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We propose a new class of generalized thresholding operators that combine thresholding with shrinkage, and study generalized thresholding

of the sample covariance matrix in high dimensions. Generalized thresholding of the covariance matrix has good theoretical properties and

carries almost no computational burden. We obtain an explicit convergence rate in the operator norm that shows the tradeoff between the

sparsity of the true model, dimension, and the sample size, and shows that generalized thresholding is consistent over a large class of models

as long as the dimension p and the sample size n satisfy log p/n ! 0. In addition, we show that generalized thresholding has the ‘‘spar-

sistency’’ property, meaning it estimates true zeros as zeros with probability tending to 1, and, under an additional mild condition, is sign

consistent for nonzero elements. We show that generalized thresholding covers, as special cases, hard and soft thresholding, smoothly

clipped absolute deviation, and adaptive lasso, and compare different types of generalized thresholding in a simulation study and in an

example of gene clustering from a microarray experiment with tumor tissues.
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1. INTRODUCTION

There is an abundance of problems in high-dimensional
inference when an estimate of the covariance matrix is of
interest: principal components analysis, classification by dis-
criminant analysis, inferring a graphical model structure, and
others. Examples of application areas in which these problems
arise include gene arrays, functional MRI, text retrieval, image
classification, spectroscopy, and climate studies. The proper-
ties of the traditional estimator, the sample covariance matrix,
are by now fairly well understood (see, for example, Johnstone
(2001) and references therein), and it is clear that alternative
estimators are needed in high dimensions.

The existing literature on covariance estimation can be
loosely divided into two categories. One large class of methods
covers the situation in which variables have a natural ordering
or there is a notion of distance between variables, as in longi-
tudinal data, time series, spatial data, or spectroscopy. The
implicit regularizing assumption here is that variables far apart
are only weakly correlated, and estimators that take advantage
of this have been proposed by Wu and Pourahmadi (2003);
Bickel and Levina (2004); Huang et al. (2006); Furrer and
Bengtsson (2007); Bickel and Levina (2008); Levina, Roth-
man, and Zhu (2008); and others.

There are, however, many applications in which an ordering
of the variables is not available, such as genetics and social,
financial, and economic data. Methods that are invariant to
variable permutations (like the covariance matrix itself) are
necessary in such applications. A common approach to per-
mutation-invariant covariance regularization is encouraging
sparsity. Adding a lasso penalty on the entries of the inverse
covariance to the normal likelihood has been discussed by
d’Aspremont, Banerjee, and El Ghaoui (2008); Yuan and Lin
(2007); Rothman et al. (2008); and Friedman, Hastie, and
Tibshirani (2008); and has extended to more general penalties

by Lam and Fan (2007). Although relatively fast algorithms
have been proposed by Friedman, Hastie, and Tibshirani (2008)
and Rothman et al. (2008) for solving these penalized like-
lihood problems, they require computationally intensive
methods and typically only provide a sparse estimate of the
inverse, not of the covariance matrix itself.

A simple alternative to penalized likelihood is thresholding
the sample covariance matrix, which has been analyzed by
Bickel and Levina (2007) and El Karoui (2007). Thresholding
carries essentially no computational burden, except for cross-
validation for the tuning parameter (which is also necessary for
penalized likelihood) and is thus an attractive option for prob-
lems in very high dimensions and real-time applications.
However, in regression and wavelet shrinkage contexts (see, for
example, Donoho et al. (1995) and Fan and Li (2001)), hard
thresholding tends to do worse than more flexible estimators
that combine thresholding with shrinkage—for example, soft
thresholding or smoothly clipped absolute deviation (SCAD)
(Fan and Li 2001). The estimates resulting from such shrinkage
typically are continuous functions of the ‘‘naive’’ estimates, a
desirable feature not shared by hard thresholding.

In this article, we generalize the thresholding approach to
covariance estimation to a whole class of estimators based on
elementwise shrinkage and thresholding. For any l $ 0, define
a generalized thresholding operator to be a function sl : R! R

satisfying the following conditions for all z 2 R:

(i) sl zð Þj j # zj j;
(ii) sl zð Þ ¼ 0 for zj j # l;

(iii) sl zð Þ � zj j # l:

It is also natural, although not strictly necessary, to have sl(z)¼
sign (z) sl(|z|). Condition (i) establishes shrinkage, condition
(ii) enforces thresholding, and condition (iii) limits the amount
of shrinkage to no more than l. It is possible to have different
parameters l1 and l2 in (ii) and (iii); for simplicity, we keep
them the same. For a related discussion of penalties that have
such properties, see also Antoniadis and Fan (2001).

