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Abstract

We propose a procedure for constructing a sparse estimator of a multivariate re-

gression coefficient matrix that accounts for correlation of the response variables. This

method, which we call multivariate regression with covariance estimation (MRCE), in-

volves penalized likelihood with simultaneous estimation of the regression coefficients

and the covariance structure. An efficient optimization algorithm and a fast approx-

imation are developed for computing MRCE. Using simulation studies, we show that

the proposed method outperforms relevant competitors when the responses are highly

correlated. We also apply the new method to a finance example on predicting asset

returns. An R-package containing this dataset and code for computing MRCE and its

approximation are available online.

Keywords: High dimension low sample size; Sparsity; Multiple output regression;

Lasso

1 Introduction

Multivariate regression is a generalization of the classical regression model of regressing a

single response on p predictors to regressing q > 1 responses on p predictors. Applica-
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tions of this general model arise in chemometrics, econometrics, psychometrics, and other

quantitative disciplines where one predicts multiple responses with a single set of prediction

variables. For example, predicting several measures of quality of paper with a set of variables

relating to its production, or predicting asset returns for several companies using the vector

auto-regressive model (Reinsel, 1997), both result in multivariate regression problems.

Let xi = (xi1, . . . , xip)
T denote the predictors, let yi = (yi1, . . . , yiq)

T denote the re-

sponses, and let εi = (ε1, . . . , εq)
T denote the errors, all for the ith sample. The multivariate

regression model is given by,

yi = BT xi + εi, for i = 1, . . . , n,

where B is a p × q regression coefficient matrix and n is the sample size. Column k of B

is the regression coefficient vector from regressing the kth response on the predictors. We

make the standard assumption that ε1, . . . , εn are i.i.d Nq(0,Σ). Thus, given a realization

of the predictor variables, the covariance matrix of the response variables is Σ.

The model can be expressed in matrix notation. Let X denote the n×p predictor matrix

where its ith row is xT
i , let Y denote the n× q random response matrix where its ith row is

yT
i , and let E denote the n× q random error matrix where its ith row is εT

i , then the model

is,

Y = XB + E.

Note that if q = 1, the model simplifies to the classical regression problem where B is a p

dimensional regression coefficient vector. For simplicity of notation we assume that columns

of X and Y have been centered and thus the intercept terms are omitted.

The negative log-likelihood function of (B,Ω), where Ω = Σ−1, can be expressed up to

a constant as,

g(B,Ω) = tr

[

1

n
(Y −XB)T (Y −XB)Ω

]

− log |Ω|. (1)
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The maximum likelihood estimator for B is simply B̂
OLS

= (XT X)−1XT Y , which amounts

to performing separate ordinary least squares estimates for each of the q response variables

and does not depend on Ω.

Prediction with the multivariate regression model requires one to estimate pq parameters

which becomes challenging when there are many predictors and responses. Criterion-based

model selection has been extended to multivariate regression by Bedrick and Tsai (1994)

and Fujikoshi and Satoh (1997). For a review of Bayesian approaches for model selection

and prediction with the multivariate regression model see Brown et al. (2002) and references

therein. A dimensionality reduction approach called reduced-rank regression (Anderson,

1951; Izenman, 1975; Reinsel and Velu, 1998) minimizes (1) subject to rank(B) = r for

some r ≤ min(p, q). The solution involves canonical correlation analysis, and combines

information from all of the q response variables into r canonical response variates that have

the highest canonical correlation with the corresponding predictor canonical variates. As in

the case of principal components regression, the interpretation of the reduced rank model is

typically impossible in terms of the original predictors and responses.

Other approaches aimed at reducing the number of parameters in the coefficient matrix

B involve solving,

B̂ = argmin
B

tr
[

(Y −XB)T (Y −XB)
]

subject to: C(B) ≤ t, (2)

where C(B) is some constraint function. A method called factor estimation and selection

(FES) was proposed in Yuan et al. (2007), who apply the constraint function C(B) =
∑min(p,q)

j=1 σj(B), where σj(B) is the jth singular value of B. This constraint encourages

sparsity in the singular values of B̂, and hence reduces the rank of B̂; however, unlike re-

duced rank regression, FES offers a continuous regularization path. A novel approach for

imposing sparsity in the entries of B̂ was taken by Turlach et al. (2005), who proposed
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the constraint function, C(B) =
∑p

j=1 max(|bj1|, . . . , |bjq|). This method was recommended

for model selection (sparsity identification), and not for prediction because of the bias of

the L∞-norm penalty. Imposing sparsity in B̂ for the purposes of identifying “master pre-

dictors” was proposed by Peng et al. (2009), who applied a combined constraint function

C(B) = λC1(B)+(1−λ)C2(B) for λ ∈ [0, 1], where C1(B) =
∑

j,k |bjk|, the lasso constraint

(Tibshirani, 1996) on the entries of B and C2(B) =
∑p

j=1 (b2
j1 + · · ·+ b2

jq)
0.5, the sum of the

L2-norms of the rows of B (Yuan and Lin, 2006). The first constraint introduces sparsity in

the entries of B̂ and the second constraint introduces zeros for all entires in some rows of B̂,

meaning that some predictors are irrelevant for all q responses. Asymptotic properties for

an estimator using this constraint with λ = 0 have also been established (Obozinski et al.,

2008). This combined constraint approach provides highly interpretable models in terms of

the prediction variables. However, all of the methods above that solve (2) do not account

for correlated errors.

