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1. PROOF OF PROPOSITION 2

In our proof of Proposition 2, we use the matrix inequality

3
HA(l)A(Q)A(?’) B B(Q)B(S)H Z B(j)H H ||B(k’)||
j=1 k#j
3 3 ‘ A
Z IBYTT 1A% = B®| + T 149 = BY|. (1)
J=1 k#j J=1

Bickel & Levina (2008) used (1) to prove their Theorem 3.

Proof of Proposition 2. From (A2) in the proof of Proposition 1, E* E*YY + A7k
Define EE = ZYY + HA~14T. Applying (1),
18 = Bell =1AT"" S8 — A 0! S|
<IAT = A |+ 17 = AL Sl + 155 — Splll AL .l
1A A = 0llIEE = Supll + AT = AZHIEE — Zapll
+ 12 lIAT = AT A = nell + 19 = nlHAT = ATH1SE - Zepl. @)

We will show that the third term in (2) dominates the others. We continue by deriving its bound.

Employing a matrix identity used by Cai et al. (2010), we write S — S = E*E(E*_é —
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ZTEI)XAIE, SO
12 - Zsll < IZ6llIZelISE - =50, 3)
Using the triangle inequality and (1),

155" = Sl < 155y = Syl + 19ATT = A gl
<1555 = S5k L+ 207 — AT sl + 1A = A7 |12
2l AT = AZYIG = mll + (AT A = 7l + |17 — mal 2]AT = ALY

= Op (cn + anlln |1 ATH + ballna?) - @

Since cpmin(Z*_)}Y) > K and A, ! is positive definite, Weyl’s eigenvalue inequality implies that

cpmin(E*_El) > K so

124kl = ¢min(E15) < 1/K. 5)
Also,

ISE] = o (5" = Op(1) 6)

because pmin (X, 1) > K, S is positive definite, and a7 ||| A + bu|74]|? + ¢ = o(1) in

(4). Using (4), (5), and (6), in (3),
158 = Zapll = Op (anlln AT + ballna? + cn) -
We then see that the third term in (2) dominates and

16 = Bl = Op { (anllm AT + ballnel* + ) oI AT}

= Op (anllnlPIATHE + balln PIATH + callmIATM]) -
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2. ADDITIONAL SIMULATION STUDIES
2-1. Sparse inverse regression elliptical t-distribution simulations

For 200 independent replications, we generated n independent copies of the random vector
(XT,YT)T which has the p + g-variate elliptical ¢-distribution with v degrees of freedom and
parameters (1, € RPT? and X, € S5, This parameterization was used by Muirhead (2005).
We set . = 0 and we picked the entries in X, by specifying X, x x, 2.« xv, and 2,yy defined
through the partition of X, used in Section 2.1. The (i, 7)th element of X,yy was plf';j | and
the (7, j)th element of A, was 07131, We set EIXY =Y.vyms and Xoxx = Ay + n*E;ny,
where 7, was generated as it was in Section 5.1 with entry-wise nonzero probability s..

Results when v = 3 and v = 10 are displayed in Fig. 1 and Fig. 2, respectively. When n =
100, p = 60, and ¢ = 60, the relative performance of I; was similar to the normal data generating
model studied in Section 5.1 for both values of v. When n = 50, p = 200, ¢ = 200, I; performed

worse than both ridge regression estimators except when v = 10 and py = 0-9.

2-2.  Additional sparse inverse regression simulations

Figure 3 displays additional side-by-side boxplots of the observed model errors for the sim-
ulation study described in Section 5-1. We see that Iy generally outperforms the competitors.
However, when n = 50, p = 200, ¢ = 200, and the responses were marginally uncorrelated,
there was a small number of replications in which both ridge regression estimators performed

better than /; did.

2-3.  Additional Non-normal forward regression simulations
In Fig. 4, we display additional side-by-side boxplots of the observed model errors for the
simulation study described in Section 5-2. When n = 100, p = 60, and ¢ = 60, I; outperformed

all non-oracle competitors. When n = 50, p = 200, ¢ = 200, and the responses were marginally
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uncorrelated, I; outperformed the non-oracle competitors except for a small number of replica-

tions.

In Fig. 5 (a)-(c), we show additional side-by-side boxplots of observed model errors for the
simulation study described in Section 5-3. When responses are marginally uncorrelated, Izr out-

performs the direct likelihood-based reduced-rank regression estimator, both of which performed
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Fig. 1. Boxplots of the observed model errors from 200

replications when the data generating model from Section

2-1is used. In (a) and (b), n = 100, p = 60, ¢ = 60, s« =

0-1,and v = 3. In (c) and (d), n = 50, p = 200, ¢ = 200,

s« = 0-03,and v = 3.

2-4.  Additional reduced-rank inverse regression simulation

better than the part oracle estimators Opa and ORy .



193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

35
30
25
20
15

Model error

10

200

170

140

Model error

110

80

50

In Fig. 5 (d)-(f), we display additional side-by-side boxplots of the observed model errors for
the simulation study described in Section 5-4. In each setting, Irr and I, performed similarly
to RR. Both Ixyr and Iy, outperformed the part oracle estimators as well. Results displayed in
Fig. 5 are consistent with those from Section 5-4. This suggests that the indirect estimators Iy,

and Irg are competitive with the direct likelihood-based reduced-rank regression estimator even

Indirect multivariate response linear regression
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Fig. 2. Boxplots of the observed model errors from 200

replications where (a), (b) n = 100, p = 60, ¢ = 60, s. =

0-1, v =10; (¢), (d) n=50,p =200, q =200, sx =

0-03, v = 10; and the data generating model from Section

2-1is used.

2-5. Additional reduced-rank forward regression simulation

when the inverse regression error precision matrix is not sparse.
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Fig. 3. Boxplots of the observed model errors from 200

replications where the data generating model from Sec-

tion 5-1 was used. In (a)-(c), n = 100,p = 60, ¢ = 60,

and s. = 0-1. In (d)-(f), n = 50, p = 200, ¢ = 200, and

sx = 0-03.
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Fig. 4. Boxplots of the observed model errors from 200

replications when the data generating model from Section

5-2is used. In (a)-(c), n = 100, p = 60, ¢ = 60, and s, =

0-1. In (d)-(f), n = 50, p = 200, ¢ = 200, and s, = 0-03.
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Fig. 5. Boxplots of the observed model errors from 200

replications when n = 100, p = 20, ¢ = 20. In (a) — (c),

the data generating model from Section 5-3 was used. In

(d) — (f), the data generating model from Section 5-4 was

used.
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