The rest of this article is organized as follows. To make our
definition of generalized thresholding concrete, we start by
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giving examples in Section 2, and show that generalized
thresholding covers many popular shrinkage/thresholding
functions, including hard and soft thresholding, SCAD (Fan
and Li 2001), and adaptive lasso (Zou 2006). In Section 3, we
establish convergence rates for generalized thresholding of
the sample covariance on a class of ‘‘approximately sparse’’
matrices, and show they are consistent as long as log p/n tends
to 0. We also show that generalized thresholding is, in the
terminology of Lam and Fan (2007), ‘‘sparsistent,’’ meaning
that in addition to being consistent it estimates true zeros as
zeros with probability tending to 1, and, under an additional
condition, estimates nonzero elements as nonzero, with the
correct sign, with probability tending to 1. This property is
sometimes referred to as ‘‘sign consistency.’’ Simulation results
are given in Section 4, where we show that although all the
estimators in this class are guaranteed the same bounds on
convergence rates and have similar performance in terms of
overall loss, the more flexible penalties like SCAD are sub-
stantially better at getting the true sparsity structure. Last,
Section 5 presents an application of the methods to gene
expression data on small round blue-cell tumors. The Appendix
contains all the proofs.

2. EXAMPLES OF GENERALIZED THRESHOLDING

It turns out that conditions (i) through (iii), which define
generalized thresholding, are satisfied by a number of com-
monly used shrinkage/thresholding procedures. These proce-
dures are commonly introduced as solutions to penalized
quadratic loss problems with various penalties. Because, in our
case, the procedure is applied to each element separately, the
optimization problems are univariate. Suppose sl(z) is obtained as

sl zð Þ ¼ arg min
u

1

2
u� zð Þ2þpl uð Þ

� �
; ð1Þ

where pl is a penalty function. Next, we check that several
popular penalties and thresholding rules satisfy our conditions
for generalized thresholding. For more details on the relation-
ship between penalty functions and resulting thresholding
rules, see Antoniadis and Fan (2001).

The simplest example of generalized thresholding is the hard
thresholding rule,

sH
l zð Þ ¼ z1 zj j> lð Þ; ð2Þ

where 1 (�) is the indicator function. Hard thresholding obvi-
ously satisfies conditions (i) through (iii).

Soft thresholding results from solving (1) with the lasso (l1)
penalty function, pl(u) ¼ l|u|, and gives the rule

ss
l zð Þ ¼ sign zð Þ zj j � lð Þþ: ð3Þ

Soft thresholding has been studied in the context of wavelet
shrinkage by Donoho and Johnstone (1994) and Donoho et al.
(1995), and in the context of regression by Tibshirani (1996).
The soft-thresholding operator sS

l obviously satisfies conditions
(i) and (ii). To check (iii), note that sS

l zð Þ � z
�� �� ¼ zj j when |z| #

l, and sS
l zð Þ � z
�� �� ¼ l when |z| > l. Thus, soft thresholding

corresponds to the maximum amount of shrinkage allowed by
condition (iii), whereas hard thresholding corresponds to no
shrinkage.

The SCAD penalty was proposed by Fan (1997) and Fan and
Li (2001) as a compromise between hard and soft thresholding.
Like soft thresholding, it is continuous in z, but the amount of
shrinkage decreases as |z| increases, and after a certain
threshold there is no shrinkage, which results in less bias. The
SCAD thresholding function is a linear interpolation between
soft thresholding up to 2l and hard thresholding after al (see
Fig. 1). The value a ¼ 3.7 was recommended by Fan and Li
(2001), and we use it throughout the article. See Fan and Li
(2001) for the formulas of the SCAD thresholding function and
the corresponding penalty function. The SCAD thresholding
operator sSC

l satisfies conditions (i) through (iii): Condition (ii)
is immediate, and (i) and (iii) follow from |sS(jzj)| # |sSC(jzj)| #

|sH(|z|)|.
Another idea proposed to mitigate the bias of lasso for large

regression coefficients is adaptive lasso (Zou 2006). In re-
gression context, the idea is to multiply each |bj| in the lasso
penalty by a weight wj, which is smaller for larger initial esti-
mates b̂j . Thus, large coefficients get penalized less. One choice
of weights proposed was wj ¼ b̂j

�� ���h
, where b̂j is an ordinary

least-squares estimate. Note that in the context of regression, the
special case h ¼ 1 is closely related to the nonnegative garrote
(Breiman 1995). In our context, an analogous weight would be
ŝij