To directly exploit the correlation in the response variables to improve prediction perfor-

mance, a method called Curds and Whey (C&W) was proposed by Breiman and Friedman

(1997). C&W predicts the multivariate response with an optimal linear combination of the

ordinary least squares predictors. The C&W linear predictor has the form Ỹ = Ŷ
OLS

M ,

where M is a q × q shrinkage matrix estimated from the data. This method exploits corre-

lation in the responses arising from shared random predictors as well as correlated errors.

In this paper, we propose a method that combines some of the strengths of the estimators

discussed above to improve prediction in the multivariate regression problem while allowing

for interpretable models in terms of the predictors. We reduce the number of parameters

using the lasso penalty on the entries of B while accounting for correlated errors. We

accomplish this by simultaneously optimizing (1) with penalties on the entries of B and Ω.

We call our new method multivariate regression with covariance estimation (MRCE). The

method assumes predictors are not random; however, the resulting formulas for the estimates

4



would be the same with random predictors. Our focus is on the conditional distribution of Y

given X and thus, unlike in the Curds and Whey framework, the correlation of the response

variables arises only from the correlation in the errors.

We also note that the use of lasso penalty on the entries of Ω has been considered by

several authors in the context of covariance estimation (Yuan and Lin, 2007; d’Aspremont

et al., 2008; Rothman et al., 2008; Friedman et al., 2008). However, here we use it in the

context of a regression problem, thus making it an example of what one could call super-

vised covariance estimation: the covariance matrix here is estimated in order to improve

prediction, rather than as a stand-alone parameter. This is a natural next step from the

extensive covariance estimation literature, which has been given surprisingly little attention

to date; one exception is the joint regression approach of Witten and Tibshirani (2009). An-

other less directly relevant example of such supervised estimation is the supervised principal

components by Bair et al. (2006).

The remainder of the paper is organized as follows: Section 2 describes the MRCE method

and associated computational algorithms, Section 3 presents simulation studies comparing

MRCE to competing methods, Section 4 presents an application of MRCE for predicting

asset returns, and Section 5 concludes with a summary and discussion.

2 Joint estimation of B and Ω via penalized normal

likelihood

2.1 The MRCE method

We propose a sparse estimator for B that accounts for correlated errors using penalized

normal likelihood. We add two penalties to the negative log-likelihood function g to construct
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a sparse estimator of B depending on Ω = [ωj′j],

(B̂, Ω̂) = argmin
B,Ω

{

g(B,Ω) + λ1

∑

j′ 6=j

|ωj′j |+ λ2

p
∑

j=1

q
∑

k=1

|bjk|

}

, (3)

where λ1 ≥ 0 and λ2 ≥ 0 are tuning parameters.

We selected the lasso penalty on the off-diagonal entries of the inverse error covariance

Ω for two reasons. First, it ensures that an optimal solution for Ω has finite objective

function value when there are more responses than samples (q > n); second, the penalty

has the effect of reducing the number of parameters in the inverse error covariance, which

is useful when q is large (Rothman et al., 2008). Other penalties such as the ridge penalty

could be used when it is unreasonable to assume that the inverse error covariance matrix

is sparse. If q is large, estimating a dense Ω means that the MRCE regression method has

O(q2) additional parameters in Ω to estimate compared with doing separate lasso regressions

for each response variable. Thus estimating a sparse Ω has considerably lower variability,

and so we focus on the lasso penalty on Ω. We show in simulations that when the inverse

error covariance matrix is not sparse, the lasso penalty on Ω still considerably outperforms

ignoring covariance estimation altogether (i.e., doing a separate lasso regression for each

response).

The lasso penalty on B introduces sparsity in B̂, which reduces the number of parameters

in the model and provides interpretation. In classical regression (q = 1), the lasso penalty can

offer major improvement in prediction performance when there is a relatively small number

of relevant predictors. This penalty also ensures that an optimal solution for B is a function

of Ω. Without a penalty on B (i.e., λ2 = 0), the optimal solution for B is always B̂
OLS

.

