(.658) 1.682(.038) 3.551(.096)

(20 , 30) Smooth 0.490(.021) 0.878(.042) 0.278(.008) 0.492(.015)
Lasso 0.786(.020) 1.670(.052) 0.564(.012) 1.066(.027)
TLP 0.987(.036) 2.454(.107) 0.355(.014) 0.819(.035)
Our-con 0.653(.023) 1.281(.055) 0.528(.012) 0.959(.027)
Ours 0.317(.013) 0.730(.036) 0.183(.005) 0.391(.014)

(10 , 90) Smooth 0.230(.008) 0.409(.017) 0.115(.003) 0.203(.005)
Lasso 0.318(.008) 0.694(.022) 0.205(.004) 0.398(.008)
TLP 0.402(.012) 1.010(.043) 0.148(.004) 0.346(.011)
Our-con 0.240(.008) 0.487(.019) 0.180(.004) 0.335(.007)
Ours 0.158(.005) 0.369(.014) 0.082(.002) 0.176(.005)

36

Table 4: Average entropy loss, denoted by EL, (SD in parentheses) and average quadratic loss,
denoted by QL, (SD in parentheses), average false positive for sparseness pursuit, denote by FPV,
(SD in parentheses), average false negative for sparseness pursuit, denoted as FNV, (SD in paren-
theses), average false positive for grouping, denoted by FPG, (SD in parentheses), and average
false negative for grouping, denoted by FNG, (SD in parentheses), based on 100 simulations, for
estimating precision matrices in Example 4. Here “Lasso”, “TLP”, “Our-con” and “Ours” de-
note estimation of individual matrices with the L1 sparseness penalty, that with non-convex TLP
penalty, the convex counterpart of our method with the L1-penalty for sparseness and clustering,
and our non-convex estimates by solving (2) with penalty (6). The best performer is bold-faced.

(p, L) Method EL QL FPV FNV FPG FNG
(1000, 4) Lasso 378.5(2.09) 829.4(13.3) .0005(.0000) .0270(.0030) .0020(.0000) .0002(.0003)

TLP 36.05(.1.78) 201.9(8.81) .0004(.0000) .0270(.0030) .0020(.0000) .0002(.0003)
Our-con 377.3(2.07) 805.2(12.9) .0004(.0000) .0110(.0020) .0017(.0000) .0497(.0040)
Ours 26.8(1.35) 160.9(7.266) .0003(.0000) .0130(.0020) .0017(.0000) .0267(.0027)

(2000, 4) Lasso 225.6(.413) 358.1(1.13) .0009(.0000) .0000(.0000) .0018(.0000) .0000(.0000)
TLP 9.160(.083) 54.17(.654) .0007(.0000) .0000(.0000) .0015(.0000) .0000(.0000)
Our-con 225.6(.413) 358.1(1.12) .0009(.0000) .0000(.0000) .0018(.0000) .0000(.0000)
Ours 8.617(.081) 51.79(.657) .0006(.0000) .0000(.0000) .0005(.0000) .1750(.0020)

37

30 40 50 60 70 80 90

0
.1

0
0

.1
4

0
.1

8
0

.2
2

Entropy loss

number of graphs

E
n

tr
o
y
 l
o

s
s

p=10
p=15
p=20

30 40 50 60 70 80 90

0
.8

1
.0

1
.2

1
.4

1
.6

1
.8

Quadratic loss

number of graphs

Q
u

a
d

ra
ti
c
 l
o

s
s

p=10
p=15
p=20

Figure 1: Average entropy and quadratic losses of the proposed method over different p and
L values over 100 simulation replications in Example 1.

"PKA"

"Mek"

"PIP3"

"Plcg"

"PKC"

"Erk"

"P38"

"Raf"

"Jnk"

"PIP2"

"AKt"

(a) Under the nine conditions.

"Mek"

"PKC"

"PIP2"

"Jnk"

"AKt""Erk"

"PKA" "Plcg"

"P38"

"PIP3" "Raf"

(b) Under the five conditions.

Figure 2: Reconstructed networks for simultaneous pursuit of clustering and sparsity.

38

"PKC"

"JnK"

"Plcg"

"PIP2" "P38"

"AKt"

"PIP3"

"Erk"

"Raf"

"PKA"

"Mek"

Figure 3: Signaling network reproduced from Figure 3(A) of [16], where the black dashed
line represents links that have been missed by methods in [16].

39