�� ���h
. We can rewrite this as a penalty function pl(u) ¼

lw(z)|u|, where w is taken to be C|z|–h, h $ 0. Zou (2006) has
C ¼ 1 (it is absorbed in l), but for us it is convenient to set
C ¼ lh, because then the resulting operator satisfies condition
(ii)—in other words, thresholds everything below l to 0. The
resulting thresholding rule corresponding to C ¼ lh, which we
still call ‘‘adaptive lasso’’ for simplicity, is given by

sAL
l zð Þ ¼ sgn zð Þ zj j � lnþ1 zj j�h

� �
þ: ð4Þ

Conditions (i) and (ii) are obviously satisfied. To check (iii) for
|z| > l, note that sAL

l zð Þ � z
�� �� ¼ lhþ1 zj j�h

# l.

Figure 1. Generalized thresholding functions for l¼ 1, a¼ 3.7, and
h ¼ 1.
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As illustrated in Figure 1, both SCAD and adaptive lasso fall
in between hard and soft thresholding; any other function
sandwiched between hard and soft thresholding will satisfy
conditions (i) through (iii)—for example, the clipped L1 penalty.
For conditions on the penalty pl that imply the resulting
operator is sandwiched between hard and soft thresholding, see
Antoniadis and Fan (2001). In this article, we focus on the
operators themselves rather than the penalties, because the
penalties are never used directly.

3. CONSISTENCY AND SPARSITY OF
GENERALIZED THRESHOLDING

In this section, we derive theoretical properties of the gen-
eralized thresholding estimator in the high-dimensional setting,
meaning that both the dimension and the sample size are
allowed to grow. Let X1, . . . , Xn denote iid p-dimensional
random vectors sampled from a distribution F with EX1 ¼ 0
(without loss of generality), and E X1XT

1

� �
¼ S. The convention

in the literature is to assume that F is Gaussian. The key result
underlying this theory, however, is the bound (A.4) we give in
the Appendix. Bickel and Levina (2008) noted that for this
result the normal assumption can be replaced with a tail con-
dition on the marginal distributions—namely, that for all 1 # j
# p, if Gj in the cumulative distribution function of X2

1j, thenZ ‘

0

expðltÞdGjðtÞ < ‘ for 0 < jlj < l0

for some l0 > 0: ð5Þ

Let Ŝ denote the sample covariance matrix:

Ŝ ¼ 1

n

Xn

k¼1

Xk � �Xð Þ Xk � �Xð ÞT : ð6Þ

Let sl(A) ¼ [sl(aij)] denote the matrix resulting from applying
a generalized thresholding operator sl to each of the elements
of a matrix A. Condition (ii) implies that sl(A) is sparse for
sufficiently large l. As with hard thresholding and banding of
the covariance matrix, the estimator slðŜÞ is not guaranteed to
be positive definite, but instead we show that it converges to a
positive definite limit with probability tending to 1.

We proceed to establish a bound on the convergence rate for
slðŜÞ. The result is uniform on a class of ‘‘approximately
sparse’’ covariance matrices, which was introduced by Bickel
and Levina (2007):

Ut q; c0 pð Þ;Mð Þ¼ S : sii # M; max
i

Xp

j¼1

sij

�� ��q # c0 pð Þ
( )

;

ð7Þ
for 0 # q < 1. When q ¼ 0, this is a class of truly sparse
matrices. For example, a d-diagonal matrix satisfies this con-
dition with any 0 # q < 1 and c0(p)¼Mqd. Another example is
the AR(1) covariance matrix, sij ¼ r|i–j|, which satisfies the
condition with c0(p) [ c0. Note that the condition of bounded
variances, sii # M, is weaker than the often assumed bounded
eigenvalues condition, lmax(S) # M. Also note that the con-
stant c0(p) is allowed to depend on p and is thus not an explicit
restriction on sparsity. The convergence will be established in

the matrix operator norm (also known as ‘‘spectral’’ or ‘‘l2
matrix norm’’), ||A||2 ¼ lmax (AAT).