To see the effect of including the error covariance when estimating an L1-penalized B,

assume that we know Ω and also assume p < n. Solving (3) for B with Ω fixed is a convex

problem (see Section 2.2) and thus there exists a global minimizer Bopt. This implies that
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there exists a zero subgradient of the objective function at Bopt (see Theorem 3.4.3 page 127

in Bazaraa et al. (2006)). We express this in matrix notation as,

0 = 2n−1XT XBoptΩ− 2n−1XT Y Ω + λ2Γ,

which gives,

Bopt = B̂
OLS
− λ2(2n

−1XT X)−1ΓΩ−1, (4)

where Γ ≡ Γ(Bopt) is a p × q matrix with entries γij = sign(bopt
ij ) if b

opt
ij 6= 0 and otherwise

γij ∈ [−1, 1] with specific values chosen to solve (4). Ignoring the correlation in the error is

equivalent to assuming that Ω−1 = I. Thus having highly correlated errors will have greater

influence on the amount of shrinkage of each entry of Bopt than having mildly correlated

errors.

2.2 Computational algorithms

The optimization problem in (3) is not convex; however, solving for either B or Ω with the

other fixed is convex. We present an algorithm for solving (3) and a fast approximation to

it.

Solving (3) for Ω with B fixed at a chosen point B0 yields the optimization problem,

Ω̂(B0) = argmin
Ω

{

tr
(

Σ̂RΩ
)

− log |Ω|+ λ1

∑

j′ 6=j

|ωj′j|

}

, (5)

where Σ̂R = 1
n
(Y −XB0)

T (Y −XB0). This is exactly the L1-penalized covariance estima-

tion problem considered by d’Aspremont et al. (2008), Yuan and Lin (2007), Rothman et al.

(2008), Friedman et al. (2008), Lu (2009), and Lu (2010). We use the graphical lasso (glasso)

algorithm of Friedman et al. (2008) to solve (5) since it is fast and the most commonly used

algorithm for solving (5).
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Solving (3) for B with Ω fixed at a chosen point Ω0 yields the optimization problem,

B̂(Ω0) = argmin
B

{

tr

[

1

n
(Y −XB)T (Y −XB)Ω0

]

+ λ2

p
∑

j=1

q
∑

k=1

|bjk|

}

, (6)

which is convex if Ω0 is non-negative definite. This follows because the trace term in the

objective function has the Hessian 2n−1Ω0 ⊗XT X, which is non-negative definite because

the Kronecker product of two symmetric non-negative definite matrices is also non-negative

definite. A solution can be efficiently computed using cyclical-coordinate descent analogous

to that used for solving the single output lasso problem (Friedman et al., 2007). We sum-

marize the optimization procedure in Algorithm 1. We use the ridge penalized least-squares

estimate B̂
RIDGE

= (XT X + λ2I)−1XT Y to scale our test of parameter convergence since

it is always well defined (including when p > n).

Algorithm 1. Given Ω and an initial value B̂
(0)

, let S = XT X and H = XT Y Ω.

Step 1: Set B̂
(m)
← B̂

(m−1)
. Visit all entries of B̂

(m)
in some sequence and for entry (r, c)

update b̂
(m)
rc with the minimizer of the objective function along its coordinate direction

given by,

b̂(m)
rc ← sign

(

b̂(m)
rc +

hrc − urc

srrωcc

)(
∣

∣

∣

∣

b̂(m)
rc +

hrc − urc

srrωcc

∣

∣

∣

∣

−
nλ2

srrωcc

)

+

,

where urc =
∑p

j=1

∑q

k=1 b̂
(m)
jk srjωkc.

Step 2: If
∑

j,k |b̂
(m)
jk − b̂

(m−1)
jk | < ε

∑

j,k |b̂
RIDGE
jk | then stop, otherwise goto Step 1.

A full derivation of Algorithm 1 is found in the Appendix. Algorithm 1 is guaranteed to

converge to the global minimizer if the given Ω is non-negative definite. This follows from

the fact that the trace term in the objective function is convex and differentiable and the

penalty term decomposes into a sum of convex functions of individual parameters (Tseng,

1988; Friedman et al., 2007). We set the convergence tolerance parameter ε = 10−4.
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In terms of computational cost, we need to cycle through pq parameters, and for each

compute urc, which costs at most O(pq) flops, and if the least sparse iterate has v non-zeros,

then computing urc costs O(v). The worst case cost for the entire algorithm is O(p2q2).

Using (5) and (6) we can solve (3) using block-wise coordinate descent, that is, we iterate

minimizing with respect to B and minimizing with respect to Ω.

Algorithm 2 (MRCE). For fixed values of λ1 and λ2, initialize B̂
(0)

= 0 and Ω̂
(0)

=

Ω̂(B̂
(0)

).

Step 1: Compute B̂
(m+1)

= B̂(Ω̂
(m)

) by solving (6) using Algorithm 1.

Step 2: Compute Ω̂
(m+1)

= Ω̂(B̂
(m+1)

) by solving (5) using the glasso algorithm.