Theorem 1 (Consistency). Suppose sl satisfies conditions
(i) through (iii) and F satisfies condition (5). Then, uniformly on
Ut(q, c0(p), M), for sufficiently large M9, if l¼M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlogp=nÞ

p
¼

o 1ð Þ,

slðŜÞ � S

��� ��� ¼ OP c0ðpÞ
log p

n

	 
1�q
2

0
@

1
A:

Proof of Theorem 1 is given in the Appendix. For the case of
hard thresholding, this theorem was established in Bickel and
Levina (2007). Note that, through c0(p), the rate depends
explicitly on how sparse the truth is. Also note that this rate is
very similar to the rate of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs log p=nÞ

p
for a sparse estimator of

the inverse covariance matrix established in Rothman et al.
(2008), where s is the number of nonzero off-diagonal elements
in the true inverse, even though the estimator is obtained by a
completely different approach of adding a lasso penalty to the
normal likelihood. The fundamental result underlying these
different analyses, however, is the bound (A.4), which ulti-
mately gives rise to similar rates.

Next, we state a sparsity result, which, together with Theo-
rem 1, establishes the ‘‘sparsistency’’ property in the sense of
Lam and Fan (2007).

Theorem 2 (Sparsity). Suppose sl satisfies conditions (i)
through (iii), F satisfies (5), and sii # M for all i. Then, for
sufficiently large M9, if l ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog p=nÞ

p
¼ oð1Þ,

sl ŝij

� �
¼ 0 for all i; jð Þ such that sij ¼ 0; ð8Þ

with probability tending to 1. If we additionally assume that all
nonzero elements of S satisfy |sij| > t, where

ffiffiffi
n
p

t � lð Þ ! ‘,
we also have, with probability tending to 1,

sign sl ŝij

� �
� sij

� �
¼ 1 for all i; jð Þ such that sij 6¼ 0: ð9Þ

The proof is given in the Appendix. Note that Theorem 2
only requires that the true variances are bounded, and not the
approximately sparse assumption. The additional condition on
nonzero elements is analogous to the condition of El Karoui
(2007) that nonzero elements are greater than n–a. If we assume
the same (i.e., let t ¼ n–a), the result holds under a slightly
stronger condition log p/n1�2a ! 0 instead of log p/n ! 0. It
may also be possible to develop further joint asymptotic nor-
mality results for nonzero elements along the lines of Fan and
Peng (2004) or Lam and Fan (2007), but we do not pursue this
further because of restrictive conditions required for the
method of proof used there (p2/n ! 0).

4. SIMULATION RESULTS

4.1 Simulation Settings

To compare the performance of various generalized thresh-
olding estimators, both in terms of the overall covariance
estimation and recovering the sparsity pattern, we conducted a
simulation study with the following three covariance models:
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Model 1: AR(1), where sij ¼ r|i–j|, for r ¼ 0.3 and 0.7.
Model 2: MA(1), where sij ¼ r1(|i – j| ¼ 1) þ 1(i ¼ j), for
r ¼ 0.3.
Model 3: ‘‘Triangular’’ covariance, sij ¼ ð1� ððji� jjÞ=kÞÞþ;
for k¼ bp/2c.

Models 1 and 2 are standard test cases in the literature. Note
that even though these models come from time series, all
estimators considered here are permutation invariant, and thus
the order of the variables is irrelevant. Model 1 is ‘‘approx-
imately sparse,’’ because even though there are no true zeros,
there are many very small entries away from the diagonal.
Model 2 is a tridiagonal covariance matrix and is the most
sparse of the three models. Model 3 has a linear decay in
covariances as one moves away from the diagonal, and it
provides a simple way to generate a positive definite matrix,
with the level of sparsity controlled by the parameter k. With
k ¼ p/2, Model 3 is effectively the least sparse of the three
models we consider. This covariance structure was considered
by Wagaman and Levina (2007).

For each model, we generated n ¼ 100 independent and
identically distributed p-variate normal random vectors with
mean 0 and covariance S, for p ¼ 30, 100, 200, and 500. The
number of replications was fixed at 50. The tuning parameter l

for each method was selected by minimizing the Frobenius
norm of the difference between slðŜÞ and the sample cova-
riance matrix computed from 100 independently generated
validation data observations. We note that the use of a vali-
dation set can be replaced with cross-validation without any
significant change in results. We selected the Frobenius
norm ð Ak k2

F¼
P

i;j a2
ijÞ for tuning because it had a slightly

better performance than the operator norm or the matrix
l1 norm. Also, a theoretical justification for this choice for
cross-validation has been provided by Bickel and Levina
(2007).