Step 3: If
∑

j,k |b̂
(m+1)
jk − b̂

(m)
jk | < ε

∑

j,k |b̂
RIDGE
jk | then stop, otherwise goto Step 1.

Algorithm 2 uses block-wise coordinate descent to compute a local solution for (3). Steps

1 and 2 both ensure a decrease in the objective function value. In practice we found that for

certain values of the penalty tuning parameters (λ1, λ2), the algorithm may take many itera-

tions to converge for high-dimensional data. For such cases, we propose a faster approximate

solution to (3).

Algorithm 3 (Approximate MRCE). For fixed values of λ1 and λ2,

Step 1: Perform q separate lasso regressions each with the same optimal tuning parameter

λ̂0 selected with a cross validation procedure. Let B̂
lasso

λ̂0
denote the solution.

Step 2: Compute Ω̂ = Ω̂(B̂
lasso

λ̂0
) by solving (5) using the glasso algorithm.

Step 3: Compute B̂ = B̂(Ω̂) by solving (6) using Algorithm 1.

The approximation summarized in Algorithm 3 is only iterative inside its steps. The

algorithm begins by finding the optimally tuned lasso solution B̂
lasso

λ̂0
(using cross validation to
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select the tuning parameter λ̂0), then computes an estimate for Ω using the glasso algorithm

with B̂
lasso

λ̂0
plugged in, and then solves (6) using this inverse covariance estimate. Note that

one still must select two tuning parameters (λ1, λ2). The performance of the approximation

is studied in Section 3.

2.3 Tuning parameter selection

For the MRCE methods, the tuning parameters λ1 and λ2 could be selected using K-fold

cross validation, where validation prediction error is accumulated over all q responses for

each fold. Specifically, select the optimal tuning parameters λ̂1 and λ̂2 using,

(λ̂1, λ̂2) = argmin
λ1,λ2

K
∑

k=1

‖Y (k) −X(k)B
(−k)
λ1,λ2
‖2F

where Y (k) is the matrix of responses with observations in the kth fold, X(k) is the matrix of

predictors of observations in the kth fold, and B
(−k)
λ1,λ2

is the estimated regression coefficient

matrix computed with observations outside the kth fold, with tuning parameters λ1 and

λ2. We have found in simulations that λ2, which controls the penalization on the regression

coefficient matrix, has greater influence on prediction performance than λ1, which controls

the penalization of the inverse error covariance matrix.

3 Simulation study

3.1 Estimators

We compare the performance of the MRCE method, computed with the exact and the

approximate algorithms, to other multivariate regression estimators that produce sparse

estimates of B. We report results for the following methods:
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• Lasso: Performing q separate lasso regressions, each with the same tuning parameter

λ.

• Separate lasso: Perform q separate lasso regressions, each with its own tuning param-

eter.

• MRCE: The solution to (3) (Algorithm 2).

• Approx. MRCE: An approximate solution to (3) (Algorithm 3).

The ordinary least squares estimator B̂
OLS

= (XT X)−1XT Y and the Curds and Whey

method of Breiman and Friedman (1997) are computed as a benchmark for low-dimensional

models (they are not directly applicable when p > n).

We select the tuning parameters by minimizing the squared prediction error, accumulated

over all q responses, of independently generated validation data of the same sample size

(n = 50). This is similar to performing the cross-validation approach described in Section

2.3, and is used to save computing time for the simulations. For the MRCE methods, the

two tuning parameters are selected simultaneously.

3.2 Models

In each replication for each model, we generate an n×p predictor matrix X with rows drawn

independently from Np(0,ΣX) where ΣX = [σXij ] is given by σXij = 0.7|i−j|. This model for

the predictors was also used by Yuan et al. (2007) and Peng et al. (2009). Note that all of

the predictors are generated with the same unit marginal variance. The error matrix E is

generated independently with rows drawn independently from Nq(0,ΣE). We consider two

models for the error covariance,

• AR(1) error covariance: σEij = ρ
|i−j|
E , with values of ρE ranging from 0 to 0.9.
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• Fractional Gaussian Noise (FGN) error covariance:

σEij = 0.5
(

(|i− j|+ 1)2H − 2|i− j|2H + (|i− j| − 1)2H
)

,

with values of the Hurst parameter H = 0.9, 0.95.

The inverse error covariance for the AR(1) model is a tri-diagonal sparse matrix while its

covariance matrix is dense, and thus this error covariance model completely satisfies the

regularizing assumptions for the MRCE method, which exploits the correlated error and

the sparse inverse error covariance. The FGN model is a standard example of long-range

dependence and both the error covariance and its inverse are dense matrices. Varying H

gives different degree of dependence, from H = 0.5 corresponding to an i.i.d. sequence to

H = 1 corresponding to a perfectly correlated one. Thus the introduction of sparsity in the

inverse error covariance by the MRCE method should not help; however, since the errors

are highly correlated the MRCE method may still perform better than the lasso penalized

regressions for each response, which ignore correlation among the errors. The sample size is

fixed at n = 50 for all models.