4.2 Performance Evaluation

Keeping consistent with theory in Section 3, we defined the
loss function for the estimators by the expected operator norm
of the difference between the true covariance and the estimator:

LðslðŜÞ;SÞ ¼ E slðŜÞ � S

��� ���:
The ability to recover sparsity was evaluated via the true-
positive rate (TPR) in combination with the false-positive rate
(FPR), defined as

TPR ¼
# i; jð Þ : sl ŝij

� �
6¼ 0 and sij 6¼ 0

� �
# i; jð Þ : sij 6¼ 0
� � ; ð10Þ

FPR ¼
# i; jð Þ : slðŝijÞ 6¼ 0 and sij ¼ 0
� �

# i; jð Þ : sij ¼ 0
� � : ð11Þ

Note that the sample covariance has TPR ¼ 1, and a diagonal
estimator has FPR ¼ 0.

In addition, we compute a measure of agreement of principal
eigenspaces between the estimator and the truth, which is rel-
evant for principal components analysis. The measure we use
to compare the eigenspaces spanned by the first q eigenvectors
was defined by Krzanowski (1979) as

K qð Þ ¼
Xq

i¼1

Xq

j¼1

êT
ðiÞeðjÞ


 �2

; ð12Þ

where êðiÞ denotes the estimated eigenvector corresponding to
the i-th largest estimated eigenvalue, and e(i) is the true ei-
genvector corresponding to the true i-th largest eigenvalue.
Computing cosines of angles between all possible pairs of
eigenvectors removes the problem of similar eigenvectors
estimated in a different order. Note that K(0) [ 0 and K(p) ¼
p. For any 0 < q < p, perfect agreement between the two
eigenspaces will result in K(q) ¼ q. A convenient way to
evaluate this measure is to plot K(q) against q. Alternative
measures of eigenvector agreement are available; for example,
Fan, Wang, and Yao (2008) proposed using the measure

D qð Þ ¼ 1� 1

q

Xq

i¼1

max
1 # j # q

eT
ðiÞêjj;
���

which shares many of the properties of the Krzanowski’s
measure, such as invariance to permutations of the eigenvector
order.

4.3 Summary of Results

Table 1 summarizes simulation results for the AR(1) model.
Note that this model is not truly sparse, and thus TPRs and
FPRs are not relevant. All generalized thresholding estimators
improve over the sample covariance matrix under the operator
norm loss. This improvement increases with dimension p. The
thresholding rules are all quite similar for this model, with
perhaps hard thresholding having a slight edge for r ¼ 0.7
(more large entries) and being slightly worse than the others for
r ¼ 0.3.

Table 1. Average (standard error) operator norm loss for model 1

p r Sample Hard Soft Adapt.lasso SCAD

30 0.3 1.30 (0.02) 0.75 (0.01) 0.71 (0.01) 0.71 (0.01) 0.71 (0.01)
30 0.7 1.75 (0.04) 1.56 (0.04) 1.59 (0.05) 1.53 (0.04) 1.47 (0.04)

100 0.3 3.09 (0.03) 0.93 (0.01) 0.86 (0.01) 0.86 (0.01) 0.85 (0.01)
100 0.7 4.10 (0.07) 2.17 (0.04) 2.49 (0.03) 2.30 (0.04) 2.16 (0.04)
200 0.3 4.90 (0.03) 0.98 (0.01) 0.90 (0.00) 0.91 (0.01) 0.90 (0.00)
200 0.7 6.63 (0.08) 2.46 (0.03) 2.86 (0.02) 2.65 (0.03) 2.52 (0.03)
500 0.3 9.69 (0.04) 1.06 (0.01) 0.95 (0.00) 0.96 (0.00) 0.95 (0.00)
500 0.7 12.54 (0.08) 2.80 (0.02) 3.23 (0.02) 3.01 (0.02) 2.97 (0.02)
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Table 2 gives results for model 2, the tridiagonal sparse truth.
We again see a drastic improvement in estimation performance
of the ‘‘thresholded’’ estimates over the sample covariance
matrix, which increases with dimension. This is expected
because this is the sparsest model we consider. Under operator
norm loss, the rules that combine thresholding with shrinkage
all outperform hard thresholding, with soft thresholding per-
forming slightly better than SCAD and adaptive lasso.

The 50 realizations of the values of TPR and FPR are also
plotted in Figure 2, in addition to their average values given in
Table 2. Here we see a big difference between the different
thresholding rules. Hard thresholding tends to zero out too many
elements, presumably because of its inability to shrink moderate
values; thus, it has a very low FPR, but also a lower TPR than the
other methods, particularly for large p. Overall, Figure 2 sug-
gests that the SCAD thresholding has the best performance on
sparsity for this model, particularly for large values of p.