We generate sparse coefficient matrices B in each replication using the matrix element-

wise product,

B = W ∗K ∗Q,

where W is generated with independent draws for each entry from N(0, 1), K has entries

with independent Bernoulli draws with success probability s1, and Q has rows that are either

all one or all zero, where p independent Bernoulli draws with success probability s2 are made

to determine whether each row is the ones vector or the zeros vector. Generating B in this

manner, we expect (1 − s2)p predictors to be irrelevant for all q responses, and we expect

each relevant predictor to be relevant for s1q of the response variables.

12



3.3 Performance evaluation

We measure performance using model error, following the approach in Yuan et al. (2007),

which is defined as,

ME(B̂, B) = tr
[

(B̂ −B)TΣX(B̂ −B)
]

.

We also measure the sparsity recognition performance using true positive rate (TPR) and

true negative rate (TNR),

TPR(B̂, B) =
#{(i, j) : b̂ij 6= 0 and bij 6= 0}

#{(i, j) : bij 6= 0}
, (7)

TNR(B̂, B) =
#{(i, j) : b̂ij = 0 and bij = 0}

#{(i, j) : bij = 0}
. (8)

Both the true positive rate and true negative rates must be considered simultaneously since

OLS always has perfect TPR and B̂ = 0 always has perfect TNR.

3.4 Results

The model error performance for AR(1) error covariance model is displayed in Figure 1 for

low-dimensional models, and Figure 2 and Table 1 for high-dimensional models. Standard

errors are omitted in the figures because of visibility issues, and we note that they are

less than 4% of the corresponding average model error. We see that the margin by which

MRCE and its approximation outperform the lasso and separate lasso in terms of model error

increases as the error correlation ρE increases. This trend is consistent with the analysis of the

subgradient equation given in (4), since the manner by which MRCE performs lasso shrinkage

exploits highly correlated errors. Additionally, the MRCE method and its approximation

outperform the lasso and separate lasso more for sparser coefficient matrices. We omitted

the exact MRCE method for p = 60, q = 20 and p = q = 100 because these cases were

computationally intractable. For a single realization of the model with p = 20, q = 60
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Figure 1: Average model error versus AR(1) correlation ρE , based on 50 replications with
n = 50, p = q = 20, and s2 = 1.

and ρE = 0.9, using the tuning parameters selected with cross validation, MRCE took 4.1

seconds, approximate MRCE took 1.7 seconds, lasso took 0.5 seconds and separate lasso took

0.4 seconds to compute on a workstation with a 2 GHz processor with 4GB of RAM. All of the

sparse estimators outperform the ordinary least squares method by a considerable margin.

The Curds and Whey method, although designed to exploit correlation in the responses, is

outperformed here because it does not introduce sparsity in B.

Table 1: Model error for the AR(1) error covariance models of high dimension, with p = q =
100, s1 = 0.5, and s2 = 0.1. Averages and standard errors in parenthesis are based on 50
replications with n = 50.

ρE lasso sep.lasso ap.MRCE
0.9 58.79 59.32 34.87

(2.29) (2.35) (1.54)
0.7 59.09 59.60 60.12

(2.22) (2.30) (2.02)

The model error performance for FGN error covariance model is reported in Table 2
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Figure 2: Average model error versus AR(1) correlation ρE , based on 50 replications with
n = 50 and s1 = 0.1, s2 = 1.

for low-dimensional models and in Table 3 for high-dimensional models. Although there is

no sparsity in the inverse error covariance for the MRCE method and its approximation to

exploit, we see that both methods are still able to provide considerable improvement over the

lasso and separate lasso methods by exploiting the highly correlated error. As seen with the

AR(1) error covariance model, as the amount of correlation increases (i.e., larger values of

H), the margin by which the MRCE method and its approximation outperform competitors

increases.

We report the true positive rate and true negative rates in Table 4 for the AR(1) error

covariance models and in Table 5 for the FGN error covariance models. We see that as the

error correlation increases (larger values of ρE and H), the true positive rate for the MRCE

method and its approximation increases, while the true negative rate tends to decrease.

While all methods perform comparably on these sparsity measures, the substantially lower

prediction errors obtained by the MRCE methods give them a clear advantage over other

methods.
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Table 2: Model error for the FGN error covariance models of low dimension. Averages and
standard errors in parenthesis are based on 50 replications with n = 50. Tuning parameters
were selected using a 10x resolution.

p q H s1, s2 OLS lasso sep.lasso MRCE ap.MRCE C&W
20 20 0.95 0.1, 1 14.51 2.72 2.71 1.03 1.01 9.86

(0.69) (0.10) (0.11) (0.02) (0.03) (0.46)
20 20 0.90 0.1, 1 14.49 2.76 2.77 1.78 1.71 10.29

(0.53) (0.09) (0.09) (0.05) (0.05) (0.36)
20 20 0.95 0.5, 1 14.51 9.89 8.94 3.63 4.42 11.72

(0.69) (0.26) (0.21) (0.09) (0.16) (0.45)
20 20 0.90 0.5, 1 14.49 10.01 9.03 6.11 6.34 12.29

(0.53) (0.21) (0.18) (0.14) (0.13) (0.34)

Table 3: Model error for the FGN error covariance models of high dimension. Averages and
standard errors in parenthesis are based on 50 replications with n = 50. Tuning parameters
were selected using a 10x resolution.

p q H s1, s2 OLS lasso sep.lasso MRCE ap.MRCE
20 60 0.95 0.1, 1 46.23 8.56 8.63 3.31 3.20

(2.04) (0.36) (0.37) (0.19) (0.18)
20 60 0.90 0.1, 1 45.41 8.60 8.69 5.31 5.03

(1.42) (0.24) (0.25) (0.15) (0.14)
60 20 0.95 0.1, 1 NA 11.15 11.23 - 4.84

(0.35) (0.36) (0.12)
60 20 0.90 0.1, 1 NA 11.14 11.21 - 7.44

(0.30) (0.30) (0.16)
100 100 0.95 0.5, 0.1 NA 58.28 58.86 - 31.85

(2.36) (2.44) (1.26)
100 100 0.95 0.5, 0.1 NA 58.10 58.63 - 47.37

(2.27) (2.36) (1.68)

4 Example: Predicting Asset Returns

We consider a dataset of weekly log-returns of 9 stocks from 2004, analyzed in Yuan et al.

(2007). We selected this dataset because it is the most recent dataset analyzed in the mul-

tivariate regression literature. The data are modeled with a first-order vector autoregressive
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Table 4: True Positive Rate / True Negative Rate for the AR(1) error covariance models,
averaged over 50 replications; n = 50. Standard errors are omitted (the largest standard
error is 0.04 and most are less than 0.01). Tuning parameters were selected using a 10x

resolution.

p q ρE s1, s2 lasso sep.lasso MRCE ap.MRCE
20 20 0.9 0.1, 1 0.83/0.72 0.82/0.74 0.95/0.59 0.94/0.62
20 20 0.7 0.1, 1 0.83/0.71 0.82/0.73 0.89/0.60 0.89/0.63
20 20 0.5 0.1, 1 0.83/0.70 0.81/0.73 0.86/0.62 0.87/0.63
20 20 0 0.1, 1 0.84/0.70 0.82/0.72 0.85/0.63 0.85/0.64
20 20 0.9 0.5, 1 0.86/0.44 0.87/0.44 0.93/0.42 0.91/0.45
20 20 0.7 0.5, 1 0.85/0.47 0.87/0.42 0.86/0.51 0.86/0.52
20 20 0.5 0.5, 1 0.83/0.52 0.87/0.44 0.83/0.54 0.85/0.48
20 20 0 0.5, 1 0.84/0.50 0.87/0.43 0.84/0.51 0.82/0.56
20 60 0.9 0.1, 1 0.83/0.70 0.80/0.74 0.94/0.58 0.93/0.61
20 60 0.7 0.1, 1 0.84/0.71 0.81/0.73 0.89/0.61 0.89/0.62
20 60 0.5 0.1, 1 0.84/0.70 0.82/0.73 0.86/0.64 0.86/0.64
20 60 0 0.1, 1 0.83/0.71 0.81/0.74 0.85/0.63 0.85/0.65
60 20 0.9 0.1, 1 0.79/0.76 0.79/0.76 - 0.89/0.66
60 20 0.7 0.1, 1 0.79/0.76 0.78/0.76 - 0.85/0.65
60 20 0.5 0.1, 1 0.79/0.76 0.79/0.76 - 0.83/0.66
60 20 0 0.1, 1 0.79/0.76 0.79/0.76 - 0.81/0.66
100 100 0.9 0.5, 0.1 0.77/0.81 0.76/0.82 - 0.87/0.72
100 100 0.7 0.5, 0.1 0.78/0.81 0.76/0.82 - 0.82/0.72

model,

Y = Ỹ B + E,

where the response Y ∈ R
T−1×q has rows y2, . . . , yT and the predictor Ỹ ∈ R

T−1×q has rows

y1, . . . , yT−1. Here yt corresponds to the vector of log-returns for the 9 companies at week

t. Let B ∈ R
q×q denote the transition matrix. Following the approach of Yuan et al. (2007),

we use log-returns from the first 26 weeks of the year (T = 26) as the training set, and the

log-returns from the remaining 26 weeks of the year as the test set. Prediction performance

is measured by the average mean-squared prediction error over the test set for each stock,

with the model fitted using the training set. Tuning parameters were selected with 10-fold
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Table 5: True Positive Rate / True Negative Rate for the FGN error covariance models
averaged over 50 replications; n = 50. Standard errors are omitted (the largest standard
error is 0.04 and most are less than 0.01). Tuning parameters were selected using a 10x

resolution.