Table 3 gives results for the ‘‘triangular’’ model with k¼ p/2,
the least sparse of the three models we consider. Here we see
only a small improvement of thresholded estimates over the
sample covariance in the operator norm loss. All methods miss
a substantial fraction of true zeros, most likely because a large
number of small nonzero true entries leads to a choice of
threshold that is too low. In this case, hard thresholding does
somewhat better on false positives, which we conjecture may in
general be the case for less sparse models. However, the plot of
realizations of TPR and FPR in Figure 3 shows that the var-
iance is very high and there is no clear best choice for esti-
mating the sparsity structure in this case.

In Figure 4, we plot the average eigenspace agreement
measure K(q) defined in (12) versus q for p ¼ 200 in all four
models. For effectively sparser models AR(1) and MA(1), all

Table 2. Average (standard error) operator norm loss, and TPRs
and FPRs for model 2

p Sample Hard Soft Adapt.lasso SCAD

Operator norm loss
30 1.34 (0.02) 0.69 (0.01) 0.61 (0.01) 0.62 (0.01) 0.63 (0.01)

100 2.99 (0.02) 0.88 (0.01) 0.70 (0.01) 0.73 (0.01) 0.72 (0.01)
200 4.94 (0.03) 0.94 (0.02) 0.75 (0.01) 0.78 (0.01) 0.76 (0.01)
500 9.65 (0.04) 1.01 (0.02) 0.81 (0.01) 0.85 (0.01) 0.81 (0.01)

TPR/FPR
30 NA 0.70/0.01 0.94/0.18 0.88/0.08 0.95/0.21

100 NA 0.49/0.00 0.87/0.07 0.78/0.03 0.92/0.12
200 NA 0.33/0.00 0.81/0.04 0.69/0.01 0.91/0.11
500 NA 0.20/0.00 0.70/0.02 0.57/0.01 0.89/0.08

NOTE: NA, not applicable.

Figure 2. TPR versus FPR for model 2. The points correspond to 50 different realizations, with each method selecting its own threshold using
validation data. The solid line is obtained by varying the threshold over the whole range (all methods have the same TPR and FPR for a fixed
threshold).
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thresholding methods improve on eigenspace estimation rela-
tive to the sample covariance, with SCAD and adaptive lasso
showing the best performance. This effect is more pronounced
for large p (plots not shown). For the less sparse triangular
model, there is in fact no improvement relative to the cova-
riance matrix, even though there is a slight improvement in
overall operator norm loss. The eigenvalues corresponding to
q > 50 here, however, are very small, and thus the differences in
eigenspaces are inconsequential. The biggest improvement in
eigenspace estimation across models is for AR(1) with r ¼ 0.7,

which is consistent with our expectations that these methods
perform best for models with many small or zero entries and
few large entries well separated from zero.

Overall, the simulations show that in truly sparse models,
thresholding makes a big difference, and that penalties that
combine the advantages of hard and soft thresholding tend to
perform best at recovering the true zeros. When the true model
is not sparse, the thresholded estimator does no worse than the
sample covariance matrix, and thus in practice there does not
seem to be any harm in applying thresholding even when there

Figure 3. TPR versus FPR for model 3. The points correspond to 50 different realizations, with each method selecting its own threshold using
validation data. The solid line is obtained by varying the threshold over the whole range (all methods have the same value of TPR and FPR for a
fixed threshold).

Table 3. Average (standard error) operator norm loss, and TPRs and FPRs for model 3 (k ¼ p/2)

p Sample Hard Soft Adapt.lasso SCAD

Operator norm loss
30 2.55 (0.10) 2.40 (0.10) 2.33 (0.10) 2.34 (0.09) 2.39 (0.09)

100 8.67 (0.37) 8.10 (0.37) 8.05 (0.39) 7.99 (0.35) 8.11 (0.36)
200 17.66 (0.90) 16.81 (0.85) 16.42 (0.79) 16.21 (0.75) 16.69 (0.99)
500 43.71 (2.01) 40.49 (1.80) 42.75 (1.87) 41.08 (1.80) 40.60 (1.79)

TPR/FPR
30 NA 0.92/0.26 0.98/0.69 0.94/0.45 0.95/0.51

100 NA 0.91/0.28 0.98/0.72 0.94/0.54 0.94/0.46
200 NA 0.92/0.35 0.97/0.69 0.94/0.49 0.95/0.51
500 NA 0.90/0.39 0.98/0.79 0.94/0.54 0.95/0.59

NOTE: NA, not applicable.
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is little or no prior information about the degree of sparsity of
the true model.