p q H s1, s2 lasso sep.lasso MRCE ap.MRCE
20 20 0.95 0.1, 1 0.83/0.72 0.81/0.75 0.94/0.55 0.93/0.59
20 20 0.90 0.1, 1 0.84/0.71 0.83/0.73 0.90/0.59 0.89/0.61
20 20 0.95 0.5, 1 0.87/0.40 0.87/0.45 0.93/0.39 0.92/0.39
20 20 0.90 0.5, 1 0.86/0.43 0.87/0.45 0.88/0.51 0.90/0.43
20 60 0.95 0.1, 1 0.83/0.70 0.81/0.73 0.93/0.55 0.93/0.58
20 60 0.90 0.1, 1 0.83/0.70 0.81/0.73 0.90/0.58 0.90/0.60
60 20 0.95 0.1, 1 0.79/0.76 0.79/0.76 - 0.89/0.66
60 20 0.90 0.1, 1 0.79/0.76 0.78/0.76 - 0.87/0.65
100 100 0.95 0.5, 0.1 0.77/0.81 0.75/0.82 - 0.87/0.72
100 100 0.90 0.5, 0.1 0.77/0.81 0.75/0.82 - 0.83/0.71

CV.

Average test squared error over the 26 test points is reported in Table 6, where we see that

the MRCE method and its approximation have somewhat better performance than the lasso

and separate lasso methods. The lasso estimate of the transition matrix B was all zeros,

yielding the null model. Nonetheless, this results in prediction performance comparable,

(i.e., within a standard error), to the FES method of Yuan et al. (2007) (copied directly

from Table 3 on page 341), which was shown to be the best of several competitors for these

data. This comparable performance of the null model suggests that the signal is very weak

in this dataset. Separate lasso, MRCE, and its approximation estimated 3/81, 4/81, and

12/81 coefficients as non-zero, respectively.

We report the estimate of the unit lag coefficient matrix B for the approximate MRCE

method in Table 7, which is the least sparse estimate, identifying 12 non-zero entries. The

estimated unit lag coefficient matrix for separate lasso, MRCE, and approximate MRCE all

identified the log-return for Walmart at week t− 1 as a relevant predictor for the log-return

18



Table 6: Average testing squared error for each output (company) ×1000, based on 26 testing
points. Standard errors are reported in parenthesis. The results for the FES method where
copied from Table 3 in Yuan et al. (2007).

OLS sep.lasso lasso MRCE ap.MRCE FES
Walmart 0.98(0.27) 0.44(0.10) 0.42(0.12) 0.41(0.11) 0.41(0.11) 0.40
Exxon 0.39(0.08) 0.31(0.07) 0.31(0.07) 0.31(0.07) 0.31(0.07) 0.29
GM 1.68(0.42) 0.71(0.17) 0.71(0.17) 0.71(0.17) 0.69(0.17) 0.62
Ford 2.15(0.61) 0.77(0.25) 0.77(0.25) 0.77(0.25) 0.77(0.25) 0.69
GE 0.58(0.15) 0.45(0.09) 0.45(0.09) 0.45(0.09) 0.45(0.09) 0.41
ConocoPhillips 0.98(0.24) 0.79(0.22) 0.79(0.22) 0.79(0.22) 0.78(0.22) 0.79
Citigroup 0.65(0.17) 0.61(0.13) 0.66(0.14) 0.62(0.13) 0.62(0.13) 0.59
IBM 0.62(0.14) 0.49(0.10) 0.49(0.10) 0.49(0.10) 0.47(0.09) 0.51
AIG 1.93(0.93) 1.88(1.02) 1.88(1.02) 1.88(1.02) 1.88(1.02) 1.74
AVE 1.11(0.14) 0.72(0.12) 0.72(0.12) 0.71(0.12) 0.71(0.12) 0.67

of GE at week t, and the log-return for Ford at week t− 1 as a relevant predictor for the log

return of Walmart at week t. The FES does not provide any interpretation.

We also report the estimate for the inverse error covariance matrix for the MRCE method

in Table 8. A non-zero entry (i, j) means that we estimate that εi is correlated with εj given

the other errors (or εi is partially correlated with εj). We see that AIG (an insurance

company) is estimated to be partially correlated with most of the other companies, and

companies with similar products are partially correlated, such as Ford and GM (automotive),

GE and IBM (technology), as well as Conoco Phillips and Exxon (oil). These results make

sense in the context of financial data.

5 Summary and discussion

We proposed the MRCE method to produce a sparse estimate of the multivariate regression

coefficient matrix B. Our method explicitly accounts for the correlation of the response

variables. We also developed a fast approximate algorithm for computing MRCE which
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Table 7: Estimated coefficient matrix B for approximate MRCE

Wal Exx GM Ford GE CPhil Citi IBM AIG
Walmart 0 0 0 0 0 0 0.123 0.078 0
Exxon 0 0 0 0 0 0 0 0 0
GM 0 0 0 0 0 0 0 0 0
Ford -0.093 0.035 0.012 0 0 0 0 -0.040 -0.010
GE 0 0 0 0 0 0.044 0 0 0
ConocoPhillips 0 0.007 0 0 0 0 0 -0.005 0
Citigroup 0 0 0.025 0 0 0 0 0 0
IBM 0 0 0 0 0 0 0 0 0
AIG 0 0 0.031 0 0 0 0 0 0

Table 8: Inverse error covariance estimate for MRCE

Wal Exx GM Ford GE CPhil Citi IBM AIG
Walmart 1810.0 0 -378.0 0 0 0 0 0 -10.8
Exxon 0 4409.2 0 0 0 -1424.1 0 0 -8.4
GM -378.0 0 2741.3 -1459.2 -203.5 0 -363.7 -56.0 -104.9
Ford 0 0 -1459.2 1247.4 0 0 0 0 0
GE 0 0 -203.4 0 2599.1 0 -183.7 -1358.1 -128.5
CPhillips 0 -1424.1 0 0 0 2908.2 0 0 -264.3
Citigroup 0 0 -363.7 0 -183.7 0 4181.7 0 -718.1
IBM 0 0 -56.1 0 -1358.1 0 0 3353.5 -3.6
AIG -10.8 -8.4 -104.9 0 -128.5 -264.3 -718.1 -3.6 1714.2

has roughly the same performance in terms of model error. These methods were shown

to outperform q separate lasso penalized regressions (which ignore the correlation in the

responses) in simulations when the responses are highly correlated, even when the inverse

error covariance is dense.

Although we considered simultaneous L1-penalization of B and Ω, one could use other

penalties that introduce less bias instead, such as SCAD (Fan and Li, 2001; Lam and Fan,

2009). In addition, this work could be extended to the situation when the response vec-

tor samples have serial correlation, in which case the model would involve both the error
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covariance and the correlation among the samples.
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Appendix: Derivation of Algorithm 1

The objective function for Ω fixed at Ω0 is now,

f(B) = g(B,Ω0) + λ2

p
∑

j=1

q
∑

k=1

|bjk|.

We can solve for B with cyclical coordinate descent. Express the directional derivatives as,

∂f+

∂B
=

2

n
XT XBΩ−

2

n
XT Y Ω + λ21(bij ≥ 0)− λ21(bij < 0)

∂f−

∂B
= −

2

n
XT XBΩ +

2

n
XT Y Ω− λ21(bij > 0) + λ21(bij ≤ 0),

where the indicator 1() is understood to be a matrix. Let S = XT X and H = XT Y Ω

and urc =
∑p

j=1

∑q

k=1 bjksrjωkc. To update a single parameter brc we have the directional

derivatives,

∂f+

∂brc

= urc − hrc + nλ21(bij ≥ 0)− nλ21(bij < 0)

∂f−

∂brc

= −urc + hrc − nλ21(bij > 0) + nλ21(bij ≤ 0).
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Let b0
rc be our current iterate. The unpenalized univariate minimizer b̂∗rc solves,

b̂∗rcsrrωcc − b0
rcsrrωcc + urc − hrc = 0,

implying b̂∗rc = b0
rc + hrc−urc

srrωcc

. If b̂∗rc > 0, then we look leftward and by convexity the penalized

minimizer is b̂rc = max(0, b̂∗rc −
nλ2

srrωcc

). Similarly if b̂∗rc < 0 then we look to the right and

by convexity the penalized univariate minimizer is b̂rc = min(0, b̂∗rc + nλ2

srrωcc

), thus b̂rc =

sign(b̂∗rc)(|b̂
∗
rc| −

nλ2

srrωcc

)+. Also if b̂∗rc = 0, which has probability zero, then both the loss and

penalty part of the objective function are minimized and the parameter stays at 0. We can

write this solution as,

b̂rc = sign

(

b0
rc +

hrc − urc

srrωcc

) (
∣

∣

∣

∣

b0
rc +

hrc − urc

srrωcc

∣

∣

∣

∣

−
nλ2

srrωcc

)

+

.

Supplemental Materials

R-package for MRCE: R-package “MRCE” containing functions to compute MRCE and

its approximation as well as the dataset of weekly log-returns of 9 stocks from 2004

analyzed in Section 4. (MRCE 1.0.tar.gz, GNU zipped tar file)
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