5. EXAMPLE: GENE CLUSTERING VIA
CORRELATIONS

Clustering genes using their correlations is a popular tech-
nique in gene expression data analysis (Eisen et al. 1998;
Hastie et al. 2000). Here we investigate the effect of general-
ized thresholding on gene clustering using the data from a
small round blue-cell tumors microarray experiment (Khan
et al. 2001). The experiment had 64 training tissue samples, and
2,308 gene expression values recorded for each sample. The
original dataset included 6,567 genes and was filtered down by
requiring that each gene have a red intensity greater than 20
over all samples (for additional information, see Khan et al.
(2001)). There are four types of tumors in the sample (EWS,
BL-NHL, NB, and RMS).

First we ranked the genes by how much discriminative
information they provide, using the F statistic:

F ¼
1

k � 1

Pk
m¼1 nmð�xm � �xÞ2

1

n� k

Pk
m¼1 ðnm � 1Þŝ2

m

;

where k ¼ 4 is the number of classes, n ¼ 64 is the number of
tissue samples, nm is the number of tissue samples of class m, �xm

and ŝ2
m are the sample mean and variance of class m, and �x is the

overall mean. Then we selected the top 40 and bottom
160 genes according to their F statistics, so that we have
both informative and noninformative genes. This selection was
done to allow visualizing the correlation matrices via heat maps.

We apply group average agglomerative clustering to genes
using the estimated correlation in the dissimilarity measure,

djj0 ¼ 1� jr̂jj0 j; ð13Þ

where r̂jj0 is the estimated correlation between gene j and gene
j9. We estimate the correlation matrix using hard, soft, adaptive
lasso, and SCAD thresholding of the sample correlation matrix.
The tuning parameter l was selected via the resampling
scheme described in Bickel and Levina (2008). The group-
average agglomerative clustering is a bottom-up clustering
method, which starts from treating all genes as singleton
groups. Each step merges the two most similar groups, chosen
to have the smallest average of pairwise dissimilarity between
members of one group and the other. There are a total of p � 1
stages, and the last stage forms one group of size p. Figure 5
shows a heat map of the data, with rows (genes) sorted by
hierarchical clustering based on the sample correlations, and

Figure 4. Average K(q) versus q with p ¼ 200.

Rothman, Levina, and Zhu: Generalized Covariance Thresholding 183



columns (patients) sorted by tissue class for the 40 genes with
the highest F statistics, along with a heat map of the sample
correlations (absolute values) of the 40 genes ordered by hier-

archical clustering. In all correlation heat maps, we plot abso-
lute values rather than the correlations themselves, because
here we are interested in the strength of pairwise association

Figure 5. (a) Heat map of the absolute values of sample correlations of the top 40 genes. (b) Heat map of the gene expression data, with rows
(genes) sorted by hierarchical clustering and columns sorted by tissue class.

Figure 6. Heat maps of the absolute values of estimated correlations. The 40 genes with the largest F statistic are marked with lines. The genes
are ordered by hierarchical clustering using estimated correlations. The percentage of off-diagonal elements estimated as zero is given in
parentheses for each method.
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between the genes regardless of its sign. It is clear that these 40
genes form strongly correlated blocks that correspond to dif-
ferent classes.

The resulting heat maps of the correlation matrix ordered
by hierarchical clustering for each thresholding method are
shown in Figure 6, along with the percentage of off-diagonal
entries estimated as zero. Hard thresholding estimates many
more zeros than other methods, resulting in a nearly diagonal
estimator. This is consistent with hard-thresholding results
in simulations, where hard thresholding tended to threshold
too many entries, especially in higher dimensions. Also
consistent with the simulation study is the performance of
SCAD, which estimates the smallest number of zeros and
appears to do a good job at cleaning up the signal without losing
the block structure. As in simulations, the performance of
adaptive lasso is fairly similar to SCAD. This example confirms
that using a combination of thresholding and shrinkage, which is
more flexible than hard thresholding, results in a cleaner and
more informative estimate of the sparsity structure.

APPENDIX: PROOFS

We start from a lemma summarizing several earlier results
we will use in the proof. The proofs and/or further references
for these can be found in Bickel and Levina (2007).

Lemma 1. Under conditions of Theorem 1,

max
i

Xp

j¼1

j ŝijj1ðjŝijj $ l; jsijj < lÞ

¼ OP

 
c0ðpÞl�q

ffiffiffiffiffiffiffiffiffiffi
log p

n

r
þ c0ðpÞl1�q

!
ðA:1Þ

max
i

Xp

j¼1

j sijj 1ðjŝijj < l; jsijj $ lÞ

¼ OP

 
c0ðpÞl�q

ffiffiffiffiffiffiffiffiffiffi
log p

n

r
þ c0ðpÞl1�q

!
ðA:2Þ

max
i

Xp

j¼1

j ŝij � sijj 1ðjŝijj $ l; jsijj $ lÞ

¼ OP

 
c0ðpÞl�q

ffiffiffiffiffiffiffiffiffiffi
log p

n

r !
ðA:3Þ

Pðmax
i; j
jŝij � sijj > tÞ # C1p2e�nC2t2 þ C3pe�nC4t ðA:4Þ

where t ¼ o(1) and C1, C2, C3, C4 depend only on M.

Proof of Theorem 1. We start from the decomposition

sl Ŝð Þ � Sk k# sl Sð Þ � Sk k þ sl Ŝð Þ � sl Sð Þk k: ðA:5Þ

For symmetric matrices, the operator norm satisfies (see, for
example, Golub and Van Loan (1989)):

k A k # max
i

X
j

jaijj: ðA:6Þ

That is, the operator norm is bounded by the matrix l1 or l‘
norm, which coincide for symmetric matrices. From this point
on, we bound all the operator norms by (A.6). For the first term

in (A.5), note that by Assumptions (ii) and (iii) that define
generalized thresholding,

Xp

j¼1

jslðsijÞ � sijj #
Xp

j¼1

jsijj1ðjsijj # lÞ þ
Xp

j¼1

l1ðjsijj > lÞ

¼
Xp

j¼1

jsijjqjsijj1�q1ðjsijj # lÞ þ
Xp

j¼1

lql1�q1ðjsijj > lÞ

# l1�q
Xp

j¼1

j sijjq;

and therefore by (A.6) and the definition (7), the first term in
(A.5) is bounded by l1�qc0(p).

For the second term in (A.5), note that by (i) and (ii),

jslðŝijÞ � slðsijÞj # jŝijj1 ðjŝijj $ l; jsijj < lÞ
þ jsijj1ðjŝijj < l; jsijj $ lÞ
þ jŝij � sijj þ jslðŝijÞ � ŝijj þ jslðsijÞ � sijj
� �

1ðjŝijj $ l; jsijj $ lÞ

ðA:7Þ

The first three terms in (A.7) are controlled by (A.1), (A.2),
and (A.3), respectively. For the fourth term, applying (iii), we
have

max
i

Xp

j¼1

jslðŝijÞ � ŝijj1ðjŝijj $ l; jsijj $ lÞ

# max
i

Xp

j¼1

lql1�q1ðjŝijj $ l; jsijj $ lÞ

# l1�q max
i

Xp

j¼1

j sijjq1ðjsijj $ lÞ # l1�qc0ðpÞ:

Similarly, for the last term in (A.7) we have

max
i

Xp

j¼1

jslðsijÞ � sijj1ðjŝijj $ l; jsijj $ lÞ # l1�qc0ðpÞ:

Collecting all the terms, we obtain

k sln
ðŜÞ � S k ¼ OP c0ðpÞ l1�q þ l�q

ffiffiffiffiffiffiffiffiffiffi
log p

n

r ! !
;

and the theorem follows by substituting l ¼ M0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog p=nÞ

p
. j

Proof of Theorem 2. To prove (8), apply (ii) to get

ði; jÞ : slðŝijÞ 6¼ 0;sij ¼ 0g ¼ fði; jÞ : jŝijj > l;sij ¼ 0g
� fði; jÞ : jŝij � sijj > lg:

Therefore,

P
X

i; j

1ðslðŝijÞ 6¼ 0;sij ¼ 0Þ> 0

!
# Pðmax

i;j
jŝij � sijj > lÞ:

 

ðA:8Þ
Now we apply (A.4). With the choice l ¼ M0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlog p=nÞ

p
; the

first term dominates the second one, so we only need to make
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sure C1p2e�nC2l2 ! 0: Because we can choose M9 large
enough so that 2� C2M92 < 0, the probability in (A.8) tends to 0.

Similarly, for (9) we have�
ði; jÞ : slðŝijÞ # 0;sij > 0 or slðŝijÞ $ 0;sij < 0g � fði; jÞ

: jŝij � sijj > t � lg;
and applying the bound (A.4) and the additional conditionffiffiffi

n
p
ðt � lÞ ! ‘ gives

P
X

i;j

1ðjŝij � sijj $ t � lÞ> 0

 !
# C1p2e�nC2ðt�lÞ2 ! 0:

j

[Received March 2008. Revised August 2008.]
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